Rebecca Kimport, JULY 19, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 19,  2010

Days at Sea: 18
Nautical Miles traveled: 3802.9 nm
Location when we were farthest north and farthest west: 61 20.300N/176 05.250 W
XBTs: 113
CTDs: 21
AWTs: 28
Methots: 7

Average Swell Height: 2- 3 ft
Wind Speed Range: 3 – 22 knots
Average temperature: 6° C/42.8°F

Beautiful Day on the Bering Sea

Beautiful Day on the Bering Sea

Types of cetaceans seen: 5 (fin whale, killer whale, Dall’s porpoise, sea lion, sperm whale)
Types of birds seen: 7+ (including fulmar, murre, kittiwake, petrel, albatross, puffin, & bald eagle)
Logs seen: 3 (unfortunately there was not an arborist who could identify them)

Average number of meals eaten per day: 5 (first breakfast, second breakfast, snack, elevenses, dinner)
Times I worked out in the aft gym for the “European Challenge”: 7
Times we fell out of our chairs laughing: too many to count!

Fork Fight

Fork Fight

Top five things I am thankful for:

  1. The willingness of all the scientists, officers and crew to answer my questions and explain what it is they are doing
  2. The chance to try my hand at fish processing (I will get you otoliths), net operations (10 out!), bridge operations (this is a test), and survey tech skills (mark XBT 135!).
  3. The delicious food – to quote Michele, it was like eating at my favorite restaurant every day thanks to Ray and Floyd!
  4. Our amazing shift – Neal, Abby, Katie and Michele are fantastic and I am lucky to have gotten the chance to get to work with them (and laugh with them)
  5. The weather – although we had no control over it, it was great to have such pleasant weather the whole trip. Yes, there were foggy days and high winds but they made the clear days that much more exciting.

Top five things for a TAS to bring on the Oscar Dyson

  1. Flash drive (no need to rely on the Internet)
  2. Fleece/wool cap (its cold in the fish lab)
  3. Workout clothes (2 gyms, endless choices)
  4. Slip-on shoes you can put through the wash (they will smell like fish!)
  5. Digital Camera (keep it in your pocket at all times, you never know when you might spot a walrus)
  6. (BONUS) A Coffee Mug — you won’t want to be without your peppermint hot chocolate or latte

Rebecca Kimport, JULY 14, 2010 part2

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 14,  2010

Weather Data from the Bridge

Time: 1500
Latitude: 57.34N
Longitude: 173.35W
Cloud Cover: 2/8
Wind: 10 knots
Air Temperature: 8.50 C/ 470 F
Water Temperature: 8.10 C/ 470 F
Barometric Pressure: 1021.4 mb

During this trip, it has been amazing how the days have blended into each other. There are times when it has been hard to even remember what we did in the morning (before breakfast) by the time lunch rolls around. In some ways, a “day” is not a useful unit of measurement for time. Instead, things happen in moments.

Sightings of mammals and birds require you to be at the right place at the right time. Yesterday, during dinner, a call came into the mess hall from the flying bridge — sperm whales and killer whales off the port bow. Within seconds, everyone hustled into gear, shoveling down the last bites of food, clearing their plates and heading up to see the whales. I went all the way up to the flying bridge and was able to see three different sperm whales catching their breath before diving back to the depths. Ernesto also showed me the killer whales through the big eyes. As sperm whales can be down for 45-50 minutes, it is very exciting to catch them at the surface as we are moving to fast to see them on their next trip up.

Ready to dig out otoliths

In addition, timing is important to ensure that operations on the ship continue smoothly. For example, fishing operations involve three teams (officer on deck, the deck crew and the scientists) all working together to ensure that the fish we spot get in the net, on the boat, and processed as quickly as possible. As Katie, Michele and I became more familiar with processing, we were able to move through the hauls much faster. On Tuesday, we completed three hauls in our shift and still had time to catch up on emails, learn about the Aleutian volcanoes and attempt to master some old-school knots.

Katie eats the jellyfish

While we’re on the subject of timing, I have to mention the crew’s and scientists’ comedic timing. I can’t tell you how much time I have spent laughing and joking while on this cruise. It could be as simple as a funny face someone makes when confronted by a huge jellyfish or as nerdy as when someone uses the word of the day in a sentence. As the trip comes to a close (we will be in port by 9 am on Friday), I have started to think about how I will take this experience back to my classroom and to my friends and family. In addition to the science and the amazing sights I have seen, I will definitely take the memories of how often we fell out of our chairs laughing.

Rebecca Kimport, JULY 14, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 14,  2010

Weather Data from the Bridge

Time: 1500
Latitude: 57.34N
Longitude: 173.35W
Cloud Cover: 2/8
Wind: 10 knots
Air Temperature: 8.50 C/ 470 F
Water Temperature: 8.10 C/ 470 F
Barometric Pressure: 1021.4 mb

How can I join the Oscar Dyson?

Wish you could join the Oscar Dyson on its next journey? There are a number of ways you could come aboard:

OOD Amber in Uniform

• Join NOAA Corps – NOAA Corps partake in officer training and complete years of service to earn officer ranks (such as the CO, XO, Operations Officer, etc). Unlike other military branches, NOAA Corps are required to hold a bachelor’s degree and have significant course work in math, science and/or engineering. For more information, click here.

• Become a Deckhand/Fisherman – NOAA employs wage mariners for their deck crew. The Oscar Dyson has a deck and fishing crew to help keep the boat in order and to support the scientific research (moving the net, bringing the CTD in and out). For more information, click here.

Specialists Working the Net

• Become a specialist – Beyond the deck crew, the ship needs specialists to help it run smoothly. We have a crew of amazing engineers, two great survey technicians, and a Steward department that keeps us well fed (the food is delicious here!). For more information,click here.

• Work for the National Marine Fisheries Service – most employees join a trip to complete field research and to ensure data collection and processing for those back in the lab. The Oscar Dyson works primarily with scientists from theAlaska Fisheries Science Center for the summer cruises.• Work for another marine life service – As mentioned before, there are two birders (from the Fish and Wildlife commission), three mammalian observers (from the National Marine Mammal Laboratory), and a scientist from the Pacific Marine Environmental Lab oratory. In addition, we are hosting two Russian scientists who are also studying pollock.

Intern Katie at the microscope

• Serve as a NOAA Intern – NOAA has a variety of internship opportunities for graduate, undergraduate and even high school students. You can check out more information here.

• Be like me and join a cruise as a Teacher At Sea – If you work in education (as a K-college teacher/administrator, an adult education teacher or a museum curator), you can apply to serve as a Teacher At Sea. Trust me, its awesome. (more information and application information can be found at their website.

TAS Michele and I in front of the boat

Word of the day
sagacious: having sound judgment

New Vocabulary
CO: Commanding Officer
XO: Executive Officer

Rebecca Kimport, JULY 12, 2010 part2

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 12,  2010

A Floating City

A modern city has a network of companies that provide us with modern conveniences (water, electricity, sewage and trash removal). A NOAA research vessel provides those same conveniences to its crew through the complex engineering network. We wouldn’t be able to eat, drink, take showers, or conduct research without the expertise of our engineers.
Sea water is taken in by an intake valve about 6 m below the surface. It goes through a variety of cleaning processes to filter, distill and purify the water for human consumption. First, small sea creatures are removed by a filter known as the “sea chest.” Here is a picture of some of the creatures captured by the sea chest in the Oscar Dyson. Next, the water is distilled using the heat from the engine under a vacuum to remove dissolved ions. The water is then purified using bromine and UV light before it is pumped into the piping system (running throughout the ship in pipes labeled “potable water”). The water is so pure that we have to add salt for the espresso machine to recognize the water level (the science of the espresso machine will have to wait for a later entry).

Contents of the Sea Chest

Lights, Camera, Acoustics
The Oscar Dyson requires electricity to run the ships instruments, the scientific equipment and the lights which allow us to keep the ship operational 24/7. Our power is generated by the engines which also propel the ship forward. The Oscar Dyson runs on diesel fuel and uses larger, more powerful versions of the engines we find in cars. We use about 110 gallons of fuel each hour to maintain scientific and navigational operations.

Engine

Taking out the trash
Kitchen and food waste are the main sources of trash on the Oscar Dyson. Trash is sorted and disposed of based on how it breaks down. Food, which decomposes, is released into the ocean to re-enter the ecosystem. Combustible items (such as paper, napkins, etc) are burned in the ship’s incinerator which is run every night. Non-combustible items, such as aluminum cans, are recycled and brought back to land.

And out the other end
Although a less than pleasant topic to discuss over dinner, it is important to remember that a ship must track its human waste as well. Per NOAA regulations, human waste is treated through a complex process before being released into the ocean (to re-enter the eco-system). This process, like those of water treatment plants and septic systems on land, break down the waste through multiple steps involving biological, physical and chemical reactions. Ask me for more information if you really want the dirty details.

Who’s watching the engines?
The Oscar Dyson employs an engineering staff of seven, who have specialized training and job responsibilities to ensure proper functioning and maintenance of the vessel. Like all good engineers, they usually work behind the scenes so it was great to get an inside look at the inter-workings of the ship.

New Vocabulary
hull: watertight body of a ship
distill: remove impurities
ions: an atom with a positive or negative charge. Ions are created when elements gain or lose electrons. They can be in the form of a solid or a liquid (dissolved)
UV light: ultraviolet light

Rebecca Kimport, JULY 12, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 12,  2010

More Fish in the Sea

Table of Fish

As we have moved farther west, we have encountered more fish and are therefore completing more trawls. Yesterday was our biggest day so far and we completed two trawls for pollock (referred to as AWTs for Aleutian Wing Trawl) and one Methot during our 12 hour shift (with more fishing done in the next shift). Our first trawl started at the beginning of our shift and we hustled to finish processing before breakfast. To help keep our spirits up, Abby, Michele, Katie, Robert and I rocked out to some 80s tunes as we sorted and processed fish. Imagine the five of us bopping around the lab, in our foul weather gear, with scalpels in hand, while Rick Springfield wishes he had Jessie’s Girl, all before sunrise.

Even though we completed three hauls, I still had time to work on my “Run Across Germany” (for Chuck Norris Snuggle Muffin) and to spend time with the mammal observers. As I mentioned before, marine mammal observers have to be extremely patient. I spent about an hour and a half with them yesterday evening and saw two groups of whales through the big eyes (which was more than average). One was clearly a group of 2-3 fin whales while another was an unidentified blow.

Checking out the big eyes

The marine mammal observers mark all sightings in a data program with a mapping function that then predicts where the cetaceans might be moving so the observers can identify whether future sightings are the same or new animals. They might see two or three sets of blows before they spot any part of the body which could help them identify it. Fin whales come up to the surface once every 8-10 minutes and it took until the third set of blows before marine mammal observer Paula Olson was able to identify them (I got to see them on the fourth surface visit).
While we were waiting for the fin whales to come up again, Paula explained that in our part of the Bering Sea, there are five cetacean species that we are most likely to see. We determined that with the fin whale sighting I have already seen three (killer whales, Dall’s porpoises, and fin whales) leaving me with two species to scope out before we leave (minke whales and humpback whales (you know, like Humphrey)). Hopefully the weather will stay clear and I’ll be able to spend some more time on the flying bridge.
Animals Seen • Squid • Fin Whales • Pteropods • Ctenophores • Amphipods • Euphausiids • Pollock

Word of the day descry: to catch sight of something in the distance

Rebecca Kimport, JULY 11, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 11,  2010

You have officially been challenged!

After my shift ends at 1600, I usually hit up one of the gyms. That’s right, I said gyms – plural. There is a forward gym that contains a treadmill, an exercise bike and an elliptical and an aft gym, located in the winch room, which contains a treadmill, an ERG machine, a spin bike and free weights. Abby, Katie, Michele and I usually hit up the gym at about the same time and have a great time comparing our ability to not do ring push-ups while we rock out to music.Workout time is a way for us to zone out for a while even though we have to stay focused on our movements when the swells are high (see weather entry for more information). I’ve tried using the treadmill a couple times and feel like I’m getting twice the workout because I have to use my core and arms to keep me steady.Since the gym is a popular place for many residents of the Oscar Dyson, Ensign Amber Payne spearheaded a “European Challenge of the Century.” While we travel our transects on the Bering Sea, officers, crew and scientists are tasked to climb the Matterhorn (lower body workout), bike the Tour de France (exercise or spin bike), swim the English Channel (there is a pool in Dutch Harbor), hang-glide across Ireland (ab workouts), and more. We were assigned teams randomly and have the opportunity to contribute while we are at sea. My team, Chuck Norris Snuggle Muffin, has taken an early lead but other teams are getting into the spirit and the gyms have been more crowded recently. The competition will last until the end of the field season (early October) but I am excited to contribute while I can.

Chuck Norris

In addition to the gyms, people who are off duty congregate in the computer rooms or the lounge. Everyone on the ship has some quantity of work to do on the computer and email/messenger is the most reliable method of communication to family and friends off the boat (even though the Internet is less than reliable as we go farther north). We are lucky to have comfortable couches, a big screen TV and a collection of hundreds of movies, including several recent movies. Recently, a large group of us day shifters watched the classic Enter the Dragon and periodically imitate Bruce Lee as we launch XBTs and process pollock.

While on the subject of leisure activities, I should mention that I have taken an obscene number of photographs while I have been here and get entranced just looking out the window or watching the path of the short-tailed albatross. Here is a photo I took this morning after our first trawl of the morning (Fulmars are always circling the ship while we trawl):

Fulmar at Sunrise

New animals seen
short-tailed albatross (endangered)
brittle stars- Ophiura sp.
basket star
hermit crabs
2 types of cockles- Clinocardium sp. and Serripes sp.
Tanner crab
Aleutian moonsnail
Arctic moonsnail
amphipods
Dall’s porpoises
flounder- Kamchatka flounder
spiny lumpsucker (at right)
lumpsucker
walrus

Spiny Lumpsucker

Rebecca Kimport, JULY 10, 2010

NOAA Teacher at Sea Rebecca Kimport
NOAA Ship Oscar Dyson
June 30, 2010 – July 19, 2010

Mission: Summer Pollock survey
Geograpical Area:Bering Sea, Alaska
Date: July 10,  2010

Weather Weather Everywhere!

Weather Data from the Bridge
Time: 1400
Latitude: 59.12 N
Longitude: 174.02 W
Cloud Cover: 5/8
Wind: 17 knots
Air Temperature: 8° C/ 46° F
Water Temperature: 7° C/ 45° F
Barometric Pressure: 1006.9 mb

Aside from weather helping you decide what to wear for the day, weather is critical on board a research vessel. Each hour the bridge collects the same data that is then input into the AMVER Sea system and sent to NOAA Weather. Some of the information included is: time, latitude, longitude, cloud cover, air and water temperatures, wind, barometric pressure, visibility, and swell height. This helps determine our exact location (check out NOAA Shiptracker for more information) as well as the weather at sea and also weather inland. It is not uncommon for marine weather systems to move inland. This information also helps us understand long term climate changes, precipitation, and ocean currents.

Exactly where are we?
The latitude and longitude help determine the position of the ship and the time is recorded to understand how the ship is moving and in what direction. This allows the scientists to follow the transects to conduct their research. If I told you at 1500 hours (3pm) our mark was 58.00N and 171.48W, you would be able to pinpoint our location on a map. Our latitude so far on this trip (July 7th) has been in the range of 56.12N-58.69N depending on the transect that we are following and the longitudes’ range is between 170.01W-171.48W.

Map of ship route

Map of ship route

It’s cloudy again?

Clouds from the deck

Clouds from the deck

It tends to be quite cloudy and foggy here in the Bering Sea and cloud cover is measured in eighths of the sky. For example, on July 6th the cloud cover at 1500 hours was 7/8 which means that 87.5% of the sky was filled with clouds. Cloud type and location can help predict the type of weather. The majority of our days have been 8/8 or 100% cloud cover with stratus clouds and lots of moisture in the air.

This is definitely not the heat wave they are getting back home!
This brings us to air temperature and wind. The temperature is always taken on the windward side of the ship because this is the side of the ship in the stream of air fresh from the sea that has not been in contact with or passed over the ship. There are two types of thermometers in each case on the deck in front of the bridge. The dry bulb measures the air temperature and the wet bulb has a muslin wick which absorbs heat from the thermometer. The temperature difference between the two, called the depression of the wet bulb, can help determine what the percent humidity is by referring to the humidity chart. Wind can affect these readings which is why there are thermometers on either side of the bridge. The wind direction is logged as the same direction from which the sea waves are coming. Average temperature through July 7th for Leg II has been 5.680C/420F with winds averaging 10.29 knots. The weather mentioned has been the trend for Leg II; however, this could be changing by the end of the week…stay tuned!

Wet Bulb-Dry Bulb

Wet Bulb-Dry Bulb

Hold on tight!
It’s July 10 and we are still waiting for the big seas to hit us. (not that I am complaining about calm weather!) The swells have gotten larger and the wind definitely picked up yesterday. The strongest wind recorded yesterday was 26 knots while on my shift. There is still a chance for NW sustained winds up to 25 knots and 10 foot seas before the weekend is up. Part of the reason for calmer seas yesterday was that we were so far north and the low pressure system was to the south of us. It was actually the farthest north I have ever been, and we will go even farther north before it is time to head back to Dutch Harbor.

Word of the day
guile: deceit

New Vocabulary
barometric pressure: the downward force that the atmosphere exerts per unit of a certain area.
swell height: measure of wind waves generated locally; vertical distance between trough and crest
muslin wick: plain woven cotton fabric
humidity: the amount of moisture in the air
gale force winds: strong winds between 28-47 knots