Christine Webb: September 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 9/19/2017

Latitude: 42.2917° N (Back home again!)

Longitude: 85.5872° W

Wind Speed: 6 mph

Air Temperature: 65 F

Weather Observations: Rainy

Here I am, three weeks deep in a new school year, and it’s hard to believe that less than a month ago I was spotting whales while on marine mammal watch and laughing at dolphins that were jumping in our wake. I feel like telling my students, “I had a really weird dream this summer where I was a marine biologist and did all kinds of crazy science stuff.”

IMG_20170817_103950017_HDR

Me on marine mammal watch

If it was a dream, it certainly was a good one! Well, except for the part when I was seasick. That was a bit more of a nightmare, but let’s not talk about that again. It all turned out okay, right?

I didn’t know what to expect when signing on with the Teacher at Sea program, and I’m amazed at how much I learned in such a short period of time. First of all, I learned a lot about marine science. I learned how to differentiate between different types of jellyfish, I learned what a pyrosome is and why they’re so intriguing, I learned that phytoplankton are way cooler than I thought they were, and I can now spot a hake in any mess of fish (and dissect them faster than almost anyone reading this).

I also learned a lot about ship life. I learned how to ride an exercise bike while also rocking side to side.  I learned that Joao makes the best salsa known to mankind. I learned that everything – everything – needs to be secured or it’s going to roll around at night and annoy you to pieces. I even learned how to walk down a hallway in rocky seas without bumping into walls like a pinball.

Well, okay. I never really mastered that one. But I learned the other things!

Beyond the science and life aboard a ship, I met some of the coolest people. Julia, our chief scientist, was a great example of what good leadership looks like. She challenged us, looked out for each of us, and always cheered us on. I’m excited to take what I learned from her back to the classroom. Tracie, our Harmful Algal Bloom specialist, taught me that even the most “boring” things are fascinating when someone is truly passionate about them (“boring” is in quotes because I can’t call phytoplankton boring anymore. And zooplankton? Whoa. That stuff is crazy).

329 hobbit house 2

Phytoplankton under a microscope

Lance taught me that people are always surprising – his innovative ways for dissecting fish were far from what I expected. Also, Tim owns alpacas. I didn’t see that one coming. It’s the surprising parts of people that make them so fun, and it’s probably why our team worked so well together on this voyage.

I can’t wait to bring all of this back to my classroom, specifically to my math class. My students have already been asking me lots of questions about my life at sea, and I’m excited to take them on my “virtual voyage.” This is going to be a unit in my eighth and ninth grade math classes where I show them different ways math was used aboard the ship. I’ll have pictures and accompanying story problems for the students to figure out. They’ll try to get the same calculations that the professionals did, and then we’ll compare data. For example, did you know that the NOAA Corps officers still use an old-fashioned compass and protractor to track our locations while at sea? They obviously have computerized methods as well, but the paper-and-pencil methods serve as a backup in case one was ever needed. My students will have fun using these on maps of my locations.

They’ll also get a chance to use some of the data the scientists took, and they’ll see if they draw the same conclusions the NOAA scientists did. A few of our team were measuring pyrosomes, so I’ll have my students look at some pyrosome data and see if they get the correct average size of the pyrosome sample we collected. We’ll discuss the implications of what would happen if scientists got their math wrong while processing data.

I am so excited to bring lots of real-life examples to my math classroom. As I always tell my students, “Math and science are married.” I hope that these math units will not only strengthen my students’ math skills, but will spark an interest in science as well.

This was an amazing opportunity that I will remember for the rest of my life. I am so thankful to NOAA and the Teacher at Sea program for providing this for me and for teachers around the country. My students will certainly benefit, and I have already benefited personally in multiple ways. To any teachers reading this who are considering applying for this program – DO IT. You won’t regret it.

CWeb

Me working with hake!

Christine Webb: August 23, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/23/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 62.1 F

Weather Observations: Partially cloudy

Science and Technology Log

For today’s science and technology log, I interviewed my roommate Tracie. You only have to talk to Tracie for five seconds to learn that she’s passionate about marine chemistry and marine biology and marine physics…all things marine. She’s the HAB (harmful algal bloom) specialist on board, and she’s been squirreled away in the chemistry lab every day collecting lots of great samples as we travel up the coast. Before we left Newport, she taught me a bit about algae by taking me to the beach to see some bioluminescent dinoflagellates. When we stomped in the water, the dinoflagellates would glow! It looked like puddles full of blue lightning bugs, and it was amazing. One of her quotes from that night was, “I imagine this is what unicorn footprints would look like if they were traipsing over rainbows.” Everyone should have the chance to see that at some point in their life. It gave me a taste of why it makes sense to be so passionate about algae. So, without further ado, here’s your chance to learn a bit more about HABs from my friend Tracie!

  1. What is a HAB, and why should we care about them?

HABs are phytoplankton that have negative consequences either for us or the ecosystem. Some can release neurotoxins that can be damaging to mammals (including humans), amongst other things. A harmful algal bloom (HAB) can also create a dead zone by a process called eutrophication. Bacteria eat the phytoplankton once they begin to die, which removes oxygen from the water.

  1. What makes it a bloom?

A “bloom” is when there is so much algae that the ecosystem can’t support it and they start to die off. There aren’t enough nutrients available in the water. Some people call this a “Red Tide.” There are certain species, such as Alexandrium spp., where even one cell per liter would be enough to create a harmful effect.

  1. What made you decide to study HABs?

During a lab in college, we were allowed to go to the beach and sample phytoplankton. When we got back to the lab with our samples, we found a huge amount of Pseudo-nitzschia spp. It releases a neurotoxin that gives mammals amnesiac shellfish poisoning. That year, we couldn’t eat shellfish and crab from our area because of this bloom. There’s no antidote to this toxin, and it affects the brain function of mammals who eat it. Whales died that year because they forgot how to breathe. This made me super interested in studying more about these types of species.

  1. What are you specifically hoping to find in your research aboard this cruise?

We’re trying to find where blooms start, how blooms begin, and follow them within the California Current system. It’s part of an ongoing study of the California Current system and how species are transported. California fisheries have been dramatically affected by HABs.

  1. Have you been finding what you need so far?

It’s been really interesting…we’ve seen quite a few Dinophysis species (which I find to be the cutest), and some really interesting Pseudo-nitzschia spp., but no blooms. Close to the coast, within 15 nm of shore, I see a lot more diversity in my samples. This is mostly due to upwelling.

  1. Has anything in your research so far surprised you?

There are very few species that I haven’t recognized, which is interesting because we’re so far north. We have fjord-like environments up here by Vancouver Island, so I expected there to be a higher abundance of phytoplankton up here than I saw.

  1. What is a common misconception about HABs?

The term “HAB” itself – they’re called harmful because they’re harmful to us as humans and to various industries, however – they provide a huge amount of support to other animals as primary producers and as oxygen producers.

They’re basically plants that can swim, and they’re all food for something. They’re not harmful for most things, so the name is kind of a misnomer. In defense of the HABs, they’re just trying to survive. Phytoplankton are responsible for around 50% of the world’s oxygen, and they’re the primary producer for marine and freshwater ecosystems.

  1. Anything else you want people to know?

There’s still a lot that we need to learn, and I would like everyone at some point in their life to see how beautiful these fragile organisms are and appreciate how much they contribute to our world.

  1. If you weren’t a marine chemist, what would you be?

I would write nonfiction about the beauty of the world around us. Or maybe I’d be an adventure guide.

  1. What are some fun facts about you that not a lot of people know?

My motto for life is “always look down.” There’s so much around us, even the dirt under our toes, that is so full of life and beauty.

My art is on Axial Seamount, 1400 m below sea level, 300 miles off the coast of Oregon! I drew an octopus high-fiving ROPOS the ROV that placed it there!

Also, I’m a high school dropout who is now a straight-A senior in environmental science at the University of Washington, Tacoma. Other people’s perceptions of you don’t control your destiny.

Here are a couple pictures of some of the HABs Tracie has seen during this trip (she took these pictures from her microscope slides):

329 D. fortii

Algae under the microscope: D. fortii. Image by Tracie.

329 hobbit house 2

Algae under microscope. Image by Tracie.

Personal Log:

Since today’s science log was about Tracie, I’ll feature her in the personal log too! She’s my partner in the ship-wide corn hole tournament, and we won our first-round game yesterday. Look at these awesome corn hole boards that were specially made for the Shimada!

IMG_20170822_153718727

Shimada corn hole board!

We mostly credit our fabulous war paint for the win. Today we play against our fellow scientists Lance and Tim. Wish me luck!

corn hole victory

Christine and Tracie celebrate corn hole victory

Another down-time activity that Tracie (and all the scientists) enjoy is decorating Styrofoam cups. The cool marine biologist thing to do is to sink them to very low ocean depths (3000+ meters). Apparently the pressure at that depth compresses the Styrofoam and shrinks it, making the cup tiny and misshapen but still showing all the designs that were put on it. I’m not kidding: this is a thing that all the marine biologists get really excited about. Tracie even decorated a Styrofoam head (the kind that cosmetologists use) in advance of this trip and brought it with her to sink. Look how cool it is – she’s an amazing artist!

IMG_20170824_171631958_HDR

Styrofoam head, decorated by Tracie, for shrinking

There are shrunken heads in the lab already from other people who have done this. Sinking Styrofoam is a legit marine biology hobby. Well, as the saying goes, “When in Rome…” so I worked on a Styrofoam cup today. I’m making a hake tessellation, which takes longer than you might think. Here’s what I’ve got so far:

IMG_20170823_051528993

Styrofoam cup decorated with hake tesselation

We’re having lots of fun at sea on this beautiful day. Someone just came over the radio and said there’s been a marine mammal sighting off the bow…gotta go!

Special Shout-out:

A special shout-out to Mrs. Poustforoush’s class in Las Vegas, Nevada! I just found out you’ve been following this blog, and it’s great to have you aboard. If you have any questions about algae (from this post) or about life on a ship, please feel free to e-mail me. I can hopefully get your questions answered by the right people. Work hard in Mrs. Poustforoush’s class, okay? She’s a great teacher, you lucky kiddos. Learn a lot, and maybe one day you can be a scientist and live on a ship too!

Christine Webb: August 21, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/21/2017

Latitude: 49.48 N

Longitude: 128.07 W

Wind Speed: 10 knots

Weather Observations: Sunny

Science and Technology Log

Today was our first chance to use the Methot net, and it was a lot of fun! The Methot net is smaller than the net that we usually use, and it is used to catch smaller organisms. Today we were targeting euphausiids. We thought we saw a pretty good aggregation of them on the 120 kHz acoustics data, where they appear the strongest of the three frequencies we monitor. We needed to validate that data by trawling the area to find the source of the backscatter and make sure they really were what we thought they were. There are many scientists who use data on euphausiids, so this was a good opportunity to provide them with some additional data. Because we’ve been working mostly on larger organisms, I was excited for the chance to see what a Methot net would pull up.

IMG_20170821_125553193_HDR

The Methot net coming up with its haul

It was very exciting that when the net came up, we had TONS of euphausiids! (“Tons” here is not used in a literal sense…we did not have thousands of pounds of euphausiids. That would have been crazy). Although we did not have thousands of pounds of them, we did have thousands of specimens. I’m sure thankful that we only had to take data on a subsample of thirty! I got to measure the lengths and widths of them, and using the magnifying lenses made me look very scientific.

IMG_20170821_145225093

Measuring euphausiids

Along with euphausiids, we also found other species as well. We found tiny squids, jellies, and even a baby octopus! It was adorable. I’ve never considered that an octopus could be cute, but it was.

IMG_20170821_131649146

Baby octopus

We also measured volumes and weights on samples of the other specimens we found, and I used graduated cylinders for the first time since college. We would put in a few milliliters of water, add our specimens, and then calculate the difference. Voila! Volume. Good thing I remembered to call the measurement at the bottom of the liquid’s meniscus… I could have messed up all the data! Just kidding… I’m sure my measurements weren’t that important. But still – good thing I paid attention in lab skills. It was definitely a successful first day with the Methot net.

Personal Log

The big buzz around the ship today was the solar eclipse! I was even getting excited at breakfast while I ate my pancakes and made them eclipse each other. We got lucky with weather – I was nervous when I heard the foghorn go off early in the morning. Fortunately, the fog lifted and we had a pretty good view. We all sported our cheesy eclipse shades, and the science team wore gray and black to dress in “eclipse theme.” Even though we couldn’t see the totality here, we got to see about 85%. We’re pretty far north, off the coast of Vancouver Island in Canada. The mountains are beautiful! Seeing land is always a special treat.

Here are some eclipse pics:

IMG_20170821_091709694

Rockin’ our cheesy eclipse shades

IMG_20170821_101636324

Some science team members enjoying the eclipse

IMG_20170821_100819772

Eclipse!

The eclipse would have made the day exciting enough, but the excitement didn’t stop there! While the scientists and I were working in the wet lab, we heard that a pod of orcas was swimming within eyesight of the ship. We dropped everything and hurried to take a look. It was so amazing; we could see five or six surface at once. They must have been hunting. We only see orcas when we’re close to land because their prey doesn’t live in deeper waters. Deeper into the ocean we are more likely to see gray or humpback whales.

It’s almost time for dinner…we sure have been spoiled for food! Last night we had pork loin and steak. I’m not sure that our chef will be able to top himself, but I’m excited to find out. I have heard rumors that he is very good at cooking the fish we’ve been catching, and that really makes me wish I liked seafood. Unfortunately, I don’t. At all. Not even enough to try Larry’s fried rockfish. Luckily, he makes lots of other food that I love.

Tonight after dinner I think Hilarie, Olivia, and I are going to watch Pirates of the Caribbean 2. Last night we watched the first movie while sitting on the flying bridge. It was a pretty cool experience to feel the spray of the sea while watching pirates battle!

IMG_20170820_174605473_HDR

Movie time!

That’s all for now; I’ll be back with more scientific fun soon!

Did you know?

Krill (the type of euphausiid we studied) is one of the most populous species on earth. It basically fuels the entire marine ecosystem.

 

Christine Webb: August 19, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/19/2017

Latitude: 48.59 N

Longitude: 126.59 W

Wind Speed: 15 knots

Barometric Pressure: 1024.05 mBars

Air Temperature: 59 F

Weather Observations: Sunny

Science and Technology Log:

You wouldn’t expect us to find tropical sea creatures up here in Canadian waters, but we are! We have a couple scientists on board who are super interested in a strange phenomenon that’s been observed lately. Pyrosomes (usually found in tropical waters) are showing up in mass quantities in the areas we are studying. No one is positive why pyrosomes are up here or how their presence might eventually affect the marine ecosystems, so scientists are researching them to figure it out. One of the scientists, Olivia Blondheim, explains a bit about this: “Pyrosomes eat phytoplankton, and we’re not sure yet how such a large bloom may impact the ecosystem overall. We’ve already seen that it’s affecting fishing communities because their catches have consisted more of pyrosomes than their target species, such as in the shrimp industry.”

IMG_20170817_100329068

Sorting through a bin of pyrosomes

Pyrosomes are a type of tunicate, which means they’re made up of a bunch of individual organisms. The individual organisms are called zooids. These animals feed on phytoplankton, and it’s very difficult to keep them alive once they’re out of the water. We have one alive in the wet lab right now, though, so these scientists are great at their jobs.

We’ve found lots of pyrosomes in our hake trawls, and two of our scientists have been collecting a lot of data on them. The pyrosomes are pinkish in color and feel bumpy. Honestly, they feel like the consistency of my favorite candy (Sour Patch Kids). Now I won’t be able to eat Sour Patch Kids without thinking about them. Under the right conditions, a pyrosome will bioluminesce. That would be really cool to see, but the conditions have to be perfect. Hilarie (one of the scientists studying them) is trying to get that to work somehow before the trip is over, but so far we haven’t been able to see it. I’ll be sure to include it in the blog if she gets it to work!

One of the things that’s been interesting is that in some trawls we don’t find a single pyrosome, and in other trawls we see hundreds. It really all depends on where we are and what we’re picking up. A lot of research still needs to be done on these organisms and their migration patterns, and it’s exciting to be a small part of that.

Personal Log:

The science crew continues to work well together and have a lot of fun! Last night we had an ice cream sundae party after dinner, and I was very excited about the peanut butter cookie dough ice cream. My friends said I acted more excited about that than I did about seeing whales (which is probably not true. But peanut butter cookie dough ice cream?! That’s genius!). After our ice cream sundaes, we went and watched the sunset up on the flying bridge. It was gorgeous, and we even saw some porpoises jumping in the distance.

It was the end to another exciting day. My favorite part of the day was probably the marine mammal watch where we saw all sorts of things, but I felt bad because I know that our chief scientist was hoping to fish on that spot. Still, it was so exciting to see whales all around our ship, and some sea lions even came and swam right up next to us. It was even more exciting than peanut butter cookie dough ice cream, I promise. Sometimes I use this wheel to help me identify the whales:

IMG_20170818_094058774_HDR

Whale identification wheel

Now we’re gearing up for zooplankton day. We’re working in conjunction with the Nordic Pearl, a Canadian vessel, and they’ll be fishing on the transects for the next couple days. That means we’ll be dropping vertical nets and doing some zooplankton studies. I’m not exactly sure what that will entail, but I’m excited to learn about it! So far the only zooplankton I’ve seen is when I was observing my friend Tracie. She was looking at phytoplankton on some slides and warned me that sometimes zooplankton dart across the phytoplankton. Even though she warned me, it totally startled me to see this giant blob suddenly “run” by all the phytoplankton! Eeeeep! Hopefully I’ll get to learn a lot more about these creatures in the days coming up.

Christine Webb: August 18, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/18/2017

Latitude: 48.19 N

Longitude: 125.29 W

Wind Speed: 7.9 knots

Barometric Pressure: 1021.70 mBars

Air Temperature: 55.4 F

Weather Observations: Foggy

 

Science and Technology Log:

I am learning an unbelievable amount about marine biology! Today I will focus on hake because that is the main type of fish we are surveying on this voyage. Pacific hake are found in great abundance out here off the west coast of North America and Canada. Let me tell you a little bit about what we do.

The first thing we have to do before trawling for hake is find a good aggregation of them based on our acoustics. There is always a scientist in the acoustics lab watching the monitor outputs. The monitors show the acoustics from different frequencies: 18, 38, and 120 KHz. They can “see” when there are things between us and the ocean floor (see picture below). Based on the response of the acoustics to the objects in the water, the scientists make an educated guess about when we are over a hake aggregation. I’ve been learning a lot about how to read these monitors and how to see if we’re over rockfish, phytoplankton, or hake. I think it would be pretty cool to see something giant like a whale go underneath us, but that hasn’t happened. That’s probably for the best – I can’t imagine it’s super safe to have a whale under your ship.

IMG_20170816_090024430_BURST000_COVER_TOP

Acoustic data from the acoustics lab.

Once the acoustic scientists decide we’re over hake, they radio up to the bridge to tell them it’s time to go fishing. The fishermen start getting the nets ready, and the scientists (that’s me!) go up for marine mammal watch. We have to make sure there aren’t any whales or dolphins nearby that might get caught in our nets. I really like marine mammal watch. I get super excited to see whales and dolphins, even though I guess that’s kind of bad because we might have to postpone our trawl. Seeing mammals when we’re not fishing is the most exciting. Today we saw two orcas by the side of our boat – now THAT is cool!

IMG_20170817_103950017_HDR

Me on marine mammal watch

Once the net is fully deployed and well below the surface, the marine mammal watch ends. Then they fish through the sign they saw on the acoustics and bring the net up when they believe they caught an adequate sample. Then it’s time to process the trawl! What we want to see is a majority of hake, but that doesn’t always happen. We’ve had trawls with hundreds of hake, and we’ve had trawls with only seventeen. We sometimes catch a bunch of other stuff too, and we do different things with those creatures (I’ll save that for a different post).

Processing the trawl is pretty intensive. First we have to weigh all of them to get the mass of the entire trawl. Then we sex them to sort into male and female baskets. It’s tricky to tell the difference between males and females. We have to dissect them and find the gonads to be able to tell. Near as I can tell, the male gonads look like ramen noodles and the females look like peach jello. I think of it as, “I wonder what my husband is eating while I’m gone? Probably ramen noodles. Okay, ramen noodles means male.”

IMG_20170818_153044071

Getting ready to sort hake!

Once we have them all sorted, we take length measurements and start extracting the parts we need. The scientists are collecting and preserving the otoliths, gonads, stomachs, livers, and fin clips. We have a LOT of tubes of fish guts in our lab. I’m not entirely sure what scientists will be doing with all of this data, but perhaps I’ll interview our chief scientist about this and put it in a future post.

Personal Log:

Everyone I’ve met on this ship has been so friendly! One of my favorite things about it is that these people seem so passionate about whatever they’re doing. You should have seen my friend Hilarie’s face today when we pulled up a trawl full of pyrosomes (that’s what she studies). Tracie showed me some of the phytoplankton she’s studying, and it was like she was a little kid at Christmas. Personally I’ve never been super interested in phytoplankton, but now I am. She makes it sound like it’s the most exciting subject on earth, and looking at her slides makes me believe her.

IMG_20170817_081818382

Tracie studying phytoplankton

It’s not only the scientists who are passionate about their work. The chief steward, Larry, was so excited about his cauliflower soup today that he seemed personally offended when I didn’t take any. “Take some soup!” he said. “Seriously – it’s really good soup. You’re going to like it.” I took some just to be nice, but after one bite I said, “Larry, will this be out at dinner? Can this please be out at dinner? I LOVE IT.” It was seriously good. I need to learn how to make that.

Our chief scientist takes her job as chief very seriously too. She’s like the momma duck who takes care of all of us (thanks, Julia!). Also, she plans fun and goofy games every day where we can win prizes out of her “bag of goodies.” I haven’t won yet, but I hope I will before this is over. Today Hilarie won some awesome coral reef socks. I’m not sure how I’ve gotten this far in life without owning marine biology socks! It’s great to have Julia around because she makes time for all of us even though her own research is very absorbing and important. She’s a rock star.

IMG_20170818_181046070_HDR

Hilarie choosing her prize

Stay tuned for more info from Leg 4 – bye for now!

Christine Webb: Introducing Christine Webb and Pacific Hake Survey, August 8, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/8/2017

Current Location: Kalamazoo, Michigan (home sweet home…not yet on the cruise)

Latitude: 42.297 N

Longitude: 85.5872 W

Wind Speed: 11 mph

Barometric Pressure: 30.14 inHg

Air Temperature: 79 F

Weather Observations: Partly sunny

 

Science and Technology Log

Before I go any further, let me take this opportunity to thank NOAA and Teacher at Sea for such a wonderful opportunity! I can’t wait to learn all about life at sea and to have an up-close view of oceanographic fisheries research. On this cruise, we will be studying Pacific Hake. Because I have not personally had the chance to experience our research yet, let me show you this quote from the NOAA website regarding our project. Click HERE if you’d like to see the full description.

“Pacific whiting, or hake, is a prevalent fish species found off the West Coast of the United States and Canada. There are three stocks of Pacific whiting: a migratory coastal stock, ranging from southern Baja California to Queen Charlotte Sound; a central-south Puget Sound stock; and a Strait of Georgia stock. While the status of the latter stocks has declined considerably, the coastal stock remains large and is the most abundant commercial fish stock on the Pacific Coast.

Setting harvest levels of coastal Pacific whiting is accomplished through a bilateral agreement between the United States and Canada, known as the Pacific Whiting Treaty. Traditionally, domestic commercial fishermen harvested whiting with midwater trawl gear between May and September along northern California, Oregon, and Washington. The Makah Tribe also has an active fishery for whiting entirely within their usual and accustomed fishing grounds off the Olympic coast.”

We’re going to be studying the hake populations off the coast of the US Northwest. It appears I’ll get really used to seeing these!

Pacific-Whiting-Fish-Watch

Pacific Whiting, or Pacific Hake (photo from http://www.fishwatch.gov)

I’ll be aboard the Bell M. Shimada, which was built to do acoustic trawls along the west coast (exactly what we’re doing). It was commissioned in 2010 and is named after Bell Shimada, a fisheries specialist who is known for his study of tuna populations.

NOAA-Ship-Bell-M.-Shimada-underway_Photo-courtesy-NOAA

NOAA Ship Bell M. Shimada (photo credit: NOAA)

I’m excited to get started!

Personal Log

I’ll be honest – I’m a little nervous to be on this voyage with such experienced scientists! While I do love science, I do not teach it during the school year. I teach math and English. I always tell my students that “math and science are married,” and I try to do as many cross-curricular connections as possible. One of the things I’m excited about for this trip is to get pictures and recordings of the many ways math is used in our research. I can’t wait to integrate that into my units next year and take my math students on a “virtual voyage” with me. Putting math into practical contexts makes it a lot more fun.

When I’m not teaching, I spend a lot of time with my family. My family includes my husband, my awesome dogs, my evil cat, and, well, I guess I’ll include my husband’s best friend who’s been living with us on and off for the past year. He’s sort of in our family now. Living with two men and a bunch of animals feels a little like a sitcom at times, but I laugh a lot.

Here’s my husband, me, and one of our dogs:

familypic

My newfound favorite hobby is cycling. My husband and I did a bike trip across Ireland earlier this summer, so I spent quite a few months training up for that. It was an absolute blast, and I recommend it to everyone. You should do it!

irelandpic

The one thing that people ask me when they hear I’m going on this voyage is, “Do you get seasick?” My answer is always the same: “We’re about to find out.” I’ve never spent the night on a boat before, so sixteen in a row is going to be quite the experience. I’ve packed four different types of seasickness medications, so hopefully something works!

Did You Know?

Bell Shimada died in 1958 in a plane crash while on his way to conduct research in Mexico. At the time, it was Mexico’s deadliest aviation crash to date. Even though he only lived to be thirty-six, his legacy has stood the test of time.