DJ Kast, Interview with a Chief Scientist, June 3, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical areas of cruise: Mid Atlantic Bight, Southern New England, Georges Bank, Gulf of Maine
Date: June 3, 2015

Science and Technology Log: Interview with the Chief Scientist, Jerry Prezioso

 

Chief Scientist Jerry Prezioso and graduate student Megan Switzer. Photo by DJ Kast
Chief Scientist Jerry Prezioso and graduate student Megan Switzer. Photo by DJ Kast

What is your job on the NOAA Henry B. Bigelow?

 Chief Scientist.

What does your job entail?

My job contains three main parts: pre-cruise setup, science underway, and post-cruise wrap up activities.

Pre-cruise Setup. (this starts long before the cruise)

  • Have to have the project instructions.
  • Fishing zone license if in Canadian waters
  • All Scientists are required to have a TB Test and Medical clearance to come aboard.
  • If any of the scientists are not a US citizen,  green cards or security clearance are needed
  • I pick out the station locations and route.
  • Make sure there are enough materials/ supplies/ chemicals.

During Cruise:

  • Supervise and coordinate all the scientists
  • During this cruise I had the day shift and so I did all the day time bongos and CTD’S with the Teacher at Sea DJ Kast
Jerry watering down the net to collect plankton. Photo by DJ Kast
Jerry washing down the net to collect plankton. Photo by DJ Kast
  • Track updates: I need to adjust for time and weather. I keep the ship working all the time 24/7. The ship costs thousands of dollars a day to run, so I make sure its never sitting. That’s why there are two shifts. If it is bad offshore, we move inshore to keep working.
  • Check logs, data.
  • Instruct the Teacher at Sea and provide them with awesome buoys.
Collecting water samples from the Niskin bottles in the Rosette. Photo by DJ Kast
Collecting water samples from the Niskin bottles in the Rosette. Photo by DJ Kast

After Cruise:

  • Destage the vessel.
  • Deliver samples and data
  • Write cruise report
  • Operations table- what we did at every station. Bongo vs. CTD, Bongos for CMARZS, Dave, Jessica.
  • Make sure all scientists get home OK.

How many years have you been doing this?

I have 40 years of government service. Back in 1968, I had my first student NOAA job. At Northeastern University, I was a co-op student, which meant I alternated school with a work-related job until graduation in 1974. I  got a job with NOAA as a biological technician. Afterwards, I was a fishery biologist. Then I went to the University of Rhode Island (URI) for my masters degree in biological oceanography (1991) and since then it has been oceanography all the way- 23 years of oceanography. I started helping out on research cruises. I would help with the plankton tows and show up to collect samples. I started going on many cruises like trawling cruises, fishing cruises, and would even travel on foreign vessels. I’ve been on quite a few foreign vessels: Russian vessels, Japanese, East and West German, Polish, and Canadian and it’s in these type of environments that you really learn to do more things yourself and learn more about different cultures.

What is your own personal research?

I am interested in the influences of distribution of plankton in various areas. This is what I did for my master’s thesis. I wanted to see what environmental parameters could affect plankton distribution. So far, temperature seems to be the strongest influence. Decades ago plankton that was originally found down south is found north now. Such dramatic change between 1970s and now. My boss has seen the same regional change with fish, seen them move up more north as the climate has changed. I am much more field oriented than research (lab) oriented, which is why I am out on the boats so much.

What are some of your hobbies besides SCIENCE?

  • Mainly SCUBA diving and photography
  • SCUBA diving: When I was younger, SCUBA diving was definitely a major push for me to get into oceanography. I was certified during college and I have loved it ever since.
  • Underwater photography is my favorite.
Photo by Jerry Prezioso
Underwater Photography: Herring photo by Jerry Prezioso

 

  • I remember being able to photograph River Herring which spawn in freshwater and then go out to sea to grow to adulthood.
Jerry in the steam filming herring. Photo provided by Jerry Prezioso
Jerry in the steam filming herring. Photo provided by Jerry Prezioso
  • I have lots of ocean fish photos, flounder and striped bass.

 

Comb Jelly. Photo by Jerry Prezioso

 

  • I also use my photography skills on the ship. For example, I combined SCUBA diving and photography by taking pictures of the crew cleaning lines out of the propeller (which is underwater).
  • Photo skills have definitely helped me on the job.

 

Selfie! Photo by DJ Kast
Selfie! Photo by DJ Kast

DJ Kast, Engine Room Tour with the Chief Engineer, June 2, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: June 2, 2015

Chief Engineer Tour of Engine Room!

IMG_2044
Selfie with the Chief Engineer! Photo by DJ Kast
IMG_7398
John Hohmann, Chief Engineer on NOAA Ship Henry B. Bigelow. Photo by DJ Kast

SCHEMATICS- Drawn by John

IMG_2091
The upper level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast
IMG_2092
The lower level of the engine room. Drawn out by John Hohmann and photographed by DJ Kast

Chief Engineer John Hohmann took me on a tour of  the Engine room here on NOAA Ship Henry B. Bigelow. It was fascinating to learn all of the components that make this type of research vessel work. The electrical components, the seawater distillation apparatus, biological sewage treatment, etc. It was an amazing tour. The Bigelow has a diesel-electric drive system using four diesel generators to power to two electric motors. The motors turn one shaft which rotates the propeller. Overall rated horsepower for main propulsion is 3017hp.

The biological system utilises bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment . The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com
The biological system utilizes bacteria to completely break down the sewage into an acceptable substance for discharge into any waters. The extended aeration process provides a climate in which oxygen-loving bacteria multiply and digest the sewage, converting it into a sludge. These oxygen-loving bacteria are known as aerobic. The treatment plant uses a tank which is divided into three watertight compartments: an aeration compartment, settling compartment and a chlorine contact compartment .
The sewage enters the aeration compartment where it is digested by aerobic bacteria and micro-organisms, whose existence is aided by atmospheric oxygen which is pumped in. The sewage then flows into the settling compartment where the activated sludge is settled out. The clear liquid flows to the chlorinator and after treatment to kill any remaining bacteria it is discharged. Tablets are placed in the chlorinator and require replacement as they are used up. The activated sludge in the settling tank is continuously recycled and builds up, so that every two to three months it must be partially removed. This sludge must be discharged only in a decontrolled area. Photo and Caption info by Machinary Spaces.com

The most fascinating part for me was the Evaporator.

The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com
The inside Mechanics of the evaporator machine. Photo by: Machinery Spaces.com

Distillation is the production of pure water from sea water by evaporation and re-condensing. Distilled water is produced as a result of evaporating sea water either by a boiling or a flash process. This evaporation enables the reduction of the 32 parts per thousand of dissolved solids in sea water down to the one or two present in distilled water. The machine used is called an ‘evaporator’, although the word ‘distiller’ is also used.

Boiling process:

The vacuum in the evaporation machine reduces the pressure to 30 inches of Hg or Mercury to boil water at 180F instead of 212 F

The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.
The vacuum in the evaporation machine uses 30 inches of Hg or Mercury to boil water at 180F instead of 212 F. Photo by DJ Kast.

The sea water from the ship’s services is first circulated through the condenser and then part of the outlet is provided as feed to the evaporation chamber. Hot diesel engine jacket water or steam is passed through the heater nest and, because of the reduced pressure in the chamber, the sea water boils. The steam produced rises and passes through a water separator, or demister, which prevents water droplets passing through. In the condensing section the steam becomes pure water, which is drawn off by a distillate pump. The sea water feed is regulated by a flow controller and about half the feed is evaporated. The remainder constantly overflows a weir and carries away the extra salty water or brine. A combined brine and air ejector draws out the air and brine from the evaporator.

Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast
Evaporation machine connected to the Ship Service Diesel Generator. Photo by DJ Kast

They need to make their own electricity on board ranging from 110 Volts for phones and computers to 750 Volts for some of the ship propulsion motors. Each of those require various circuit breakers seen below.

480 Volt Machines. Photo by DJ Kast
480 Volt Circuit Breaker. Photo by DJ Kast
600 Volt Machines. Photo by DJ Kast
600 Volt Circuit Breaker. Photo by DJ Kast
Its going 1000 amps. WOW. Photo by DJ Kast
Its conducting 1000 amps. WOW. Photo by DJ Kast
Air Compressors. Photo by DJ Kast
Air Compressors. Photo by DJ Kast
The air in the compressors is moist and hot so this cools it down and removes moisture. Photo by DJ Kast
The air in the compressors is moist and hot so this machine cools it down and removes moisture. Photo by DJ Kast
Air pressure holding tanks. Photo by DJ Kast
Air pressure holding tanks. Photo by DJ Kast
Drives. Photo by DJ Kast
Electric Motor Drives. Photo by DJ Kast

 

Engines and generators. Photo by DJ Kast
Engines and generators. Photo by DJ Kast
Evaporation controls. Photo by DJ Kast
Evaporator controls. Photo by DJ Kast
Freshwater Generator. Photo by DJ Kast
Freshwater Generator. Photo by DJ Kast
Generator! Photo by DJ Kast
Ship Service Diesel Generator (SSDG)! Photo by DJ Kast
Jacket Water Tanks on the SSDG
Jacket Water Tanks on the SSDG. This water is used to cool the generators. Photo by DJ Kast
Machine operates the cranes. Photo by DJ Kast.
Hydraulic pump that operates the cranes. Photo by DJ Kast.
Maintenance Service Board. Photo by DJ Kast.
Maintenance Service Board. Photo by DJ Kast.

 

Motor Controls. Photo by DJ Kast.
Motor Controls. Photo by DJ Kast.
Power supply 1, 2D. Photo by Dj Kast.
Power supply 1, 2D. Photo by Dj Kast.
Teal pump that separates oil. Photo by DJ Kast
Oily water separator reduces the water mixed with oil to 115 ppm for overboard discharge. The oil is retained on board. Photo by DJ Kast
Smoke Stacks! Photo by DJ Kast.
Smoke Stacks! Photo by DJ Kast.
Trawling Winch line. Photo by DJ Kast.
Trawling Winch line. Photo by DJ Kast.
Two blue boxes that are motors connected to the propeller. Photo by DJ Kast.
Two blue boxes are electric motors connected to the propeller. Photo by DJ Kast.
Third Engineer John fixing a pipe with a large wrench. Photo by DJ Kast
Third Engineer John is all smiles while he works. Photo by DJ Kast

DJ Kast, Bongo Patterns, June 1, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical areas of cruise: Mid Atlantic Bight, Southern New England, George’s Bank, Gulf of Maine
Date: June 1, 2015

Science and Technology Log:

Bongo Patterns!

Part of my job here on NOAA Ship Henry B. Bigelow is to empty the plankton nets (since there are two we call them bongos). The plankton is put into a sieve and stored  in either ethanol if they came from the small nets (baby bongos) or formalin if they came from the big nets (Main bongos).

What are plankton? Plankton is a greek based word that means drifter or wanderer. This suits these organisms well since they are not able to withstand the current and are constantly adrift. Plankton are usually divided by size (pico, nano, micro, meso, macro, mega). In the plankton tows, we are primarily focused on the macro, meso and megaplankton that are usually with in the size range of 0.2- 20 mm  (meso), 2-20 cm (macro), and above 20 cm (mega) respectively.

Group Size range Examples
Megaplankton > 20 cm metazoans; e.g. jellyfish; ctenophores; salps and pyrosomes (pelagic Tunicata); Cephalopoda; Amphipoda
Macroplankton 2→20 cm metazoans; e.g. Pteropods; Chaetognaths; Euphausiacea (krill); Medusae; ctenophores; salps, doliolids and pyrosomes (pelagic Tunicata); Cephalopoda; Janthinidae (one family gastropods); Amphipoda
Mesoplankton 0.2→20 mm metazoans; e.g. copepods; Medusae; Cladocera; Ostracoda; Chaetognaths; Pteropods; Tunicata; Heteropoda
Microplankton 20→200 µm large eukaryotic protists; most phytoplankton; Protozoa Foraminifera; tintinnids; other ciliates; Rotifera; juvenile metazoansCrustacea (copepod nauplii)
Nanoplankton 2→20 µm small eukaryotic protists; Small Diatoms; Small Flagellates; Pyrrophyta; Chrysophyta; Chlorophyta; Xanthophyta
Picoplankton 0.2→2 µm small eukaryotic protists; bacteria; Chrysophyta
Femtoplankton < 0.2 µm marine viruses

(Omori, M.; Ikeda, T. (1992). Methods in Marine Zooplankton Ecology)

We will be heading to four main geographical areas. These four areas are: the Mid Atlantic Bight (MAB), the Southern New England (SNE), Gulf of Maine (GOM), and George’s Bank (GB). I’ve been told that the bongos will be significantly different at each of these sites.  I would like to honor each geographical area’s bongos with a representative photo of plankton and larval fish.  There are 30 bongos in each area, and I work on approximately 15 per site.

DJ Kast holding the large plankton net. Photo by Jerry P.
DJ Kast holding the large plankton net. Photo by Jerry Prezioso
Bongos in the Sunset. Photo by DJ Kast
Bongos in the Sunset. Photo by DJ Kast

Here is a video of a Bongo launch.

 

Flow Meter Data. It is used how to count how far the plankton net was towed. Used to calculate the amount of animals per cubic meter. Photo by DJ Kast
Flow Meter Data. It is used how to count how far the plankton net was towed to calculate the amount of animals per cubic meter. Photo by DJ Kast

 

The plankton nets need to be wiped down with saltwater so that the plankton can be collected on the sieve.

 

Day 1: May 19th, 2015

My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast
My first Catch of Plankton! Mostly zooplankton and fish larvae. Photo by: DJ Kast
Day 1: Fish Larvae and Copepods. Photo by: DJ Kast
Day 1: Fish Larvae and Copepods. Photo by: DJ Kast

 

 

Day 2: May 20th, 2015

Larval Fish and Amphipods! Photo by: DJ Kast
Larval Fish and Amphipods! Photo by: DJ Kast

Day 3: May 21st, 2015

IMG_7096
Day 3, the plankton tows started filling with little black dots. These were thousands of little sea snails or pteropods. Photo by DJ Kast
IMG_7100
Clogging the Sieve with Pteropods. Photo by DJ Kast
IMG_7110
Close up shot of a Shell-less Sea Butterfly. Photo by: DJ Kast
IMG_7121
Glass Eel Larva. Photo by DJ Kast

 

Day 4: May 22nd, 2015

Butterfly fish found in the plankton tow. Photo by; DJ Kast
Butter fish found in the plankton tow. Photo by; DJ Kast
IMG_7187
Baby Triggerfish Fish Larvae Photo by: DJ Kast
Swimming Crab. Photo by DJ Kast
Swimming Crab. Photo by DJ Kast
IMG_7174
Megalops or Crab Larva. Photo by: DJ Kast
IMG_7176
Polychaete Worms. Photo by: DJ Kast
IMG_7165
Salp. Photo by: DJ Kast

 

Day 5: May 23, 2015

Unidentified organism Photo by DJ Kast.
Unidentified organism
Photo by DJ Kast.
Sand Lance Photo by DJ Kast
Sand Lance Photo by DJ Kast
Polychaete worm. Photo by DJ Kast
Polychaete worm. Photo by DJ Kast
3 amphipods and a shrimp. Photo by DJ Kast
3 amphipods and a shrimp. Photo by DJ Kast
Such diversity in this evenings bongos. Small fish Larva, shrimp, amphipods. Photo by DJ Kast
Such diversity in this evening’s bongos. Small fish Larvae, shrimp, amphipods. Photo by DJ Kast
Small fish Larva. Photo by DJ Kast
Small fish Larvae. Photo by DJ Kast

Below are the bongo patterns for the Southern New England area.

I have learned that there are two lifestyle choices when it comes to plankton and they are called meroplankton or holoplankton.

Plankton are comprised of two main groups, permanent or lifetime members of the plankton family, called holoplankton (which includes as diatoms, radiolarians, dinoflagellates, foraminifera, amphipods, krill, copepods, salps, etc.), and temporary or part-time members (such as most larval forms of sea urchins, sea stars, crustaceans, marine worms, some marine snails, most fish, etc.), which are called meroplankton.

Day 6: May 24th, 2015

Copepod sludge with a fish larva. Photo by: DJ Kast
Copepod sludge with a fish larva. Photo by: DJ Kast
Baby Bongo Sample in ethanol. Photo by: DJ Kast
Baby Bongo Sample in ethanol. Photo by: DJ Kast
Megalops? Photo by: DJ Kast
Megalops?
Photo by: DJ Kast
Fish Larvae. Photo by: DJ Kast
Fish Larvae. Photo by: DJ Kast
Side station sample from the mini bongos on the sieve. Photo by: DJ Kast
Sample from the mini bongos on the sieve. Photo by: DJ Kast

Day 7: May 25th, 2015

???? Photo by DJ Kast
???? Photo by DJ Kast
Tiny Snail. Photo by DJ Kast
Tiny Snail. Photo by DJ Kast

Georges Bank- It is a shallow, sediment-covered plateau bigger than Massachusetts and it is filled with nutrients that get stirred up into the photic zone by the various currents. It is an extremely productive area for fisheries.

Photo by: R.G. Lough (NEFSC)
Photo by: R.G. Lough (NEFSC)

Today, I learned that plankton (phyto & zoo) have evolved in shape to maximize their surface area to try and remain close to the surface. This makes sense to me since phytoplankton are photosynthesizers and require the sun to survive. Consequently, if zooplankton are going to consume them, it would be easier to remain where your food source is located. I think this would make for a great lesson plan that involves making plankton-like creatures and seeing who can make them sink the least in some sort of competition.

Photo by DJ Kast
Photo by DJ Kast
Harpactacoid Copepod. Photo by DJ Kast
Harpactacoid Copepod. Photo by DJ Kast
The Biggest net caught sand lance (10 cm). Photo by DJ Kast
The Biggest net caught sand lance (10 cm). Photo by DJ Kast
Fish Larvae. Photo by DJ Kast
Fish Larvae. Photo by DJ Kast

Day 8: May 26th, 2015 Very Diverse day,  Caprellids- skeleton shrimp, Anglerfish juvenile, Phronima inside of salp! Photo by DJ Kast

Photo by: DJ Kast
Juvenile Anglerfish aka Monk Fish. Photo by: DJ Kast
IMG_7483
Sand Shrimp. Photo by DJ Kast
IMG_7469
A tiny krill with giant black eyes. Photo by DJ Kast
IMG_7454
A small jellyfish! Photo by: DJ Kast
IMG_7451
A phronima (the bee looking thing inside the translucent shell) that ate its way into a salp and is using the salp as protection. Photo by: DJ Kast

Video of the phronima:

Caprellids or Skeleton Shrimp. Photo by DJ Kast
Caprellids or Skeleton Shrimp. Photo by DJ Kast

Video of the Caprellids:

Day 9:  May 27th, 2015= Triggerfish and colorful phronima (purple & brown). Our sieves were so clogged with phytoplankton GOOP, which is evidence of a bloom. We must be in very productive waters,

Evidence of a Phytoplankton bloom in the water, Photo by: DJ Kast
Evidence of a Phytoplankton bloom in the water. Photo by: DJ Kast
Juvenile Triggerfish. Photo by: DJ Kast
Juvenile Triggerfish. Photo by: DJ Kast

Day 10: May 28th, 2015= change in color of copepods. Lots of ctenophores and sea jellies

A Sea jelly found in George's Bank. We are in Canada now! Photo by: DJ Kast
A comb jelly (ctenophore) found in George’s Bank. We are in Canada now! Photo by: DJ Kast
Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast
Sea Gooseberry: a type of ctenophore or comb jelly. Photo by DJ Kast

Did you  know? Sea Jellies are also considered plankton since they cannot swim against the current.

Day 11: May 29th, 2015: Border between Georges Bank and the Gulf of Maine!

Krill found in the Gulf of Maine. Photo by DJ Kast
Krill found in the Gulf of Maine. Photo by DJ Kast
Callenoid Copepods. Photo by DJ Kast
Callenoid Copepods- its so RED!!! Photo by DJ Kast

Gulf of Maine! Water comes in from the North East Channel (the Labrador current), coast on one border and George’s  Bank on the other. Definitely colder water, with deep ocean basins. Supposed to see lots of phytoplankton. Tidal ranges in the Gulf of Maine are among the highest in the world ocean

Gulf of Maine currents! Photo by NEFSC NOAA.
Gulf of Maine currents! Photo by NEFSC NOAA.

Day 12: May 30th, 2015: day and night bongo (Just calanus copepods vs. LOTS of krill.)

Krill, Krill, Krill! Photo by DJ Kast
Krill, Krill, Krill! Photo by DJ Kast

Krill are normally found lower in the water column. The krill come up at night to feed and avoid their predators and head back down before dawn. This daily journey up and down is called the vertical migration.

Video of Krill moving:

Day Sample. Photo by DJ Kast
Day Sample. Photo by DJ Kast
Night Sample. Photo by DJ Kast
Night Sample (look at all those krill). Photo by DJ Kast

Day 13: May 31th, 2015: Calanoid Copepod community.  Calanoida feed on phytoplankton (only a few are predators) and are themselves the principal food of fish fry, plankton-feeding fish (such as herring, anchovies, sardines, and saury) and baleen whales.

Calanious Community. Its so RED! Photo by DJ Kast
Calanus Community. It’s so RED! Photo by DJ Kast

Day 14: June 1st, 2015:

Brittle Stars caught in the Plankton Tow. Photo by DJ Kast
Brittle Stars caught in the Plankton Tow. Photo by DJ Kast
Tusk shell. Photo by DJ Kast
Tusk shell. Photo by DJ Kast
Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast
Side profile of Shrimp caught in the plankton nets. Photo by DJ Kast
Shrimp Head. Photo by DJ Kast
Shrimp Head. Photo by DJ Kast
Shrimp Tail with Babies. Photo by DJ Kast
Shrimp Tail with Babies. Photo by DJ Kast

Day 15: June 2nd, 2015: Last Day

Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the sieve with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the net with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast
Gooey foamy mess in the jar with all the phytoplankton. Photo by DJ Kast
Map of all the Bongo and CTD/ Rosette Stations. Photo by DJ Kast.
Map of all the Bongo and CTD/ Rosette Stations (153 total). Photo by DJ Kast.

Through rough seas and some amazingly calm days, we have all persevered as a crew and we have done a lot of science over the last 16 days. We went through 153 stations total. I have learned so much and I would like to thank Jerry, the chief scientist for taking me under his wing and training me in his Ecosystem Monitoring ways.  I would also like to thank Dena Deck and Lynn Whitley for believing in me and writing my letters of recommendation for the Teacher at Sea program. I would love to do this program again! -DJ Kast

DJ Kast, Interview with the Stewards, June 1, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: June 1, 2015 Day 14

Weather Data:

  • Rainy and Choppy
  • Air Temperature: 8 °C
  • Water Temperature: 10.46°C
  • Barometer: 1021.3 mb
  • TSG (Sound-Velocity): 1487 meters/sec
  • TSG- Conductivity: 3.63 s/m
  • TSG- Salinity: 32.66 PSU
  • Wind: 30 knots North East

Interview with Dennis Carey and Jeremy Howard, Chief Steward and Chief Cook of NOAA Ship Henry B. Bigelow Research Cruise 1502. They have been working together for 3.5 years.

 

Dennis Carey

Dennis! Photo by DJ Kast
Dennis! Photo by DJ Kast

 What is your job here on the ship?

My name is Dennis and I am the Chief Steward. This means that I am in charge of food production and management. I am the Head of the Steward Department and I have been for about 12 years now.

How is a boat kitchen different from a home kitchen?

First of all, a boat kitchen is called a galley and the dinning area where everyone eats is called a mess hall. Additionally, a water fountain is called a scuttlebutt.

In terms of a technical answer to your question, we have:

  1. Convection oven- it cooks things faster because it can cook at 25F higher than a regular oven and the air is circulated by a fan as well.
Convection Oven. Photo by DJ Kast
Convection Oven. Photo by DJ Kast

2. Grill

Grill! Photo by DJ Kast
Grill! Photo by DJ Kast

3. Steam jacket kettle- for sauces and soups

Soup Maker. Photo by DJ Kast
Steam jacket kettle. Photo by DJ Kast

4. Commercialized equipment- blender& large refrigerator

5. Gallon water, coffee and milk machine

Water and ice dispenser, microwave, and lots of tea. Photo by DJ Kast
Water and ice dispenser, microwave, and lots of tea. Photo by DJ Kast
Milk on the left, See-through refrigerator on right. Photo by DJ Kast
Milk on the left, Stand-up refrigerator on right. Photo by DJ Kast

6. Cereal dispensers!

Cool Cereal dispenser! Photo by DJ Kast
Cool Cereal dispenser! Photo by DJ Kast

7. Salad bars

Salad bar. Photo by DJ Kast
Salad bar. Photo by DJ Kast

8. Dragon/ Dishwasher Machine: It sanitizes by steaming dishes up to 195F.

 

The Dragon. Photo by DJ Kast
The Dragon. Photo by DJ Kast

Tell me about your experience:

I served 22 years with the Navy, and 12 years with NOAA and all those years were in food service.

What training do you need for your job:

  • Back in my day, I was called a Mess Specialist when I graduated C-school, now called culinary specialists.
    • According to https://www.navycs.com/navy-jobs/culinary-specialist.html:  The Navy Cook rating was one of the original ratings in 1797. The name Cook was changed to Ship’s Cook in 1838. It wasn’t until 1948 that the culmination of the various rates Commissary Steward, Ship’s Cook, Ship’s Cook (B) (Butchers), and Baker consolidated into the Commissaryman rating. In 1975, the name was changed to Mess Management Specialist, and finally, in 2004, the Culinary Specialist rating was established.
  • I attended Rose State College in Oklahoma and Central Texas University.
  • I went to C-school, which is also called advanced food preparation and management.
  • You will need experience and lots of it, particularly on the job experience. I started with an Intern culinary internship with Hilton Northwest in Oklahoma city.
  • I also did a Food Service Attendance. It is a 3 month rotation where everybody has to work in the galley. They kept me as a cook!

According to the Navy Personnel Command,

General Culinary Specialist description:

Culinary Specialists (CS) receive extensive training in culinary arts, and other areas within the hospitality industry.  This CS rating is responsible for all aspects of the dining (shipboard mess decks) and shore duty living areas.  Culinary Specialists work in the “heart of the ship,” and are vital in maintaining high crew morale on ships, construction battalions and every shore base.

Job Descriptions:

  • Menu management and ordering the quantities and types of food items necessary for quantity food preparation.
  • Operating kitchen and dining facilities.
  • Maintaining subsistence inventories using storeroom management procedures.
  • Culinary Specialists work in kitchen, dining areas, bachelor quarters, living quarters and food service storerooms aboard ships, shore bases, construction battalions, and designated aircraft.  The work is physical, creative and mentally challenging; in which one has to be flexible and versatile in their daily duties.

After “A” School, Culinary Specialists are assigned to deploying units or shore stations in the United States and/or overseas. During a 20-year career in the Navy, CS’s spend approximately 60 percent of their time assigned to fleet units and 40 percent to shore stations.

Apprenticeships are highly valued for ship work and below are the current USMAP apprenticeship trades that are currently offered for the Culinary Specialist rating:

  • Baker (Bake Products)
  • Cook (Any Industry)
  • Manager, Food Service (Hotel and Restaurant)
  • Cook (Hotel and Restaurant)
  • Housekeeper (Commercial, Residential, Industrial)
  • Household Manager (Private, Residential Management)

(http://www.public.navy.mil/bupers-npc/enlisted/community/supply/Pages/CSRating.aspx)

What was the first NOAA ship you worked on?

I worked on the Delaware as a Chief Steward.

 

Delaware Research Vessel. Photo by NOAA
Delaware Research Vessel. Photo by NOAA

 

 

 

 

 

 

 

 

Jeremy Howard- Chief Cook

What is your job here on the ship?

Second Cook- food preparation and sanitation.

How did you get trained to do your job?

I’ve been a NOAA steward for 6 years and every year NOAA sends stewards to training to keep up with the culinary skills.

Tell me more about cooking for so many people

You have to be able to cook portions for crew size. Crew size varies per mission of the cruise and so we figure out all of the crew aboard for consumption of goods. We make sure we are accommodating food choices like: vegetarian, gluten free, lactose free, etc. Our crew size is 32 people right now, and the maximum crew size is 41 people. We try to minimize waste. Main goal of the steward department is to cook GREAT food and not waste it.

Why did you chose to be a chef?

I am passionate about cooking great food. Being a cook, you have to have passion because there is a lot of routine in cooking. You start seeing the same people every day, cooking similar food and so I figure out ways to keep on learning new things, and continuously improve.

To be a chef you need to have good communication skills with the chief steward and in general you need to be flexible especially out on a ship.

Being out at sea- you can’t go to the store if you forgot something. You have to have attention to detail before we get underway.

NOAA is the best kept secret for culinary work. I love the Bigelow- I have a great career here, and I might not be able to see foreign ports so much but I am guaranteed to see my family. I get to see them 2 to 3 months out of the year versus 2 weeks like on navy ships. BEST KEPT SECRET.

Food inventory:

We do all the food shopping before we leave for trip. Chief Steward orders the food from a reputable FDA approved supplier. Dennis does all the inventory. We can’t waste money or food on this ship. He needs to do an inventory of things and we go by our motto with inventory which is: First in, first out!

What was your first ship?

NOAA Ship- Delaware II!

Delaware Research Vessel. Photo by NOAA
Delaware Research Vessel. Photo by NOAA

But technically, before that I was in the Navy for 5 years. I was part of the Hurricane Katrina relief in New Orleans.

What does a typical day look like?

Both of us get up at 4 AM to prepare breakfast and we make 3 square meals a day (7-8 AM, 11 AM-12:30 PM, and 5-6 PM). We finish about 7:30 PM.

IMG_2111
Lunch Menu on 5-31-15. Yummy! Photo by DJ Kast
IMG_2113
Yummy lunch food. Photo by DJ Kast

You gotta keep a good morale about your career, you keep growing, and it never gets boring. We also help with the morale of the ship and we host Bingo Nights, and Ice Cream Socials, which allows new crew to bond with old crew.

Bingo Night with John! Here is Billy picking up one of the prizes. Photo by Jerry Prezioso.
Bingo Night with Third Engineer John! Here is Electronic Technician Billy picking up one of the prizes. Photo by Jerry Prezioso.

I’ll humbly say that Bigelow has the best steward department EVER!

DJ Kast, NOAA Ship Henry B. Bigelow, May 31, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast
Date: May 31, 2015

NOAA Ship Henry B. Bigelow

“National Oceanic and Atmospheric Administration (NOAA) Ship Henry B. Bigelow is the second of five new fisheries survey ships to be built by NOAA. The ship is named after Henry Bryant Bigelow (1879-1967), a Harvard-educated zoologist whose work helped lay the scholarly foundation for oceanography as a scientific discipline. He was an internationally known expert on the Gulf of Maine and its sea life, and on the world’s jellyfish, corals, and fishes” (NOAA NEFSC).

http://www.nefsc.noaa.gov/Bigelow/pdfs/bigelow_scientist_poster.pdf

Henry B. Bigelow and his goat Buck. PHOTO BY:
Henry B. Bigelow and the WHOI Mascot goat Buck. Photo by: NEFSC NOAA

Legacy of the name:

Henry B. Bigelow (1879–1967) was an American oceanographer and marine biologist. Bigelow described numerous new species to science, 110 of which are recognized today according to the World Register of Marine Species.  In addition, some 26 species and two genera (Bigelowina, stomatopods in family Nannosquillidae, and Bigelowiella, protists in family Chlorarachniophyte) are named after him. The Henry Bryant Bigelow Medal in Oceanography is awarded by the Woods Hole Oceanographic Research Institute to honor “those who make significant inquiries into the phenomena of the sea”. Bigelow was the first recipient of the medal in 1960. He was honored by the naming of  NOAA Ship Henry B. Bigelow.

Mission of the ship:

NOAA ship Henry B. Bigelow will support NOAA’s mission to protect, restore, and manage the use of living marine, coastal, and ocean resources through ecosystem-based management. Its primary objective will be to study, monitor, and collect data on a wide range of sea life and ocean conditions, primarily in U.S. waters from Maine to North Carolina. The region includes Georges Bank, one of the world’s best known and most productive marine areas. The region is also home to the nation’s top-valued port, oldest commercial fisheries, and rare large whales and sea turtles. Data are used by a range of scientists who study variation in ocean conditions and sea life in order to better inform the nation’s decisions about both using and sustaining the ocean’s bounty.

“Henry B. Bigelow will also observe weather, sea state, and other environmental conditions, conduct habitat assessments, and survey marine mammal and marine bird populations. Henry B. Bigelow is a state-of-the-art research ship with multiple science mission capabilities. Foremost among these capabilities is the ship’s “quiet” hull, a design feature that minimizes sound made by the ship underwater. This allows scientists to use hydroacoustic methods for surveying marine life, and significantly reduces changes in the natural behavior of animals owing to the ship noise. In addition, the vessel can collect a variety of oceanographic data while marine life surveys are underway, resulting in both richer and more efficiently collected data.” (NOAA NEFSC)

Ship Details:

The ship! Photo from: http://www.nefsc.noaa.gov/Bigelow/pdfs/bigelow_sci_systems.pdf
The ship! Photo from: http://www.nefsc.noaa.gov/Bigelow/pdfs/bigelow_sci_systems.pdf

Take a virtual Ship Tour here! : http://www.nefsc.noaa.gov/Bigelow/shiptour.html

Levels: 2 (staterooms, gym, laundry), 1 (Mess Hall), 01 (Lounge), 02, Bridge, Flying Bridge

 

Side view of the NOAA Henry B. Bigelow. Photo by: http://upload.wikimedia.org/wikipedia/commons/e/e7/NOAA_RV_Henry_B._Bigelow_--_side_plan.gif
Side view of the NOAA Henry B. Bigelow. Photo by: http://upload.wikimedia.org/wikipedia/commons/e/e7/NOAA_RV_Henry_B._Bigelow_–_side_plan.gif

Most of the main deck is reserved for mission functions. The aft working deck provides 145 sq m of open space for fishing and other over-the-side operations, with an additional 33 sq m of deck space at the Side Sampling Station. Space and support connections are provided for a laboratory van on the aft working deck.

Large, easily reconfigurable laboratories are designed to accommodate the varied needs of individual scientific cruises:

  • Fish/Wet Laboratory 56 sq m (602 sq ft)
  •  Chemistry Laboratory 27 sq m (290 sq ft)
  •  Dry Laboratory 14 sq m (150 sq ft)
  •  Hydrographic Laboratory 9 sq m (96 sq ft)
  •  Scientific Freezer 19 sq m (204 sq ft)
  • Preservation Alcove 5 sq m (54 sq ft)
  •  Acoustic/Computer Laboratory 46 sq m (495 sq ft)

“Underwater radiated noise has been shown to influence fish behavior, and sonar self-noise can limit the effectiveness of hydroacoustic surveys and other functions. The International Council for Exploration of the Seas (ICES) has established a standard for ships’ underwater radiated noise in order to effectively employ hydroacoustic stock assessment techniques. Henry B. Bigelow has been designed and constructed to meet this ICES noise standard. This reduced noise signature will improve NOAA’s ability to accurately assess fish stocks and to compare standardized data with the international fisheries scientific community. Examples are the propulsion motors, which are specially constructed and balanced to reduce noise and vibration, and the diesel generators, which are mounted on double isolated raft systems. The hull form and highly skewed, five-bladed propeller were carefully designed and tested using U.S. Navy quieting techniques. Pumps, motors, ventilation and piping systems are all designed for low noise, with some critical systems resiliently mounted in the ship. Hull structure is treated in critical areas with special acoustic damping tiles. Airborne noise has been reduced throughout the ship for personnel safety and comfort.” http://www.omao.noaa.gov/publications/bigelow_final.pdf

To summarize that, this ship is so quiet I cannot tell when we are slowing down to 2 knots for bongo or going 11 knots to steam to the next station. It’s amazing.

Bridge:

The bridge is equipped with numerous dedicated systems including:

  • Hydrographic ES60 SONAR system, and ME70 multibeam system
  • Dynamic positioning and auto pilot system
  • X- and S-band Sperry Bridge Master RADARs
  • Transas ECDIS Navigation system
  • DGPS receiver
  • GMDSS communications suite including weather fax, satellite telephone, MF/HF and VHF radios
  • MTN internet communications system
  • SCS remote console and master clock display
  • Doppler speed log and depth sounder
  • Sperry primary and secondary gyro compass

Nearly all of these systems are solely controlled from the bridge, allowing scientific and operational systems to be totally independent. All scientific and fishing systems can be monitored from the bridge via remote consoles or SCS interfaces.

IMG_7139
Layout of the bridge. Photo by DJ Kast
Laura Gibson charting on the navigational chart. Photo by DJ Kast
Laura Gibson charting on the navigational chart. Photo by DJ Kast
IMG_7140
Depth Profiler. Photo by DJ Kast
IMG_7141
Multi-beam bottom sounder. Photo by DJ Kast

 

IMG_7131
Gibson letting me steer the ship. That is fear in my eyes. Photo by Laura Gibson
IMG_7130
Starboard steering Console that lets you control the ship while the bongos or CTDs are deployed from the side sampling station. Photo by DJ Kast
IMG_7125
Radar with four contacts! Photo by DJ Kast
IMG_7127
Electronic Chart Photo by DJ Kast
IMG_7122
LT Gibson checking on operations in the bridge. Photo by DJ Kast
IMG_7137
Control and status indicator of watertight doors. Photo by DJ Kast
IMG_7138
Navigation Light switches. Photo by DJ Kast

 

Cool Events on the Ship

Care Package Delivery:

The XO's friend that is "Rowing for Peace" to Turkey. The XO delivered ice cream, ship hats, and a pineapple. Photo by DJ Kast
The CO’s friend that is “Rowing for Peace” to Turkey. The CO delivered ice cream, ship hats, and a pineapple. Photo by DJ Kast

Emergency Drills:

The Bigelow values safety and to make sure that everyone knows what to do in an emergency they do quiet a few surprise drills to keep everybody on their toes.

Door sign with information on where to go for each person during each of the type of drills that occur on the ship. Photo by DJ Kast
Station card with information on where to go for each person during each of the type of drills that occur on the ship. Photo by DJ Kast

The first one was a Fire Drill and an Abandon Ship Drill on Wednesday May 20th, 2015.

Photo of me in a survival suit after the abandon ship drill was announced. Photo by Megan Switzer
Photo of me in a survival suit after the abandon ship drill was announced. Photo by Megan Switzer

Practicing the PLT gun (Pneumatic Line Throwing Gun): This is a gun that is used to help rescue people who have fallen overboard and it is also used to pass lines to other boats. It has a projectile connected to a long line that can travel far distance and connect an overboard victim to the boat.

Here is a video of it being shot:

IMG_7259
A picture of me preparing the PLT gun for launch. Photo by Dennis Carey
Photo by Marjorie Foster.
Photo by Marjorie Foster.
Photo by Marjorie Foster.
Photo by Marjorie Foster.

Hydrophoning Acoustic Buoys!

While we were on the southern part of Georges Bank, the boat used a Hydrophone and geometry to pick up an Autonomous Multi-Channel Acoustic Recorder (AMAR) mooring in Lydonia Canyon. The ship sent signals to it with the hydrophone and the signals it received back were indications of where to send the boat next.

The application of the Pythagoreon Theorum in terms of acoustic sound distances to the buoy to help during retrieval. Oh the applications of MATH! Photo by DJ Kast
The application of the Pythagorean Theorem in terms of acoustic sound distances to the buoy to help during retrieval. Oh, the applications of MATH! Photo by DJ Kast
Geoff Shook sending out messages on the hydrophone. Photo by DJ Kast
Geoff Shook preparing to send out messages on the hydrophone to not only find it but also cause it to release to the surface since it was hundreds of meters down. Photo by DJ Kast
Successful retrieval of the acoustic buoy. Photo by DJ Kast
Successful retrieval of the acoustic buoy. Photo by DJ Kast

 

The back of the shirt that the crew and chief Scientist Jerry gave me. Photo by DJ Kast
The back of the shirt that the crew and chief Scientist Jerry Prezioso gave me. I’m having everyone sign it so that I can hang it up when I get home.  Photo by DJ Kast

All of the crew have been absolutely amazing and have definitely made this the trip of a lifetime. Thank you all so much. -DJ

Last selfie of the trip. Photo by DJ Kast
Last selfie of the trip. Photo by DJ Kast

DJ Kast, Drifter Buoy! May 29, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise:
George’s Bank
Date: May 29, 2015, Day 11 of Voyage

Drifter Buoy!

My buoy and I- ready to deploy!  Photo by Jerry Prezioso
My buoy and me ready to deploy! Photo by Jerry Prezioso

NOAA has an Adopt a Drifter program! The program is meant to work with K-16 teachers from the United States along with international educators. This program provides teachers with the opportunity to infuse ocean observing system data into their curriculum. This occurs by deploying or having a research vessel deploy a drifter buoy. A drifting buoy (drifter) is a floating ocean buoy equipped with meteorological and/or oceanographic sensing instruments linked to transmitting equipment where the observed data are sent. A drifting buoy floats in the ocean water and is powered by batteries located in the dome. The drifter’s sea surface temperature data are transmitted to a satellite and made available to us in near real-time. The teachers receive the WMO number of their drifting buoy in order to access data online from the school’s adopted drifter. Students have full access to drifting buoy data (e.g., latitude/longitude coordinates, time, date, SST) in real or near real-time for their adopted drifting buoy as well as all drifting buoys deployed as part of the global ocean observing system. They can access, retrieve, and plot as a time series various subsets of data for specified time periods for any drifting buoy (e.g., SST) and track and map their adopted drifting buoy for short and long time periods (e.g., one day, one month, one year).

I am receiving one from the Chief Scientist onboard the NOAA Ship Henry B. Bigelow so the students in all my programs can access it, and this will be helpful to convey modeling of currents, and can help build models of weather, climate, etc .I was so excited when I found out that the chief scientist would be giving me a drifter for me and my students to follow. I decorated the buoy with programs that have inspired me to apply to the Teacher at Sea Programs, the current programs I am working for at USC (JEP & NAI), my family, and my mentors.

Representing the USC Readerplus Program that hosts my Wonderkids Programs.  Photo by Jerry Prezioso.
Representing the USC Readerplus Program that hosts my Wonderkids Programs. Photo by Jerry Prezioso.
Quick change into my NOAA Teacher at Sea Shirt. Thank you so much for all these opportunities.  Photo by Jerry Prezioso.
Quick change into my NOAA Teacher at Sea Shirt. Thank you so much for all these opportunities. Photo by Jerry Prezioso.
Special recognition to JEP, USC Dornsife, and my Young Scientist Program & NOAA TAS! Photo by DJ Kast
Special recognition to JEP, USC Dornsife, and my Young Scientist Program & NOAA TAS! Photo by DJ Kast
USC Wonderkids and USC Seagrant Logos. Photo by DJ Kast
USC Wonderkids and USC Seagrant Logos. Photo by DJ Kast

 

 

Thanks to NMEA and the USC Wrigley Institute, USC Catalina Hyperbaric Chamber for continuously supporting my ocean going adventures. Photo by DJ Kast
Thanks to NMEA (National Marine Educators Association) and the USC Wrigley Institute, USC Catalina Hyperbaric Chamber for continuously supporting my ocean going adventures (Plus my favorite gastropod, Spanish Shawl Nudibranch for color). Photo by DJ Kast
Representing Rossier, USC QuikSCience, and the NOAA Henry B. Bigelow Ship. Photo by DJ Kast
Representing Rossier, USC NAI, USC QuikSCience, and the NOAA Ship Henry B. Bigelow Ship. Photo by DJ Kast

 

 

 

 

 

 

 

 

 

 

 

Important family that have always supported me with my science education career. Photo by DJ Kast
Important family that have always supported me with my science education career. Photo by DJ Kast

 

My list of ocean educators that inspire me to always strive for more. Photo by DJ Kast
My list of ocean educators that inspire me to always strive for more. Plus a shout-out to the Level the Playing Field Institute, and their USC (Summer Math and Science Honors) SMASH program.  Photo by DJ Kast
Special thanks to the schools participating in the USC Young Scientist Program and USC Wonderkids Programs. Photo by DJ Kast
Special thanks to the schools participating in the USC Young Scientist Program and USC Wonderkids Programs. Photo by DJ Kast

 

 

JEP HOUSE and Staff!

JEP House and Dornsife Represent! Photo by DJ Kast
JEP House and Dornsife Represent! Photo by DJ Kast
Important JEP People's.  I forgot to take a final picture of this but this included Brenda, Adrienne, and Mandy. Photo by DJ Kast
Important JEP People’s.
I forgot to take a final picture of this but this included Brenda, Adrienne, and Mandy. Photo by DJ Kast

I am teaching a marine biology class this summer for the USC Neighborhood Academic Initiative program. I am so excited to be following the drifter buoy # 39708. It was launched at 8:53 EDT on May 28th, 2015 and its first official position is: 41 44.8 N 065 27.0 W. I will definitely be adapting a few of the lesson plans on the following site and creating my own to teach my students about weather, climate, and surface currents.

http://www.adp.noaa.gov/lesson_plans.html

Deployment:

To deploy the buoy, you literally have to throw it overboard and make sure it hits nothing on its way down. When it is in the water, the cardboard wraps dissolve away, and the cloth drogue springs open, filling with water and causing the buoy to drift in surface water currents instead of wind currents.  The tether (cable) and drogue (long tail that is 15 meters long) will unwrap and extend below the sea surface where it will allow the drifter to float and move in the ocean currents

Photo of the drogue deployed in the water. From the NOAA Adopt a Drifter Program website.
Photo of the drogue deployed in the water. From the NOAA Adopt a Drifter Program website.
Deploy the Buoy! Photo by Jerry Prezioso
Deploy the Buoy! Photo by Jerry Prezioso
My buoy in the Water! Photo by DJ Kast
My buoy in the Water! The cardboard wraps will dissolve away, and the cloth drogue will spring open and fill with water allowing the buoy to drift in surface water currents instead of wind currents.   Photo by DJ Kast

Since I was now an expert drifter buoy deployer, I was also able to deploy a buoy from the St. Joseph’s school in Fairhaven, Massachusetts. This drifter buoy’s tracking number is: 101638 and launched on May 28th, 2015 at 8:55 EDT and its first official position is: 41 44.9 N 065 27.0 W

Photo of me with the St. Joseph buoy that will also be deployed. Photo by Jerry Prezioso.
Photo of me with the St. Joseph buoy that will also be deployed. Photo by Jerry Prezioso.
Ready to deploy. Photo by: XO LCDR Patrick Murphy
Ready to deploy. Photo by: XO LCDR Patrick Murphy

Tracking the buoy (from Shaun Dolk):

The easiest way to track these buoys in real-time is to use the Argos website https://argos-system.clsamerica.com/cwi/Logon.do.

Guest account:  Username: BigeloTAS and Password: BigeloTAS.

  1. Once logged in, select the “Data access” tab on the top left side of the screen.
  2. Select “Mapping”; a pop-up window will appear.
  3. Ensure “by ID numb. (s)” is selected from within the “Platform:” option (top left).
  4. Enter your desired ID number in the search field at the top of the screen.
  5. Enter the number of days for which you’d like data (20 days is the maximum).
  6. Select “Search” to generate a trajectory plot for the given parameters.

**Please note, because you can only view the 20 most recent days of data, you’ll need to save the data if you wish to view the entire track line!**

To save data into Google Earth format, simply click on the Google Earth image (second tool from the right on the map settings bar, found just below the “Search” tab). You’ll need to save data at least every 20 days to ensure no interruptions in your final track line. Of course, to view the track line in its entirety, open Google Earth and ensure all of the data files are selected. If you desire to look at the data, not the track lines, go to “Data access”, then “Messages”, and enter your desired ID numbers. Again, data is only accessible for the most recent 20 days, so if you’d like to download the data for archival purposes, go to “Data access”, then select  “Message download”. From here, you’ll want to save the data in .csv, .xls, or .kml format.

My buoy 39708 is transmitting properly and providing quality data! Below are some of the maps of its early trajectory and its current movement so far.

Photo sent by Shaun Dolk
Early Trajectory! Photo sent by Shaun Dolk
Map-2015-05-29-15-40-17
Photo sent by Shaun Dolk

PS for Science- Otoliths

While we were deploying the buoys one of the engineers named Rahul Bagchi brought over a strainer that is attached to the water intake pipe. The strainer was covered in Sand Lances.

Sand Lances on the inside of the strainger. Photo by Dj Kast
Sand Lances on the inside of the strainer. Photo by DJ Kast
IMG_7567
Sand Lances on the outside of the strainer. Photo by DJ Kast

 

 

 

 

 

 

 

 

 

Fortunately, there are another two scientists on board that need sand lance samples for their research purposes and they were collected. My research scientist friend Jessica needs the otoliths or fish ear bones for part of her research on cod, since sand lances are eaten cod. Otoliths are hard, calcium carbonate structures located behind the brain of a bony fish. Different fish species have differently shaped otoliths. They are used for balance and sound detection-much like our inner ears. They are not attached to the skull, but “float” beneath the brain inside the soft, transparent inner ear canals. The otoliths are the most commonly used structure to both identify the fish eaten by consumers up the food chain, and to age the fish itself.

Otoliths and time scale. Photo by NOAA NEFSC
Otoliths and time scale. Photo by NOAA NEFSC
Otoliths with the winters pointed out. Photo by: Bedford Institute of Oceanography
Otoliths with the winters pointed out. Photo by: Bedford Institute of Oceanography

The otoliths also have daily growth bands. Alaskan Fishery scientists manipulate the daily growth bands in salmon larvae creating an otolith tag that identifies where the fish came from by controlling the growth rate of their fish populations.

Photo of a tagged otolith from the Sawmill Bay fishery in Alaska. Photo from: Alaskan Fisheries
Photo of a tagged otolith from the Sawmill Bay fishery in Alaska. Photo from: Alaskan Fisheries

New material (protein and calcium carbonate) is added to the exposed surface of the otolith over time, showing a fish life history (otolith start growing at day 1 even in larval stages). The lighter zones have higher calcium deposit which is indicate summers, while darker zones have higher protein levels which indicate winter. One pattern of a light and dark zone indicate a year and is consequently how the fish is aged.

Tiny white speck is the sand lance otolith. Photo by DJ Kast
Tiny white speck is the sand lance otolith. Photo by DJ Kast
The sand lances Jessica and I were dissecting for otoliths. Photo by DJ Kast
The sand lances Jessica and I were dissecting for otoliths. Photo by DJ Kast
She also took a base of the tail for her research as well. Photo by DJ Kast
She also took a white muscle sample from the dorsal surface of the fish for her research as well. Photo by DJ Kast

Jessica Lueders-Dumont is using the otoliths for three main purposes in relation to her Nitrogen Isotope work.

1. She is hoping to see the changes from year 1 to the adult years of the fish to give an accurate fish life history and how they relate to the rest of the Nitrogen isotopes in the area’s food chain.

2. To see how current nitrogen isotopes compare to the archeological otoliths found in middens or sediment sites, since otoliths can be preserved for hundreds of years.

3. She is trying to create a baseline of nitrogen 15 in the Gulf of Maine so that she can see biogeochemical evidence of the N15 she finds in plankton in higher trophic levels like fish.

I will definitely be dissecting some fish heads with students to check for otoliths and using a microscope to age them.

PSS for Science:

The chief scientist and I decided we should put some Styrofoam Cups under pressure. This polystyrene foam is full of air pockets. This is important because the air pockets (volume) shrink with increasing pressure, essentially miniaturizing the cups.

I have done this before using the help of Karl Huggins at the USC Wrigley Institute’s Catalina Hyperbaric Chamber. We had a TA that wanted to teach about SCUBA diving so we had her students decorate Styrofoam cups and a head and placed it in the chamber. Apparently the Styrofoam was too good of a quality because it re-expanded on the way back up. http://www.youtube.com/watch?v=f6DDBFovht0

Also, I also found out you can do this with a pressure cooker- oh the experiments I will do when I get back. 😀

Before photos:

Front view of my NOAA TAS cup. Photo by DJ Kast
Front view of my NOAA TAS cup. Photo by DJ Kast
Back side of the NOAA TAS cup. Photo by DJ Kast
Back side of the NOAA TAS cup. Photo by DJ Kast
Just wanted it to say how amazing it has been on the NOAA Henry B. Bigelow. Photo by DJ Kast
Just wanted it to say how amazing it has been on the NOAA Ship Henry B. Bigelow. Photo by DJ Kast
I made a cup for my programs as well. Photo by DJ Kast
I made a cup for my programs as well. Photo by DJ Kast
USC Wonderkids Program on a Styrofoam cup before shrinkage. Photo by DJ Kast.
USC Wonderkids Program on a Styrofoam cup before shrinkage. Photo by DJ Kast.
Saying hi to all of my students from inside one of the cups. Photo by DJ Kast
Saying hi to all of my students from inside one of the cups. Photo by DJ Kast
In the mesh bag, and attached to the Rosette for shrinkage. Photo by DJ Kast
In the mesh bag, and attached to the Rosette for shrinkage. Photo by DJ Kast

After Photos: the Styrofoam cups went down to 184 m or 603 ft on the Rosette/ CTD in South George’s Basin.

Shrunken Cups in the Mesh bag attached to the Rosette. Photo by DJ Kast
Shrunken Cups in the Mesh bag attached to the Rosette. It went down to 184 m or 603 ft Photo by DJ Kast
Look at these tiny cups! Photo by Jerry Prezioso
Look at these tiny cups! Photo by Jerry Prezioso
Cups compared to the original size (front). Photo by DJ Kast.
Cups compared to the original size (front). Photo by DJ Kast.
Cups compared to the original size (back). Photo by DJ Kast.
Cups compared to the original size (back). Photo by DJ Kast.

DJ Kast, Interview with Megan Switzer and the Basics of the CTD/ Rosette, May 28, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise:
Gulf of Maine
Date: May 28, 2015, Day 11 of Voyage

Interview with Student Megan Switzer

Chief Scientists Jerry Prezioso and graduate oceanography student Megan Switzer
Chief Scientist Jerry Prezioso and graduate oceanography student Megan Switzer

Megan Switzer is a Masters student at the University of Maine in Orono. She works in Dave Townsend’s lab in the oceanography department. Her research focuses on interannual nutrient dynamics in the Gulf of Maine. On this research cruise, she is collecting water samples from Gulf of Maine, as well as from Georges Bank, Southern New England (SNE), and the Mid Atlantic Bight (MAB). She is examining the relationship between dissolved nutrients (like nitrate and silicate) and phytoplankton blooms. This is Megan’s first research cruise!

In the generic ocean food chain, phytoplankton are the primary producers because they photosynthesize. They equate to plants on land. Zooplankton are the primary consumers because they eat the phytoplankton. There are so many of both kinds in the ocean. Megan is focusing on a particular phytoplankton called a diatom; it is the most common type of phytoplankton found in our oceans and is estimated to contribute up to 45% of the total oceanic primary production (Yool & Tyrrel 2003). Diatoms are unicellular for the most part, and a unique feature of diatom cells is that they are enclosed within a cell wall made of silica called a frustule.

Diatom Frustules. Photo by: 3-diatom-assortment-sems-steve-gschmeissner
Diatom Frustules. Photo by: Steve Schmeissner
Diatoms! PHOTO BY:
Diatoms! Photo by: Micrographia

The frustules are almost bilaterally symmetrical which is why they are called di (2)-atoms. Diatoms are microscopic and they are approximately 2 microns to about 500 microns (0.5 mm) in length, or about the width of a human hair. The most common species of diatoms are: Pseudonitzchia, Chaetocerous, Rhizosolenia, Thalassiosira, Coschinodiscus and Navicula.

Pseudonitzchia. Photo by National Ocean Service
Pseudonitzchia. Photo by National Ocean Service
Thalassiosira. Photo by: Department of Energy Joint Genome Institute
Thalassiosira. Photo by: Department of Energy Joint Genome Institute
Photo of Coscinodiscus by:
Photo of Coscinodiscus

Diatoms also have ranges and tolerances for environmental variables, including nutrient concentration, suspended sediment, and flow regime.  As a result, diatoms are used extensively in environmental assessment and monitoring. Furthermore, because the silica cell walls are inorganic substances that take a long time to dissolve, diatoms in marine and lake sediments can be used to interpret conditions in the past.

In the Gulf of Maine, the seafloor sediment is constantly being re-suspended by tidal currents, bottom trawling, and storm events, and throughout most of the region there is a layer of re-suspended sediment at the bottom called the Bottom Nepheloid Layer. This layer is approximately 5-30 meters thick, and this can be identified with light attenuation and turbidity data. Megan uses a transmissometer, which is an instrument that tells her how clear the water is by measuring how much light can pass through it. Light attenuation, or the degree to which a beam of light is absorbed by stuff in the water, sharply increases within the bottom nepheloid layer since there are a lot more particles there to block the path of the light. She also takes a water sample from the Benthic Nepheloid Layer to take back to the lab.

Marine Silica Cycle by Sarmiento and Gruber 2006
Marine Silica Cycle by Sarmiento and Gruber 2006

Megan also uses a fluorometer to measure the turbidity at various depths. Turbidity is a measure of how cloudy the water is. The water gets cloudy when sediment gets stirred up into it. A fluorometer measures the degree to which light is reflected and scattered by suspended particles in the water. Taken together, the data from the fluorometer and the transmissometer will help Megan determine the amount of suspended particulate material at each station. She also takes a water sample from the Benthic Nepheloid layer to take back to the lab. There, she can analyze the suspended particles and determine how many of them are made out of the silica based frustules of sinking diatoms.

 This instrument is a Fluorometer and is used to measure the turbidity at various depths. Photo by: DJ Kast
This instrument is a Fluorometer and is used to measure the turbidity at various depths. Photo by: DJ Kast

She collects water at depth on each of the CTD/ Rosette casts.

Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast
Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast
Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast
Rosette with the 12 Niskin Bottles and the CTD. Photo by DJ Kast
Up close shot of the water sampling. Photo by DJ Kast
Up close shot of the water sampling. Photo by DJ Kast

CTD, Rosette, and Niskin Bottle basics.

The CTD or (conductivity, temperature, and depth) is an instrument that contains a cluster of sensors, which measure conductivity, temperature, and pressure/ depth.

Here is a video of a CTD being retrieved.

Depth measurements are derived from measurement of hydrostatic pressure, and salinity is measured from electrical conductivity. Sensors are arranged inside a metal housing, the metal used for the housing determining the depth to which the CTD can be lowered. Other sensors may be added to the cluster, including some that measure chemical or biological parameters, such as dissolved oxygen and chlorophyll fluorescence. Chlorophyll fluorescence measures how many microscopic photosynthetic organisms (phytoplankton) are in the water. The most commonly used water sampler is known as a rosette. It is a framework with 12 to 36 sampling Niskin bottles (typically ranging from 1.7- to 30-liter capacity) clustered around a central cylinder, where a CTD or other sensor package can be attached. The Niskin bottle is actually a tube, which is usually plastic to minimize contamination of the sample, and open to the water at both ends. It has a vent knob that can be opened to drain the water sample from a spigot on the bottom of the tube to remove the water sample. The scientists all rinse their bottles three times and wear nitrile or nitrogen free gloves to prevent contamination to the samples.

On NOAA ship Henry B. Bigelow the rosette is deployed  from the starboard deck, from a section called the side sampling station of this research vessel.

The instrument is lowered into the water with a winch operated by either Adrian (Chief Boatswain- in charge of deck department) or John (Lead Fishermen- second in command of deck department). When the CTD/Rosette is lowered into the water it is called the downcast and it will travel to a determined depth or to a few meters above the ocean floor. There is a conducting wire cable is attached to the CTD frame connecting the CTD to an on board computer in the dry lab, and it allows instantaneous uploading and real time visualization of the collected data on the computer screen.

 

CTD data on the computer screen. Photo by: DJ Kast
CTD data on the computer screen. Photo by: DJ Kast

The water column profile of the downcast is used to determine the depths at which the rosette will be stopped on its way back to the surface (the upcast) to collect the water samples using the attached bottles.

Niskin Bottles:

Messenger- The manual way to trigger the bottle is with a weight called a messenger. This is sent down a wire to a bottle at depth and hits a trigger button. The trigger is connected to two lanyards attached to caps on both ends of the bottle.  When the messenger hits the trigger, elastic tubing inside the bottle closes it at the specified depth.

Todd with the manually operated Niskin Bottle. Photo by: DJ Kast
Todd holding a messenger to trigger the manually operated Niskin Bottle. Photo by: DJ Kast

IMG_7209

Todd with the manually operated Niskin Bottle. Photo by: DJ Kast
Todd with the manually operated Niskin Bottle. Photo by: DJ Kast
Manual CTD fully cocked and ready to deploy. Photo by DJ Kast
Manual CTD fully cocked and ready to deploy. Photo by DJ Kast

Here is a video of how the manual niskin bottle closes: https://www.youtube.com/watch?v=qrqXWtbUc74

The other way to trigger Niskin bottles is electronically. The same mechanism is in place but an electronic signal is sent down the wire through insulated and conductive sea cables (to prevent salt from interfering with conductivity) to trigger the mechanism.

Here is a video of how it closes electronically: https://www.youtube.com/watch?v=YJF1QVe6AK8

Conductive Wire to CTD. Photo by DJ Kast
Conductive Wire to CTD. Photo by DJ Kast
Photo of the top of the CTD. Photo by DJ Kast
Photo of the top of the CTD showing the trigger mechanism in the center. Photo by DJ Kast
Top of the Niskin Bottles to show how the white wires are connected to the top.
Top of the Niskin Bottles shows how the lanyards are connected to the top. Photo by DJ Kast
The pin on the bottom is activated when an electronic signal is sent through the conductive sea cables. Photo by DJ Kast
The pin on the bottom is activated when an electronic signal is sent through the conductive sea cables. Photo by DJ Kast

Using the Niskin bottles, Megan collects water samples at various depths. She then filters water samples for her small bottles with a syringe and a filter and the filter takes out the phytoplankton, zooplankton and any particulate matter. She does this so that there is nothing living in the water sample, because if there is there will be respiration and it will change the nutrient content of the water sample.

Filtering out only the water using a syringe filter. Photo by DJ Kast
Filtering out only the water using a syringe filter. Photo by DJ Kast
Photo by: DJ Kast
Syringe with a filter on it. Photo by: DJ Kast

This is part of the reason why we freeze the sample in the -80 C fridge right after they have been processed so that bacteria decomposing can’t change the nutrient content either.

Diatoms dominate the spring phytoplankton bloom in the Gulf of Maine. They take up nitrate and silicate in roughly equal proportions, but both nutrients vary in concentrations from year to year. Silicate is almost always the limiting nutrient for diatom production in this region (Townsend et. al., 2010). Diatoms cannot grow without silicate, so when this nutrient is used up, diatom production comes to a halt. The deep offshore waters that supply the greatest source of dissolved nutrients to the Gulf of Maine are richer in nitrate than silicate, which means that silicate will be used up first by the diatoms with some nitrate left over. The amount of nitrate left over each year will affect the species composition of the other kinds of phytoplankton in the area (Townsend et. al., 2010).

The silica in the frustules of the diatom are hard to breakdown and consequently these structures are likely to sink out of the euphotic zone and down to the seafloor before dissolving. If they get buried on the seafloor, then the silicate is taken out of the system. If they dissolve, then the dissolved silicate here might be a source of silicate to new production if it fluxes back to the top of the water column where the phytoplankton grow.

Below are five images called depth slices. These indicate the silicate concentration (rainbow gradient) over a geographical area (Gulf of Maine) with depth (in meters) latitude and longitude on the x and y axis.

Depth slices of nitrate and silicate. Photo by: This is the type of data Megan is hoping to process from this cruise.
Depth slices of nitrate and silicate. Photo by:  GOMTOX at the University of Maine
This is the type of data Megan is hoping to process from this cruise.

DJ Kast, Interview with Emily Peacock, May 25, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 25, 2015, Day 7 of Voyage

Interview with Emily Peacock

Emily Peacock and her ImagingFlowCytobot. Photo by: DJ Kast
Emily Peacock and her ImagingFlowCytobot. Photo by: DJ Kast

Emily Peacock is a Research Assistant with Dr. Heidi Sosik at the Woods Hole Oceanographic Institution (WHOI). She is using imaging flow-cytometry to document the phytoplankton community structure along the NOAA Henry B. Bigelow Route.

Why is your research important?

Phytoplankton are very important to marine ecosystems and are at the bottom of the food chain.  They uptake carbon dioxide (CO2) and through the process of photosynthesis make oxygen, much like the trees of the more well-known rain forests.

Ocean Food Chains. Photo by: Encyclopedia Britannica 2006 (http://media.web.britannica.com/eb-media/99/95199-036-D579DC4A.jpg)
Ocean Food Chains. Photo by: Encyclopedia Britannica 2006 (http://media.web.britannica.com/eb-media/99/95199-036-D579DC4A.jpg)

The purpose of our research is “to understand the processes controlling the seasonal variability of phytoplankton biomass over the inner shelf off the northeast coast of the United States. Coastal ocean ecosystems are highly productive and play important roles in the regional and global cycling of carbon and other elements but, especially for the inner shelf, the combination of physical and biological processes that regulate them are not well understood.” (WHOI 2015)

What tool do you use in your work you could not live without?

I am using an ImagingFlowCytobot (IFCB) to sample from the flow-through Scientific Seawater System.

ImagingFlowCytobot. Photo: DJ Kast
ImagingFlowCytobot. Photo: DJ Kast
Inside of the ImagingFlowCytobot. Photo by Taylor Crockford
Inside of the ImagingFlowCytobot. Photo by Taylor Crockford
The green tube is what collects 5 ml into the ImagingFlowCytobot. Photo by: DJ Kast
The green tube is what collects 5 ml into the ImagingFlowCytobot. Photo by: DJ Kast

IFCB is an imaging flow cytometer that collects 5 ml of seawater at a time and images the phytoplankton in the sample. IFCB images anywhere from 10,000 phytoplankon/sample in coastal waters to ~200 in less productive water. Emily is creating a sort of plankton database with all these images. They look fantastic, see below for sample images!

Microzooplankton called Ciliates. Photo Credit: IFCB, from this Henry Bigelow research cruise.
Microzooplankton called Ciliates. Photo Credit: IFCB, from this Henry Bigelow research cruise.
Dinoflagellates Photo Credit: IFCB, from this Henry Bigelow research cruise.
Dinoflagellates
Photo Credit: IFCB, from this Henry Bigelow research cruise.

The IFCB “is a system that uses a combination of video and flow cytometric technology to both capture images of organisms for identification and measure chlorophyll fluorescence associated with each image.  Images can be automatically classified with software, while the measurements of chlorophyll fluorescence make it possible to more efficiently analyze phytoplankton cells by triggering on chlorophyll-containing particles.” (WHOI ICFB 2015). 

What do you enjoy about your work?

I really enjoy looking at the phytoplankton images and identifying and looking for more unusual images that we don’t see as often. I particularly enjoy seeing plankton-plankton interactions and grazing of phytoplankton.

Grazing (all photo examples are not from this research cruise but still from an IFCB):

Small flagellates on a Thallasiosira Photo Credit: MVCO
Small flagellates on a Thallasiosira (Diatom) Photo Credit: IFCB at MVCO
Diatom with a dino eating it from the outside (peduncle).Photo Credit: MVCO
Diatom with a dinoflagellate eating it from the outside using a peduncle (feeding appendage). Photo Credit: IFCB at MVCO
Engulfer- Gyrodinium will engulf itself around the diatom (Paralia consumed by Gyrodinium).Photo Credit: MVCO
Engulfer- Gyrodinium will engulf the diatom Paralia Photo Credit: IFCB at MVCO
Dinoflagellates Pallium feeder- feeding externally, the pallium wraps around the prey.Photo Credit: MVCO
Dinoflagellates pallium feeding externally, the pallium (cape-like structure, think of saran wrap on food) wraps around the prey. Photo Credit: IFCB at MVCO

What type of phytoplankton do you see?

I am seeing a lot of dinoflagellates in the water today (May 20th, 2015), Ceratium specifically.

Ceratium. Photo by IFCB at MVCO
Ceratium. Photo by IFCB at MVCO

The most common types of plankton I see are: diatoms, dinoflagellates, and microzooplankton like ciliates. The general size range for the phytoplankton I am looking at is 5-200 microns.

Colonial choanoflagellate. Photo Credit: MVCO
Colonial choanoflagellate. Photo Credit: IFCB at MVCO

Where do you do most of your work?

“The Martha’s Vineyard Coastal Observatory (MVCO) is a leading research and engineering facility operated by Woods Hole Oceanographic Institution. The observatory is located at South Beach, Massachusetts and there is a tower in the ocean a mile off the south shore of Martha’s Vineyard where it provides real time and archived coastal oceanographic and meteorological data for researchers, students and the general public.” (MVCO 2015).

Screen Shot 2015-05-20 at 1.54.39 PM
MVCO Photo from: http://www.whoi.edu/mvco

Most of my work with Heidi is at the Martha’s Vineyard Coastal Observatory. IFCB at MVCO has sampled phytoplankton every 20 minutes since 2006 (nearly continuously). This unique data set with high temporal resolution allows for observations not possible with monthly or weekly phytoplankton sampling.

Below is an example from the MVCO from about an hour ago at 1 PM on May 20th, 2015.

Photo Credit: MVCO
Photo Credit: IFCB at MVCO

Did you know??

IFCB at Martha’s Vineyard Coastal Observatory has collected photos of nearby phytoplankton every 20 minutes since 2006 (9 years, almost continuously). With this time series, you can study changes in temporal and seasonal patterns in phytoplankton throughout the years.

Helpful Related links:

Current Plankton at the MVCO:  demi.whoi.edu/mvco

DJ Kast, Interview with Survey Tech Geoff Shook, May 24, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 24, 2015, Day 6 of Voyage

Interview with Geoff Shook, Survey Tech

Geoff Shook running the Bongo at a station site. Three screens and his walky talky to the rest of the crew to make sure everything is deployed correctly. Photo by DJ Kast
Geoff Shook running the Bongo at a station site. Three screens and his walky talky to the rest of the crew to make sure everything is deployed correctly. Photo by DJ Kast

What is your job here on the ship?

Survey Tech

What does that mean?

I have two similar but different jobs

  1. Run and monitor the ship’s scientific equipment
    • I help fix things when they break down
    • I am the Liaison between the ship and the scientific party (we mean everything). Anything the scientist needs, the survey techs help provide it.
    • I know the capabilities of equipment.
      • For example, the fish lab is one of the most high tech fish labs in the world. Incredibly advanced.
  2.  We work within the science spaces, so we are always around. Point of contact!
    • I work with deck department and with their help I deploy a lot of gear
    • Jack of all trades. We get to be involved with a little bit everything;computer software, electronics, plumbing, carpentry etc. I am also on the bridge for lookout sometimes.

Right now, I am planning for the marine mammal and deep water coral cruise. We are also taking multi-beam data when we pass through certain points on this cruise that helps us prepare for future cruises.

When you are in the dry lab with us (deploying the bongo plankton nets or Conductivity-Temperature-Depth (CTD) unit) what do all of the techy things on your computer mean?

The camera to the side sampling station, the winch and weather screen and the CTD screen. All of these Geoff monitors. Photo by DJ Kast
The camera to the side sampling station, the winch and weather screen and the CTD screen. All of these Geoff monitors. Photo by DJ Kast
  • Left side of the screen: Winch Data (winch data, line speeds (how fast they are moving), depth, depth of instrument, how much line is out). There is also data from the ship’s meteorological sensors available as well.
    • Performance of the winches as well as the instrument information.
Winch and Weather Data. Photo by DJ Kast
Winch and Weather Data. Photo by DJ Kast
  • Weather conditions that relate to the deployment of the instrument.
    • For example, wind conditions (speed and direction)
    • Set the wind on the starboard side so that the boat gets pushed away from the instruments and lines.
  • Right side of the screen: the Vertical profile of theCTD. Watching this to make sure theCTD is functioning correctly. Oceanographers use it differently, for example trying to find the chlorophyll maximum depth and the thermocline, where the temperature changes suddenly with depth.
    • My job is to make sure that the equipment is functional and collecting accurate, valid data.
Vertical Profile of the CTD in action. Photo by DJ Kast
Vertical Profile of the CTD in action. Photo by DJ Kast

 

  • Whenever the sensor on the CTD on the bongos is activated by seawater, the numbers show up on Geoff’s screen. He then announces, “We’ve got numbers, lets Bongo!”  It’s literally my favorite quote of the trip and makes me laugh every time he says it.
    • CTD numbers means that it is on, functioning properly, and is ready to be deployed.
    • Sometimes there is a software/ hardware glitch, or a plug or connection might fail. If this happens, the cast cannot be completed. So observing the CTD output is very important.
  • Label printing! This has Ot (Other), I (Ichthyoplankton), Z (zooplankton) designations to indicate the type of nets used on the bongo frames.
Labeling of the Plankton collected in the bongo nets. This one was used for the baby bongos, and processed with ethanol to preserve the specimens. Photo by DJ Kast
Labeling of the Plankton collected in the bongo nets. This one was used for the baby bongos, and processed with ethanol to preserve the specimens. Photo by DJ Kast
  • I will also do post processing, which summarizes everything.
    •  To me its important to make sure we are properly collecting accurate data for the end user, I care about how the data is collected. I need to make sure that the sensors are all working and displaying the accurate data so that scientists can go ahead and use that data in their research.

How do you get trained to be a survey tech?

(He laughs.) Truthfully, it’s a lot of On the Job Training (OJT). I read manuals and study our various equipment, and so I have a full understanding of how all of our equipment works and how to fix something when it breaks.

*As a side note from the XO: You need a degree in science and some motivation to be a survey tech, and its a great job for recent college graduates because survey techs make pretty good money, ball-parking approximately $60,000 annually, and sometimes even more depending on the sailing schedule.*

While these next trainings are not directly part of my job as survey tech, the two trainings below are a part of being a well-rounded ship crew member.

  • Ship SCUBA divers- NOAA Dive School. This allows us to check on the ship’s echo-sounders, seawater intakes, propeller and rudder.
  • Medpic training – one of the ship’s medics. I do anything from minor first aid to assessing an injury to responding to medical emergencies. I am qualified to administer medicine but not prescribe it.

My background is actually in fisheries. I worked in a fisheries lab as a fisheries scientist, which is why I was originally brought onto the Henry B. Bigelow in the first place. I then realized I was more interested in the vessel operations, so I made the switch over to the survey department.

I was hired to do a lot of Bottom Trawl Surveys and would only go on cruises when they pertained to that particular survey. While I wasn’t on board a research vessel, I was a sailing instructor and a substitute teacher. I taught 8th grade social studies for a year as a long-term sub and what I’ve learned is that it’s most important to teach students how to learn. It’s something that I use to explain new boat protocols and equipment to new crew.

I think that working and going to sea is a very unique experience, and even though the romantic idea of being on a research vessel is very different from the reality, it’s still an interesting life and I love it. I love going to sea.  I’ve spent about a decade of half year ship time on vessels. My wife keeps asking me, “When are you done going to sea?” My reply would be that I don’t know if I can ever be done. The ocean’s siren call always seems to call me back.

DJ Kast, Interview Marine Bird Watcher, May 23, 2014

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise:
East Coast
Date: May 23, 2015, Day 6 of Voyage

Brad Toms at his station at the bridge. Documenting a bird sighting with his voice activated computer system that records through his head set. Photo by: DJ Kast
Brad Toms at his station at the bridge. He is documenting a bird sighting with his voice activated computer system that records through his head set. Photo by: DJ Kast

Interview with Brad Toms, Wildlife Biologist contracted through Environment Canada (guests of NOAA) as bird observer from Nova Scotia, Canada.

Tell me a little bit about your background:
I started working with seabirds in 2005 – terns and gulls specifically, counting the breeding colonies – and helped recover an endangered tern called a Roseate Tern. Then I started doing shipboard surveys in 2011 in Canada, and these two experiences brought me here.

What is your exact job on this research cruise?
Seabird Observer

How do you get trained to be a marine bird observer?
Trained by experienced observers; they make sure you have the skills to identify things properly and meticulously document them.

What are the most common birds you have seen on this cruise?
The most common type of birds on this trip are two types of Storm Petrels which are the Wilsons and Leach’s. These are very small birds, and have approximately a 1.5 ft wingspan.

IMG_7156
Bookmarked page of the most common birds seen so far on this trip. Photo by DJ Kast

Did you know?

The petrels are a taxonomic order of birds called tube noses or Procellariiformes. Procellariiformes drink seawater, so they have to have an adaptation to get rid of the excess salt.  The salt gland at the base of their beak removes salt from the circulatory system and forms a 5 percent saline solution that either drips from or is forcibly ejected from their nostrils.

Sooty Shearwaters

Sooty shearwaters are 40–51 cm in length with a 94–110 cm wingspan. Most seabirds have a large wingspan according to their body size so they can glide and not waste energy.

Photo of the head and wingspan of the Sooty Shearwater. Photo by: DJ Kast
Photo of the head and wingspan of the Sooty Shearwater. Photo by: DJ Kast

Herring Gulls: Adults have light-gray backs, black wingtips, and white heads. They have a Red spot near tip of lower bill of their beak.

Did you know?

Dutch scientist Niko Tinbergen studied nesting Herring Gulls and he noticed that newly hatched gull chicks were fed by their parents only after they pecked at the red spot at the adults’ bills (beaks).

Herring Gull. Photo by: Brad Toms
Herring Gull. Photo by: Brad Toms

What are some unusual birds you have seen on this trip?

  • White faced storm petrel
  • Common Nighthawk
  • Barn Swallow
  • Summer Tanager
Summer Tanager sighted on the NOAA Henry B. Bigelow. Photo by Brad Toms
Summer Tanager sighted on the NOAA Henry B. Bigelow. Photo by Brad Toms

What do you enjoy about your job?
The variety and challenges of each survey and transect make my job very interesting.

What do you do when you site a bird?

I have to keep my eyes on it, until I have all of the features of the bird for identification. These features include general color, distinctive plumage, and size.

Photo of the distinctive tail identifiers of petrels.  Photo by DJ Kast
Photo of the distinctive tail identifiers of petrels. Wilsons and Leach’s are the most common.
Photo by DJ Kast

I then enter into the system that is voice activated and try to make sure that it is in my transect. I really have to keep track of it to make sure it doesn’t re-enter the transect.

Photo by: DJ Kast
Method measuring the transect of the side of the bridge. Photo by: DJ Kast

The reason I need to keep track of it is because it has been shown that certain species of birds exhibit this weird behavior where they will circle the ship in a radius of about a half a mile and/ or they will follow the ship.

My transect is on the port (left) side of the boat, and from the time that I start it’s 300 meters out and the length is however far the boat travels in 5 minutes. So if the boat is going slow then the transect is short, and is the boat is going fast then it is a longer transect and this is called a standardized unit of effort, which enables me to compare data and protocols to other studies.

How does your voice activated system work? What does it record?

The voice activated system records what I say to it, but it has to be in code. The basic five things that have to be in for it to be considered a recording are: species, number of birds, location (on the water or flying), inside or outside of the transect, and how far away from the boat it is. I speak in codes, short acronyms for the five basic things above, and I have to make sure to say the five things in a row, in the same order, same thing every time.

Optional things that I can add to the recording include: behavior, age, sex, molt patterns.

What is the greatest number of birds recorded at once on a vessel?

Within one watch, 80 birds.

Brad Toms on watch. Photo by: DJ Kast
Brad Toms on watch. Photo by: DJ Kast

DJ Kast, Interview with Jessica Lueders-Dumont, May 22, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 22, 2015, Day 4 of Voyage

 

Interview with Jessica Lueders-Dumont

Who are you as a scientist?

Jessica Lueders-Dumont is a graduate student at Princeton University and has two primary components of her PhD — nitrogen biogeochemistry and historical ecology of the Gulf of Maine.

Jessica Lueders- Dumont, graduate student at Princeton cleaning a mini bongo plankton net for her sample.
Jessica Lueders- Dumont, graduate student at Princeton cleaning a mini bongo plankton net for her sample. Photo by: DJ Kast

 What research are you doing?

Her two projects are, respectively,

A) Nitrogen cycling in the North Atlantic (specifically focused on the Gulf of Maine and on Georges Bank but interested in gradients along the entire eastern seaboard)

B) Changes in trophic level of Atlantic cod in the Gulf of Maine and on Georges Bank over the history of fishing in the region. The surprising way in which these two seemingly disparate projects are related is that part A effectively sets the baseline for understanding part B!

She is co-advised by Danny Sigman and Bess Ward. Danny’s research group focuses on investigating climate change through deep time, primarily by assessing changes in the global nitrogen cycle which are inextricably tied to the strength of the biological pump (i.e. biological-mediated carbon export and storage in the ocean). Bess’s lab focuses on the functional diversity of marine phytoplankton and bacteria and the contributions of these groups to various nitrogen cycling processes in the modern ocean, specifically as pertains to oxygen minimum zones (OMZs). She is also advised by a Olaf Jensen, a fisheries scientist at Rutgers University.

In both of these biogeochemistry labs,  nitrogen isotopes (referred to as d15N, the ratio of the heavy 15N nuclide to the lighter 14N nuclide in a sample compared to that of a known standard) are used to track nitrogen cycling processes. The d15N of a water mass is a result of the relative proportions of different nitrogen cycling processes — nitrogen fixation, nitrogen assimilation, the rate of supply, the extent of nutrient utilization, etc. These can either be constrained directly via 15N tracer studies or can be inferred from “natural abundance” nitrogen isotopic composition, the latter of which will be used as a tool for this project.

Nitrogen Cycle in the Ocean. Photo credit to: https://wordsinmocean.files.wordpress.com/2012/02/n-cycle.png
Nitrogen Cycle in the Ocean. Photo credit to: https://wordsinmocean.files.wordpress.com/2012/02/n-cycle.png

On this cruise she has 3 sample types — phytoplankton, zooplankton, and seawater nitrate — and two overarching questions that these samples will address: How variable is “baseline d15N” along the entire eastern seaboard, and does this isotopic signal propagate to higher trophic levels? Each sample type gives us a different “timescale” of N cycling on the U.S. continental shelf. She will be filtering phytoplankton from various depths onto filters, she will be collecting seawater for subsequent analysis in the lab, and she will be collecting zooplankton samples — all of which will be analyzed for nitrogen isotopic composition (d15N).

Biogeochemistry background: 

Biogeochemists look at everything on an integrated scale. We like to look at the box model, which looks at the surface ocean and the deep ocean and the things that exchange between the two.

The surface layer of the ocean: euphotic zone (approximately 0-150 m-but this range depends on depth and location and is essentially the sunlit layer); nutrients are scarce here.

When the top zone animals die they sink below the euphotic zone and into the aphotic zone (150 m-4000m), and the bacteria break down the organic matter into inorganic matter (nitrate (NO3), phosphate (PO4) and silicate (Si(OH)3.). In terms of climate, an important nutrient that gets cycled is carbon dioxide.We look at the nitrate, phosphate, and silicate as limiting factors for biological activity for carbon dioxide, we are essentially calculating these three nutrients to see how much carbon dioxide is being removed from the atmosphere and “pumped” into the deep sea.  This is called the biological pump. Additionally, the particulate matter that falls to the deep sea is called Marine Snow, which is tiny organic matter from the euphotic zone that fuels the deep sea environments; it is orders of magnitude less at the bottom compared to the top.

Cycling
Visual Representation of the aphotic and euphotic zones and the nutrients that cycle through them. Photo by: Patricia Sharpley

 

Did you know that the “Deep sea is really acidic, holds a lot of CO2 and is the biggest reservoir of C02 in the world?” – From Jessica Lueders- Demont, graduate student at Princeton.

One of the most important limiting factors for phytoplankton is nitrogen, which is not readily available in many parts of the global ocean. “A limiting nutrient is a chemical necessary for plant growth, but available in quantities smaller than needed for algae and other primary producers to increase their abundance. Organisms can grow and reproduce only when they have sufficient nutrients. For algae, the carbon source is CO2and this, at least in the surface water, has a constant value and is not limiting their growth. The limiting nutrients are minerals (such as Fe+2), nitrogen, and phosphorus compounds” (Patricia Sharpley 2010).

Conversely, phosphorus is the limiting factor on land. The most common nitrogen is molecular nitrogen or N2, which has a strong bond to break and biologically it is very expensive to fix from the atmosphere. 

Biological, chemical, and physical oceanography all work together in this biogeochemistry world and are needed to have a productive ocean. For example, we need the physical oceanography to upwell them to the surface so that the life in the euphotic zone can use them.

Activities on the ship that I am assisting Jessica with:

  • Zooplankton collected using mini bongos with a 165 micron mesh and then further filtered at meshes: 1000, 500, and ends with 250 microns, this takes out all of the big plankton that she is not studying and leaves only her own in her size range which is 165-200 microns.
  • She is collecting zooplankton water samples because it puts the phytoplankton that she is focusing on into perspective.
The last of the mesh buckets that's filtering for phytoplankton. Photo by: DJ Kast
The last of the mesh buckets that’s filtering for phytoplankton. Photo by: DJ Kast
    • Aspirator pump sucks out all of the water so that the zooplankton are left on a glass fiber filter (GFFs) on the filtration rack.

 

  • Aspirator pump that is on the side sucks out all of the air so that the plankton get stuck on the filters at the bottom of the cups seen here. Photo by: DJ Kast
    Aspirator pump that is on the side sucks out all of the air so that the plankton get stuck on the filters at the bottom of the cups seen here. Photo by: DJ Kast
  • Bottom of the cup after all the water has been sucked through. Photo by: DJ Kast
    Bottom of the cup after all the water has been sucked through. Photo by: DJ Kast
  • Jessica removing the filter with sterilized tweezers to place into a labeled petridish. Photo by: DJ Kast
    Jessica removing the filter with sterilized tweezers to place into a labeled petri dish. Photo by: DJ Kast

    Labeled petri dish with GFF of phytoplankton on it. Photo by: DJ Kast
    Labeled petri dish with GFF of phytoplankton on it. Photo by: DJ Kast

Video of this happening:

Phytoplankton filtering:

Jessica collecting her water sample from the Niskin bottle in the Rosette. Photo by DJ Kast
Jessica collecting her water sample from the Niskin bottle in the Rosette. Photo by DJ Kast
Up close shot of the spigot that releases water from Niskin bottle in the Rosette. Photo by DJ Kast
Up close shot of the spigot that releases water from Niskin bottle in the Rosette. Photo by DJ Kast
DJ Kast helping Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.
DJ Kast helping Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.
DJ and Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.
DJ and Jessica collect her 4 L of seawater from the Niskin bottle in the Rosette. Photo by Jerry P.
Chief Scientist Jerry Prezioso and Megan Switzer next to the CTD and Rosette
Chief Scientist Jerry Prezioso and Megan Switzer next to the CTD and Rosette Photo by: DJ Kast

 

May 21, 14:00 hours: Phytoplankton filtering with Jessica.

In addition to the small bottles Jessica needs, we filled 4 L bottles with water at the 6 different depths (100, 50, 30, 20, 10, 3 m) as well.

We then brought all the 4 L jugs into the chemistry lab to process them. The setup includes water draining through the tubing coming from the 4 L jugs into the filters with the GFFs in it. Each 4 L jug is filtered by 2 of these filter setups preferably at an equal rate. The deepest depth 100 m was finished the quickest because it had the least amount of phytoplankton that would block the GFF and then a second jug was collected to try and increase the concentration of phytoplankton on the GFF.

Phytoplankton filtration setup. Photo by DJ Kast
Phytoplankton filtration setup. Photo by DJ Kast
The filter and pump setup up close. Photo by DJ Kast
The filter and pump setup up close. Photo by DJ Kast
Up close shot of the GFF within the filtration unit.
Up close shot of the GFF within the filtration unit. Photo by DJ Kast
Jessica keeping an eye on her filtration system to make sure nothing is leaking and that there are no air bubbles restricting water flow
Jessica keeping an eye on her filtration system to make sure nothing is leaking and that there are no air bubbles restricting water flow. Photo by DJ Kast
Here I am helping Jessica setup the filtration unit.
Here I am helping Jessica setup the filtration unit.Photo by Jessica Lueders- Dumont
The GFF with the phytoplankton (green stuff) on it.
The GFF with the phytoplankton (green stuff) on it. Photo by: DJ Kast

There are 2 filters for each depth, and since she has 12 filtration bottles total, then she would be collecting data from 6 depths. She collects 2 filters so that she has replicates for each depth.

Here they are all laid out to show the differences in phytoplankton concentration.

The 6 depths worth of GFFs. See how the 30 m is the darkest. Thats evidence for the chlorophyll max. Photo by: DJ Kast
The 6 depths worth of GFFs. See how the 30 m is the darkest. Thats evidence for the chlorophyll max. Photo by: DJ Kast

She will fold the GFF in half in aluminum foil and store it at -80C until back in the lab at Princeton. There, the GFF’s are combusted in an elemental analyzer and the resulting gases run through a mass spectrometer looking for concentrations of N2 and CO2. The 30 m GFF was the most concentrated and that was because of a chlorophyll maximum at this depth.

Chlorophyll maximum layers are common features of vertically stratified water columns. There is a subsurface maximum or layer of chlorophyll concentration. These are found throughout oceans, lakes, and estuaries around the world at varying depths, thicknesses, intensities, composition, and time of year.

DJ Kast, Interview with the Marine Mammal Observers, May 21, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 21, 2015, Day 3 of Voyage


Interview with the Marine Mammal Observers

Marine Mammal Observers Marjorie and Brigid Photo by: DJ Kast
Marine Mammal Observers Marjorie and Brigid
Photo by: DJ Kast

Marjorie and Brigid on the Flying Bridge.

Whale Observer Station on the Flying Bridge. Photo by: DJ Kast
Whale Observer Station on the Flying Bridge. Photo by: DJ Kast

These two marine mammal observers are on the Flying Bridge of the ship.

I asked them what they were looking for and they said blows. I thought I spotted one at 11 o’clock and asked if it was supposed to look like a puff of smoke. They turned their cameras and binoculars to that direction and there were two whales right there. Marjorie turned to me and said, “you make our job look very easy”.

I spent some time interviewing the two of them today on May 21st, 2015.

Tell me a little bit about your background:

Marjorie Foster:

“I went to Stetson University and majored in biological sciences and concurrently worked with aquariums and sea turtle and bird rehab. Started flying aerial surveys for right whales, and was pulled into the world of NOAA in 2010. I’ve worked on small boats for bottlenose dolphin surveys as well.”

Brigid McKenna:

“I went to the University of Massachusetts in Amherst and received my degree in biology, because I originally wanted to go into veterinary school, and worked in the aquarium medical center as an internship. Afterwards, I realized that veterinary school was not for me and I started an internship with the whale watch, and worked with spinner dolphins. Then I worked with scientists for Humpback Whales in Provincetown. Afterwards, I became a Right whale vessel observer and pursued my masters in Marine Mammal Science at St. Andrews. Afterwards, I became an aerial observer for right whales. This means I got to be in planes above the ocean looking for whales.”

Shoutout to Jen Jakush for keeping up with my blog in Florida.

What is your exact job on this research cruise?

Marine Mammal Observers are contracted by NOAA. We keep an eye out for whales and dolphins from the top of the ship and collect information about what we see.

How do you get trained to be Marine mammal observer?

Field experience is vital. The more you have seen, the more you can easily narrow down behavioral and visual cues to define a species. Also, conversations with other scientists in the field can really help expand your knowledge base.

For me:

Bridget- internship on a whale watch boat

Majorie- working with right whales

What do you enjoy about your job?

Marjorie: Being outside, and getting the opportunity to see things that people don’t normally get to see. Every day is exciting because there are endless possibilities of amazing things to witness. I feel very lucky to collect data that will be used in larger conversation efforts to help preserve these animals.

Brigid: Everything is dynamic, every project is new, I love being outside on the ocean. We can do aerial and vessel observations. We get to travel a lot. It’s a small world in the marine mammal community, so you get to know a lot of cool people.

What are the most common mammals you have seen on this cruise?

Common dolphins: white patch on sides and dark gray on top, and v shaped saddle.

Dolphin spotted by the observers on the side of the boat. Photo by: DJ Kast
Dolphin spotted by the observers on the side of the boat. Photo by: DJ Kast

Bottlenose dolphins: light gray and dark gray on top

Common Bottlenose Dolphin. Photo taken by DJ Kast from the Marine Mammals of the World book.
Common Bottlenose Dolphin. Photo taken by DJ Kast from the Marine Mammals of the World book.

Couple of mola mola – largest of the bony fish

Whales:

Fin whales

Pilot whales.

Sei Whale

Humpback in the distance.

Marjorie: On the ledge and on the shelf there should be much more life than we have been seeing. And that will be in about an hour or two.

Up North- in the Gulf of Maine.

Northern waters are more abundant with the small marine life large whales like to eat. We are expecting to see a lot of baleen whales in the Gulf of Maine later on in this project. Further south we will see more dolphins and other toothed whales. We expect to see bottlenose dolphins, pilot whales, and possibly Risso’s dolphins.

Did you know?

Right Whale’s favorite copepod is Calanus finmarchicus, which bloom in Cape Cod waters. The Right whales know when the copepods are in a fatty stage and will only open their mouths if the calorie intake is worth it.

Did you know?

Different humpbacks have different hunting techniques.

The hunting technique specific to the Gulf of Maine is bubble-net feeding with lob-tailing. This means that they make bubbles around a school of fish and then hit the water with their tail to stun them.

Did you know?

Sad Fact: 72% of right whales have been entangled at least once, which we can tell from the scars that remain on their body.

What do you do when you site a marine mammal?

  1. One of us points
  2. Keep track of it. Both of our eyes on it
  3. Take pictures and look through binoculars for a positive identification of the species of marine mammal.
  4. How far they are, what direction they are swimming in, and what behaviors they are exhibiting.
  5. We have a system on our Toughbook computer called Vissurv. The data we input into this system includes:
    • Which side of the boat, and how many meters, and what direction are the animals are swimming to help us keep track of them
    • Our main objective is to ID them to species and count how many of them there are, which is called the pod size.
    • Some example behaviors include: swimming, breaching, porpoising, bow riding
    • Our computer is constantly recording GPS and environmental conditions. This information will ultimately be tied to the sightings. Environmental conditions include: swell, glare, wind, sea state etc.

DJ Kast, Day 1 of Voyage, May 19, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 19, 2015, Day 1 of Voyage

Weather Data:

  • FOGGY
  • Air Temperature: 13.5 °C
  • Water Temperature: 12.6°C
  • Barometer: 1005 mb
  • TSG (Sound-Velocity): 1496.852 meters/sec
  • TSG- Conductivity: 3.90427 s/m
  • TSG- Salinity: 33.25 PSU
  • Wind: 13 knots SouthWest
Weather Data from the Acoustic Lab. Photo by DJ Kast
Weather Data from the Acoustic Lab. Photo by DJ Kast

Personal Log

7 am- 8 am breakfast. Oatmeal with fresh fruit! I also met Jeremy and Dennis our chefs and mess hall stewards for the voyage. They are so nice and their food is so delicious.

I also met two mammals researchers named Marjorie and Bridget who will be spotting marine mammals and documenting what we see. I hope they can spot the three belugas that have been in the news here in Narragansett Bay. I heard that researchers took a biopsy of one of the whales with a small dart that takes epidermis and blood samples from the whale itself.

 

Science and Technology Log

I decorated my drifter buoy with stickers from all of my current programs (USC Dornsife, JEP, YSP, Wonderkids and NAI) and the programs that inspired me to be here (USC Seagrant, USC Wrigley Institute for Environmental Studies, USC Catalina Hyperbaric Chamber). A drifter buoy looks like a ball with a cap on it and is gray on the bottom of the ball structure and blue on the top.

Thank you Laura (Operations Officer) for coming up with the idea to print out logos and photos of my programs and laminate them and place them on the buoy because I forgot mine.

IMG_1942_2

11:00-11:30- Laura the operations officer gave us a welcome aboard speech talking about all the safety components of the ship including fire drills, man overboard drills, and how to use a EEBD (emergency exit breathing device) that provides air for 10 minutes when a compartment floods with smoke.)

11:30: Lunch was delicious! Spaghetti with meatballs! I met a Canadian man named Bradley Toms, who will be monitoring and observing for marine birds.

12:30- DEPARTURE!

I learned from Jeff and Jerry what the markings on our chart are! The square boxes are for bongo net deployments and the purple dots are for rosette and CTD deployments. The dive flags are locations where we deploy both bongo net and rosettes.

 

Chart of our course.  Photo by: Jerry P.
Chart of our course.
Photo by: Jerry P.

Met with Christina, Tamara and Megan (three amazing women scientists) in the lab space to see how they were setting up all of their research for the trip. This included putting together CTDs, turning on all their sensors and computers and all the flow-through systems and data collectors.

Christina, Tamara, and Megan prepare their instruments for the research cruise in the Wetlab. Photo by DJ Kast
Christina, Tamara, and Megan prepare their instruments for the research cruise in the Wetlab. Photo by DJ Kast

Our survey technician, Jeff, also opened up the shop for me to buy a NOAA Ship Henry B. Bigelow mug. LOVE it and now I don’t need to waste the paper cups in the mess hall (Kitchen/ cafeteria area). He even offered up some free stickers from NOAA and the ship itself to place on the buoy. The goat with Henry B. Bigelow had a cute story of the Bigelow being on a previous boat called the Albatross and its mascot was Buck the goat, which was why they had that sticker in the boat shop. Henry Bigelow is a scientist who used to study the Gulf of Maine on a schooner.

My new NOAA Henry B. Bigelow Mug! Photo by DJ Kast
My new NOAA Henry B. Bigelow Mug! Photo by DJ Kast
The Survey Technician Jeff provided these great stickers for my drifter buoy. Photo by DJ Kast
The Survey Technician Jeff provided these great stickers for my drifter buoy. Photo by DJ Kast

I got to put on my foul weather gear for the first time. Everything must be waterproof (I wonder why?) and my foul weather gear includes boots, pants and a jacket. To work on the deck space where the bongos are thrown overboard or deployed I must were a PFD (Personal Flotation device) and a hard hat.

Foul Weather Gear model!  Fight on! Photo by DJ Kast
Foul Weather Gear model!
Fight on! Photo by DJ Kast

I definitely needed those boots and pants when Jerry and Chris taught me how to clean the bongo nets to actually collect the plankton. There are two deckhands (Roger and Paul) on our watch (12 PM- 12 AM) that assisted the person driving the winch or crane that holds the main and mini bongos in the water. They are towed at various depths (within 5 meters of the seafloor) to measure plankton for different researchers at various sample sites along the way. There was a little rocket ship (flowmeter) looking device in the middle of the large bongos that came with a propeller that was used as a way of measuring flow through the plankton net which helped in plankton counts (per cubic meter) sampling at depth.

Main Bongo setup for both zooplankton and ichthyoplankton. Photo by DJ Kast
Main Bongo setup for both zooplankton and ichthyoplankton. Photo by DJ Kast
Zooplankton Net.  Photo by DJ Kast
Zooplankton Net.
Photo by DJ Kast
This Measures Flow through the plankton net itself at depth
This Measures Flow through the plankton net itself at depth

First, we took a hose to the net causing all of the organisms in our plankton tow to wash down to the end where they could be taken out and put into a sieve. They said to focus on the seams because lots of plankton can get stuck there.

Take off the strings here to let the plankton fall into the sieve. Photo by DJ Kast
Take off the strings here to let the plankton fall into the sieve. Photo by DJ Kast

 

The dark brown spots here indicate thousands of reddish brown zooplankton, mostly copepods that were caught. Photo by: DJ Kast
The dark brown spots here indicate thousands of reddish brown zooplankton, mostly copepods that were caught. Photo by: DJ Kast
Washing down the Plankton Net. Photo by DJ Kast
Washing down the Plankton Net. Photo by DJ Kast
Baby Bongos and Main Bongos coming up after deployment. Photo by DJ Kast
Baby Bongos and Main Bongos coming up after deployment. Photo by DJ Kast
Action shot of washing the net! Photo by Jerry P.
Action shot of washing the net! Photo by Jerry P.
I'm going to wash down some baby bongo plankton nets. Photo by Jerry P.
I’m going to wash down some baby bongo plankton nets. Photo by Jerry P.
My first plankton Sample! Photo by DJ Kast
My first plankton Sample!
Photo by DJ Kast

There are two main types of plankton tows out here, one with mini bongos that are processed with ethanol and are used for genetic analysis. The ethanol dehydrates the plankton releasing water so the ethanol needs to be replaced after 24 hours or else it will be too diluted from the plankton water.

 

Using ethanol to collect the plankton for preservation for genetic analysis. Photo by DJ Kast
Using ethanol to collect the plankton for preservation for genetic analysis. Photo by DJ Kast
The jar of primarily copepods that will be sent off for genetic analysis. Photo by DJ Kast
The jar of primarily copepods that will be sent off for genetic analysis. Photo by DJ Kast

They are labeled on top of the jar and inside the jar with waterproof labels that indicate:

Cruise: Henry Biglow 2015, cruise # 2; and the gear 2B3 indicate baby bongo nets. Date, station number, haul event, type of ethanol used etc. The plankton collected by the big bongo is labeled the same except instead of the Ot (other) on the side it says I or Z (ichthyoplankton and zooplankton).

Jar Labels. Photo by DJ Kast
Jar Labels. Photo by DJ Kast

 

The second type is the big bongos. There are two types of nets on the bongo setup (called bongo because the 2 types of nets are placed side by side); there is one that is labeled green for zooplankton and the second that is labeled red for the ichthyoplankton. After the sieve has filtered out all the plankton from the seawater, all of the organisms are put into a jar and formalin is added to kill and preserve them for taxonomic purposes. The coolest thing so far I have seen are fish larvae because they look like little eyeballs sticking out of on top of the thousands of reddish brown plankton or copepods, a ctenophore (or comb jelly, a tiny little see-through blob), and two lion’s mane jellyfish.

 

Lion's Mane Jellyfish surrounded by copepods in the sieve. Photo by DJ Kast
Lion’s Mane Jellyfish surrounded by copepods in the sieve. Photo by DJ Kast

 

DJ Kast, Pre-Cruise, May 18, 2015

NOAA Teacher at Sea
Dieuwertje “DJ” Kast
Aboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: East Coast

Date: May 18, 2015 (Pre-cruise)

Personal Log

Chris Melrose picked me up from the hotel and really helped me get a grasp of life aboard a research vessel. I learned all about Narragansett Bay and the lab here in Rhode Island.

I then met Jerry Prezioso, the Chief Scientist for the voyage, who gave me a great tour of the Narragansett Bay Lab. I learned what an XBT (expendable bathythermograph) was and how it measures temperature at various depths.

XBT  Photo by: DJ Kast
XBT
Photo by: DJ Kast

 

I learned how a Niskin bottle works and how many Niskin bottles lined up in a circle to make a piece of equipment called a rosette. The Niskin bottle is like a hollow tube with a mechanism that closes the tube at a specific depth that will then bring a water sample indicative of that depth. They apparently cost $400 each.  I am already making plans on how to make a DYI one for the classroom.

Niskin Bottle Photo by: DJ Kast
Niskin Bottle
Photo by: DJ Kast
This is a Rosette with 12 niskin bottles. Photo by: DJ Kast
This is a Rosette with 12 niskin bottles. Photo by: DJ Kast

With Jerry, I also met Ruth Briggs who works for the Narragansett Bay Apex Predators division and she showed me the shark tags that she has citizen scientists put onto sharks on the base of their dorsal (top) fin that they catch. When the sharks are caught again, the information she requests is sent back to her and includes species, size, sex, location to shore, and weight. She even let me borrow a decommissioned tag to show to my students in California.

Decommissioned shark tag from the Narragansett Bay Apex Predators Division Photo by: DJ Kast
Decommissioned shark tag from the Narragansett Bay Apex Predators Division
Photo by: DJ Kast

 

I saw a drifter buoy that I will be decorating with all of my programs (USC, JEP, YSP and NAI) logos.

Jerry also sent me the map of all the stations that we will be visiting on our ship and at each station we are projected to measure salinity, depth, temperature, nutrients and plankton! I am so excited! We are expected to go as far south as North Carolina and as far north as the Bay of Fundy in Canada (International Waters!!!).

TAS and the NOAA Ship Arrival

My stateroom is amazing! My roommate and I even have our own head (bathroom) in our room with sink, shower and all. There are two beds in a bunk bed format, and since I showed up about 6 hours before the other scientists I chose the bottom bunk and the cabinet I wanted for my stuff. I unpacked (and gladly didn’t over pack) and managed to fit it all in the closet that was given to us. I feel so fortunate to have such amazing accommodations like this.

Important People who Keep the Ship Afloat and on Course

Today I met the Operations Officer, Laura, who showed me the ropes and introduced me to people on the ship at dinner at the bowling alley on the naval base here in Newport, RI. She also showed me the buoy yard filled with lots of different buoys that indicate different paths of travel and safe/unsafe waters for ships coming into port.

I entered a yard of buoys on the Newport Naval Base and here I am for a size comparison. They are HUGE!
I entered a yard of buoys on the Newport Naval Base and here I am for a size comparison. They are HUGE!
Here is a look at what happens when  a buoy is freshly painted and when its being fouled by marine organisms and algae (RUST!) Photo by: DJ Kast
Here is a look at what happens when a buoy is freshly painted and when its being fouled by marine organisms and algae (RUST!) Photo by: DJ Kast

 

Important Ship Personnel
CO: Commanding Officer
XO: Executive Officer
CME: Chief Marine Officer
OO or Ops: Operations Officer= Laura
NO: Navigational Officer or Nav= Eric
CB: Chief Boson or Deck Boss= Adrian
AB: Able Seaman or a Deckhand = Roger

Meal Schedule
I also learned about food times (Very important).
7AM- 8 AM or 0700-0800 hours= Breakfast
11- 12 PM or 1100-1200 hours= Lunch
5- 6 PM or 1700-1800 hours = Dinner

Roommate in Stateroom 2-22

 

DJ Kast on the Gateway Photo by: DJ Kast
DJ Kast on the Gangway
Photo by: DJ Kast
Here I am boarding the NOAA Henry B. Bigelow Photo by: DJ Kast
Here I am boarding the NOAA Henry B. Bigelow
Photo by: DJ Kast

 

I met my amazing roommate Megan and she is a master’s student at the University of Maine. We will sadly have opposite schedules for most of the trip because I will be on the 12 PM- 12 AM shift and she will be on the 12 AM- 12 PM shift. We have a lot of things in common including our love of the ocean, geology and Harry Potter. She will be looking at dissolved nutrients in the water and she will be monitoring the instruments that measure conductivity, temperature and depth or (CTD) and requesting water samples while at various stations.

Dieuwertje “DJ” Kast, Introductions, May 7, 2015

NOAA Teacher at Sea
Dieuwertje Kast
(Almost) Onboard NOAA Ship Henry B. Bigelow
May 19 – June 3, 2015

Mission: Ecosystem Monitoring Survey
Geographical area of cruise: Northeast Atlantic Ocean
Date: May 7, 2015

Personal Log

Greetings from Southern California! My name is Dieuwertje or “DJ” Kast and I am currently the  STEM Program Manager (K-12) for the University of Southern California (USC) Joint Educational Project (JEP) and Director of Young Scientists Program (YSP) and the USC Wonderkids Program. I am also assisting with the USC JEP Boeing project which does Teacher Professional development in Water and Sustainability. All of which are located at the JEP House on the USC Campus in Los Angeles California (seen here about 47 miles one way commute from my husband Roee and my home in Chino, CA).

Screen Shot 2015-05-07 at 9.20.46 AM

I received my masters in Education and my biology teaching credential at the Rossier School of Education. A native of the Netherlands, I received my undergraduate and graduate education at USC through the progressive masters programs obtaining my BS in Biology and MS in Marine Environmental Biology. I have a passion for Science Education, have written curriculum and held leadership roles for both Wonderkids, The Young Scientist Program, the USC QuikSCience program, the USC Wrigley Institute for Environmental Science on Catalina Island, USC Seagrant and the USC Neighborhood Academic Initiative (NAI) program (rigorous, seven-year pre-college enrichment program designed to prepare low-income neighborhood students for admission to a college or university). In my spare time I enjoy writing science books, photography, helping students with science fairs, SCUBA diving and working with marine science labs across California.

I wanted to tell other TAS Teachers about the programs that I manage or have been a part of in hopes that they may also be inspired to learn more about what I do and how their students can be involved, and the potential for teacher professional development and partnerships in the future. I am looking forward to going on my voyage and using what I learn to write curriculum and communicating it to the thousands of students in my programs.

The Young Scientists Program works in partnership with 5 USC community schools, from the  greater ‘USC 10 Family of Schools’ to engage more than 1400 elementary school students, 45 LAUSD teachers, and 5 principals through a broad repertoire of science curriculum.  YSP TAs are placed at each school presenting hands-on science labs to fourth and fifth grade classrooms. YSP brings scientific laboratory experiences directly to students and their teachers with the goal of supplementing current science instruction, complimenting LAUSD and state grade level science learning standards, strengthening science literacy and promoting interest in scientific careers. One of YSP’s primary objectives is to increase science activities for a larger number of our neighborhood children as a means to encourage them to consider careers in the Science, Technology, Engineering and Mathematics (STEM) and to apply what they are learning in the classroom to the real world. Additional outcomes are that our USC undergraduate students learn how to become successful mentors, gain valuable teaching experience, and learn how to directly respond to the needs of the schools, communities and families.

USC JEP Wonderkids is first-third grade after-school science program in the USC Family of Schools. It is currently in 6 schools: Foshay, Weemes, Vermont, Norwood, Mack, Norwood, and 32nd street. The program focuses on different areas of science through hands-on lesson plans and books. The program also has professional scientists from different science fields as rotating speakers come into the classroom to encourage students to pursue careers in STEM. Science fields pursued so far: neuroscience, environmental science, paleontology, deep sea, marine biology, botany, robotics, space, chemistry, DNA, animal behavior, microbiology, physics, computer science, biomedical engineering and medicine.

I will be doing Ecosystem Monitoring Survey (Fisheries) on NOAA Ship Henry B. Bigelow Ship from May 19 – June 3, 2015. I am so excited! I will be embarking on my research cruise in Newport, Rhode Island and disembarking there as well.

This is a photo of the NOAA Henry B. Bigelow Ship.  Credit to: http://www.moc.noaa.gov/hb/HB-June07.JPG
This is a photo of the NOAA Henry B. Bigelow Ship.
Credit to: http://www.moc.noaa.gov/hb/HB-June07.JPG
Newport, Rhode Island
Newport, Rhode Island

I will be working with the Narragansett Laboratory and the objectives of the investigation are:

  1. to monitor the fishery-relevant components of the Northeast Shelf ecosystem, to characterize the baseline conditions and their variability, and to index the seasonal, annual, and decadal changes in the conditions of the ecosystem, and
  2. to determine the effects of biological and physical processes on the recruitment of Northeast shelf fishes, especially gadoids.

The Investigation utilizes three survey approaches to gather data on planktonic organisms and environmental parameters:

  1. shelf-wide Research Vessel Surveys;
  2. Ship of Opportunity (SOOP) Transect Surveys;
  3. sampling using a variety of environmental satellites and buoys (termed Remote Sensing Surveys).