Anna Levy: Fish Rules, July 17, 2017


NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

IMG_1191

Lazy sea gulls hitch a ride on our trawling gear

Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain

 

Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph

Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

IMG_1177

A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map

Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP

Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.

 

Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity

Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

IMG_1235

A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.

IMG_0045

Red snapper from one catch.

 

Hypoxia Watch

CTD

Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone

A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

summer-dead-zone.adapt.885.1

Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

IMG_0092

The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!

 

Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?

 

 

 

 

Anna Levy: What Tummies Tell Us, July 15, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 15, 2017

 

Weather Data from the Bridge

Scattered, mild storms continue, causing some delays in our fishing. However, they do lead to beautiful sunsets!

IMG_1087

Beautiful Gulf of Mexico sunset

Latitude: 29 18.790 N

Longitude: 84 52.358 W

 

Air temp: 28.7 C

Water temp: 29.7 C

Wind direction: light and variable

Wind speed: light and variable

Wave height: 0.3 meter

Sky: 80% cloud cover, no rain

 

Science and Technology Log

IMG_5442

TAS Anna Levy removes the stomach of a red snapper.

Data about the number and size of individual organisms can tell us a lot about the health of an overall population of a species. However, it doesn’t tell us much about the role that species plays in its community. If we want to understand that better, we need to know more about how it fits into its food web – what it eats and what eats it. If you were trying to collect information about what a fish eats, where would you look first? Its stomach!

So, after we measure certain species, we dissect them and remove their stomachs. We place each stomach in its own tiny bag, with a bar code that identifies which individual fish it belonged to. Back at a lab on land, scientists will carefully examine the contents of the stomachs to better understand what each species was eating.

IMG_1079

The bar codes that we use to label specimens.

 

factc_240

This map shows the native range of lionfish. Credit: http://oceanservice.noaa.gov/facts/lionfish-facts.html

For example, one of the fish currently under investigation in the Gulf of Mexico is the lionfish. This is an invasive species, which means that it is not native to the area. Its natural habitat is in parts of southern Pacific and Indian oceans, but it was first spotted in the Atlantic, off the coast of North Carolina, in 2002. Lionfish were most likely introduced to this area by humans, when they no longer wanted the fish as an aquarium pet. By 2010, its range had expanded to include the Gulf. And, with no natural predators in this area and rapid rates of reproduction, its numbers have increased exponentially.

Early dietary studies, which were focused on the lionfish in the Atlantic, show that the lionfish is a generalist. This means that, while it prefers to eat small reef fish, it is able to eat a wide variety of organisms including benthic invertebrates (like crabs) and other fish. This flexibility makes lionfish even more resilient and able to spread. These studies also found that lionfish stomachs were rarely empty, suggesting that they are highly successful predators, able to out-compete other top predators for food.

This has wildlife experts concerned about the impact lionfish will have on natural ecosystems. It is possible that lionfish will over-consume native species, causing native ecosystems to collapse. It is also possible that lionfish will out-compete and displace native, high level predators, like snapper and grouper. Scientists are working now to develop methods to try to manage this invasion.

Because ecosystems here are different from those in the Atlantic, scientists are now turning their attention to studying the lionfish in the Gulf of Mexico. The work that we did on the boat today should help them do just that!

To see the results of one such study, completed in 2014, see:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105852

For more information and photos about the lionfish, please see:

https://oceanservice.noaa.gov/education/stories/lionfish/lion02_invade.html

https://oceanservice.noaa.gov/facts/lionfish-facts.html

http://www.fisheries.noaa.gov/mediacenter/2015/05/21_05.html

 

Personal Log

Often times, we teachers struggle to convince our students that, while all of the modern technology we have is great, they also need to understand how to solve problems without relying on it. (Most of us have probably been on at least one side of the old, “no, you don’t need a calculator to multiply by 10!” argument at some point in life.)   Well, in the past couple of days, I’ve seen two great examples of this onboard the ship.

The first relates directly to our survey work. Our CTD, the equipment mentioned in last post, has two sensors that both detect how much dissolved oxygen is in the water. Having two instruments collecting the same information (sometimes called redundancy) is important, not only so that there is a back-up in case one breaks, but also so that we can tell if they are measuring accurately.

The two oxygen sensors have been reading differently – one was about 0.7 mg/L lower than the other. This is an indication that one needs to be calibrated – but which one? To find out, Alonzo Hamilton, one of the senior NOAA scientists, used a classical chemical analysis technique called titration.

IMG_1082

This is the titration equipment found in the chemical lab on board the ship.

In a chemical titration, one substance is slowly added to another, while the scientist watches for a chemical reaction to occur. If you know how the two substances react, you can determine how much of the second substance is present, based on how much of the first was added to make the reaction happen.

Based on the results of his titration, Alonzo was able to determine which of the oxygen sensors was reading accurately. So, it definitely goes to show that there are important applications for that classic high school chemistry!

IMG_1173

The binnacle that houses the ship’s magnetic compass.

The other example relates more to the ability to navigate the ship. NOAA Ship Oregon II is equipped with advanced electronic navigation software, Gyro compass, radar, and GPS systems. However, when I was exploring the top deck (flying bridge) of the ship, I came upon this strangely low-tech looking instrument. I asked ENS Chelsea Parrish, a NOAA Corps Officer and member of the wardroom, about it. She explained that it is called a “binnacle,” a safeguard that houses a magnetic compass! The magnetic compass is the same type of technology used by mariners back in the 1300’s. It is critical to have in case of a power outage or other disruption to the ship’s electronic navigation technology.

 

 

Did You Know?

While they typically live in cold waters, there is one pod of orca whales (aka killer whales) that resides, year-round, in the Gulf of Mexico. It’s rare to see them, but I’m keeping my eyes peeled!

Dolphins, on the other hand, seem to be everywhere out here. I’ve caught at least a glimpse of them every day so far. In fact, a group of them swam up to investigate our CTD today as it was being lowered into the water.

 

Questions to Consider:

Research: Some other famous invasive species in our oceans include the green crab (Carcinus maenas), killer algae (Caulerpa taxifolia), a jellyfish-like animal called a sea walnut (Mnemiopsis leidyi), a marine snail called rapa whelk (Rapana venosa), and the zebra mussel (Dreissena polymorpha). Where did each of these originate? How did they come to inhabit their invaded areas? What impact are they having?

Brainstorm: What measures could you imagine taking to manage some of these species?

Research: The specific type of titration used to determine the amount of dissolved oxygen in water is called the Winkler method. How does the Winkler method work?

 

 

 

Anna Levy: First Day of Fishing! July 12, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 12, 2017

 

Weather Data from the Bridge

We’re traveling through some mild rainstorms. Nothing extreme, but we do feel a little more side to side rocking motion in the boat (which makes me feel sleepy!)

IMG_5433

Mild rainstorms on the horizon

Latitude: 29 degrees, 56.2 minutes North

Longitude: 86 degrees, 20.6 minutes West

Air temp: 24.7 degrees Celsius

Water temp: 30.1 degrees Celsius

Wind direction: light and variable

Wind speed: light and variable

Wave height: 1 foot (about 0.3 meters)

Sky: overcast with light rain

 

Science and Technology Log

Today I completed my first shift on the science team and we surveyed 3 complete stations. At each station, we carried out a multi-step protocol (or procedure). Here are the steps:

IMG_1039

The Depth Contour Output graph displays data collected from one station.

Before we begin fishing, the ship conducts a transect (or cross-section) of the survey area, using multiple pieces of equipment to observe the ocean floor. This tells us if it is safe (for both ship operations and for fragile coral that may exist) to trawl here. If a coral reef or other large obstacle was present, we would see significant variation in the depth of the ocean floor. This “depth contour output” graph shows the data we collected at one station. How deep is the water at this station? Is it safe to trawl here?

IMG_1028

The CTD collects information about water chemistry

We also use a collection of instruments called a “CTD” to collect information about the chemistry of water itself at different depths. This information is called the water’s “profile.” For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

IMG_1025

Forel-Ule color scale

We also measure the water color using the Forel-Ule color scale by matching it to the samples shown in this photo. This gives scientists an indication of the amount of particulates, chlorophyll, and nutrients are in the water.

IMG_0033

Trawl Net being lowered into water

Once we determine it is safe to trawl, the ship returns to the starting location. We will trawl along the same path that we observed. Here’s the trawl net before it is lowered into the water. It will be pulled just along the bottom of the survey area, using tickler chains to agitate the ocean floor for benthic organisms for 30 minutes, and collecting whatever crosses its path!

IMG_1037

The catch is emptied into baskets

Once the trawl is finished, the deck crew uses a large crane to pull the trawl on board. We all help to empty the net and place everything into baskets. Most of what we catch are biological organisms, but small amounts of non-living material (like shells, dead coral, and even trash) come up as well.

IMG_1002

The Wet Lab

We then bring the baskets into the wet lab.

IMG_1046

Baskets are emptied into a long trough with a conveyor belt

We dump the baskets into a long metal trough that has a conveyor belt at the bottom.

IMG_1014

The catch is sorted into baskets by species

Next we sort the catch. Each species gets its own basket and we count the number of individuals for each species.

IMG_1032

Identifying organisms

Then, it’s time for the tough part (for me at least) – every organism has to be identified by its scientific name. That’s a lot of Latin! Fortunately, Andre and the senior scientists are very patient and happy to help those of us who are new. It’s amazing how many species these experienced scientists recognize off the top of their heads.

IMG_1030

Field Guides

We also have many field guides, which are books containing photos and descriptions of species, to help us.

IMG_1017

For each species, we record the total number of individuals and total mass

We are interested in how much of each species are present, so we record both the total number of individuals and total mass of each species.

IMG_1059

TAS Anna Levy measures the length of a flatfish using the Limnoterra Board

We also measure the length and mass of a sample of individuals. A handy device called a Limnoterra Electronic Measuring Board makes this process easy.  We place the mouth of the fish on one end of this board and then touch its tail fin with a pen-like magnetic wand. The board then automatically sends the fish’s length to the computer to be recorded.  We use an electronic balance that is also connected to the computer to measure and record mass.

IMG_1008

A computer screen displays FSCS software

All of the information is recorded in a database, using software called FSCS (pronounced “fiscus”).

Many of the specimens we collect are saved for use in further research on land.   Scientists at NOAA and other research institutions can request that we “bag and tag” species that they want. Those samples are then frozen and given to the scientists when we return to shore.

Any organisms or other material that remains is returned to the sea, where it can be eaten or continue its natural cycle through the ecosystem. The conveyor belt, conveniently, travels to a chute that empties back into the ocean. Now all that’s left is to clean the lab and wait for the process to begin again at the next station!

Our goal is to complete this process 48 times, at the 48 remaining stations, while at sea. 3 down, 45 to go!

Personal Log

IMG_1048

Sometimes the work is high-paced…

This work has real highs and lows for me, personally. There are dramatic, hold your breath, moments like when equipment is lifted off the deck with cranes and lowered into the water. There is the excitement of anticipating what data or species we will find. My favorite moment is when we dump the buckets and all of the different species become visible. I’m amazed at the diversity and beauty of organisms that we continue to see. It reminds me of all of the stereotypical “under the sea” images you might see in a Disney movie.

The more challenging part is the pace of the work. Sometimes there are many different things going on, so it’s easy to keep busy and focus on learning new things, so time passes quickly. Other times, though, things get repetitive. For example, once we start entering all of the data about the individual fish, one person calls out the length and mass of a fish, while the other enters it into the computer – over and over until we’ve worked through all of the fish.

IMG_1050

… but sometimes the work even stops altogether, especially when whether interferes.

Sometimes, the work even stops altogether, especially when the weather interferes. There have been mild rainstorms coming and going continually. It is not safe to have people on deck to deploy the CTD and trawling equipment when there is lightning in the area, so there is nothing for the science team to do but wait during these times.

Because the pace of the work is constantly changing, it’s difficult to get into a groove, so I found myself getting really tired at the end of the shift. However, an important part of collecting data out in the field is being flexible and adapting to the surroundings. There is a lot to accomplish in a limited amount of time so I keep reminding myself to focus on the work and do my best to contribute!

Did You Know?

When working at sea, scientists must use special balances that are able to compensate for the movement of the ship in order to get accurate measurements of mass.

To ensure that we are accurately identifying species, we save 1 individual from each species caught at a randomly selected station. We will freeze those individuals and take them back to NOAA’s lab in Pascagoula, where other scientists will confirm that we identified the species correctly!

Questions to Consider:

Review: Look at the “depth contour output” graph above: How deep is the water at this station? Is it safe to trawl here?

Research: What does “CTD” stand for?

Research: For fisheries studies, we are most interested in the amount of dissolved oxygen and the temperature at different depths. Why might this information be relevant for understanding the health of fish populations?

Reflect: Why might scientists decide to use three different pieces of equipment to collect the same data about the ocean floor? And, why might they have several different scientists independently identify the species name of the same individuals?

Anna Levy, Getting Underway! July 11, 2017

NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10 – 20, 2017

 

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 11, 2017

 

Weather Data from the Bridge

The weather and waves have been pretty calm as we head down the Pascagoula River out to the Gulf of Mexico.

 

Latitude: 30.37 degrees North

IMG_0998

Today’s sky!

Longitude: 88.54 degrees West

Air temp: 30.0 degrees Celsius

Wind direction: light and variable

Wind speed: light and variable

Wave height: 1 foot (about 0.3 meters)

Sky: clear

 

Science and Technology Log

NOAA scientists and staff waved from the dock as we got underway this afternoon!

IMG_0992edit

NOAA scientists and staff see us off.

While we motored out of port in Pasgacoula, Mississippi, Andre DeBose, the chief scientist met with the science team to give us more details about our mission. We will be visiting the 48 remaining survey stations, all of which are in the eastern Gulf, off the west coast of Florida. The survey protocol is a little different in this area than it was in the western Gulf. Each station will take longer because, before we can begin trawling, we will use several different pieces of equipment to observe the ocean floor to avoid disrupting the sensitive coral reefs which are more widely spread in this area. So, we will not cover as much distance as other legs of the survey have.

In the meantime, we have 12 hours of “steaming,” or traveling, before we reach our first sampling location. There’s not much for us on the science team to do during this time, so I’ve been trying to get to know others on my team. Besides Andre, there are three other senior scientists aboard from NOAA. The rest of the science team is composed of volunteers, most of who are graduate students (including one from Australia and another from Brazil.) Some of them are collecting samples for their own projects and I’m looking forward to learning more about the research that each of them conducts.

IMG_1001

The ship’s crew

Also on board are 1 Civilian Master and 4 NOAA corps officers who navigate and command the ship, 5 engineers who keep the engines and ship running smoothly, 6 experienced deckhands / fishermen who operate all of the fishing gear and equipment on deck (like the trawl we will be using), 2 stewards who cook all meals and help to make everyone on board comfortable, and 1 electronic technician to make sure scientific equipment and ship electronics are in working order.

I’m struck by the way in which all of these individuals, and their diverse skill sets, come together to make this work happen. There were so many details to consider to bring this group together – we each had travel arrangements, medical and security clearances, berthing (rooming) assignments, shift schedules, emergency roles, safety trainings, and more to consider. Each state we will be passing through had to grant permission to work in their waters and all laws restricting fishing and protecting endangered species had to be followed. When I think about what it’s like to be a scientist, I usually imagine a person spending a lot of time thinking about the science involved in project itself, but a huge part of the work of any scientist is logistics – working to bring together all of the right people and materials are in the right place at the right time!

 

Personal Log

I arrived Monday evening and spent last night on the boat. It was nice to have the time to get settled and look around before most of the rest of the crew and science team arrived today. I was told that one or two crew members were aboard, but I did not bump into them, so it felt a little strange to be there mostly alone. I took my motion sickness medicine and then passed the time reading and calling home to talk to my family. My room and bunk are small, so I was a little worried that things might feel claustrophobic, but the time was surprisingly peaceful. It reminded me of being in a tent while camping.

IMG_0021

The stateroom my roommate and I share.

In fact, I’m amazed at how homey the whole ship feels. There are three levels (decks) of inside living space, most of which is berthing (crew rooms, bathrooms, showers, etc.). There is even a set of full size washing and drying machines. The inside space also includes a galley (kitchen/dining area) that seats 12 and a lounge which seats about 8. The lounge is a nice area – it contains a large TV and a binder of about 800 movies (including movies currently in theatres, courtesy of the US Navy!). There is also 1 main level of outside work space, plus a flying bridge (an outdoor area above the bridge) that is the highest deck on the ship. There is exercise equipment scattered in nooks throughout the ship. It’s amazing how efficiently space is used!

IMG_0019

The ship’s lounge.

Everyone is free to move about the ship. The only restrictions are that non-essential persons cannot be on the bridge during busy times or weather and cannot go down to the engine room. However, even with all the freedom, there is always someone sleeping, and most of the outside areas are jam-packed with scientific and fishing equipment, and it is very easy to unintentionally disturb or get in the way of others.  We all have to be constantly aware to keep ourselves safe and be considerate of the people around us. Fortunately, everybody I’ve met is so friendly and thoughtful – there’s definitely a feeling that we’re all on the same team.

The science team and some crew on the ship work either the day shift (from noon until midnight) or the night shift (from midnight to noon). I lucked out to be on day shift, so I won’t need to alter my sleeping schedule drastically.

The tight space and 24 hour schedule does make it a

IMG_0017edit

The ship operates on military time.

bit difficult to know what to do with oneself during down time, especially since your roommate is typically sleeping while you’re awake. I’m finding that I really enjoy standing outside, along the side of the ship and looking out at the open water, or holing up in a corner of the lounge with my computer or book. Once I start my first shift, I’m sure I’ll be glad to have the time just to rest. There aren’t too many opportunities for socializing as everyone is either working or sleeping most of the time, but everyone seems to laugh and joke around when they are able.

I’m feeling great (no seasickness so far!) and am looking forward to getting into a daily routine. I just ate my first meal – a delicious dinner of fish, mashed potatoes, steamed broccoli, and peach cobbler. There is also a salad bar with each meal and snacks and ice cream available 24/7. (We will definitely not go hungry.)

Tomorrow, I’ll start my first shift and should see some fish!

 

This slideshow requires JavaScript.

Did You Know?

It’s amazing how self-sufficient and self-contained Oregon II is. For example:

The freshwater used aboard for drinking, showering, etc. is drawn directly from the ocean. The saltwater is filtered with equipment using a process called reverse osmosis, where high pressure separates particles resulting in freshwater.

Several of the fishing crew and officers are also trained MPIC’s (medical person in charge). They are medically trained to respond and provide emergency care. In the event of a more serious illness or injury, they are able to contact doctors on land and implement their instructions.

All sewage on board is broken down by bacteria. Once processed through a marine sanitation device (MSD), this treated water is safer for the environment. Following the appropriate maritime regulations, it can then be released into the ocean.

 

Questions to Consider:

Reflect: Scientific fieldwork, even work on land, often requires travel and adapting to unusual circumstances. How would you handle living and working in unusual, sometimes extreme, conditions?

 

Anna Levy: Preparing to Embark! July 7, 2017

NOAA Teacher at Sea

Anna Levy

Soon to be Aboard the Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 7, 2016

 

Weather Data

I’m currently at home in Broomfield, Colorado (a suburb of Denver and Boulder). It’s a typical, hot and dry summer day at 27 degrees C (81 degrees F) at 10:30am. I’m about 1,400 miles away from Pascagoula, Mississippi, where I will be joining the team on our ship, The Oregon II, in just a few days!

 

1 - Oregon II

The Oregon II Photo Credit: NOAA

Latitude: 39.9919 N
Longitude: 105.266 W
Elevation: 1624 meters (5,328 feet) above sea level
Air temp: 27 C (81 F)
Water temp: N/A
Wind direction: From Northeast to Southwest
Wind speed: 7 knots (8 mph)
Wave height: N/A
Sky: Clear

 

Science and Technology Log

Once on board, I will be assisting with the third and final leg of the SEAMAP Summer Groundfish Survey.

SEAMAP stands for the Southeast Area Monitoring and Assessment Program. Since this program began in 1981, scientists from NOAA and other organizations have been collecting data about the number, types, and health of fish and other marine organisms, as well as the characteristics of the water in of their ocean homes throughout the Gulf of Mexico, Caribbean and parts of the Atlantic Ocean. This information helps us not only to understand how these ecosystems are changing over time, but also to make informed decisions about how we humans are using valuable ocean resources.

As you can imagine, the ocean is a large and complex environment, so collecting all of that information is a big task! To make it more manageable, SEAMAP is broken down into many smaller projects, each of which focuses on specific regions or aspects of the area. The Groundfish Survey focuses on monitoring fish and other organisms that live near the ocean floor. (This includes some species that we humans catch and eat, like shrimp, halibut, cod, and flounder.)

The Oregon II is equipped with a variety of scientific and fishing equipment.   Because our mission is focused on groundfish, I expect that we will be using a lot of the Oregon II’s fishing gear, especially its trawls. A trawl is a type of weighted net that can be pulled along the floor of the ocean. (Check out this video of how a bottom trawl works.)

After we bring our catch aboard, I imagine that most of my time will be spent helping to identify, describe, count, and catalogue all of the fish and other marine species that we encounter. I can’t wait to get on board, see some new species, and learn more about the methods we will use to collect all of this data in a scientifically rigorous way.

1 - MB Measure Fish

Teacher at Sea, Melissa Barker, measures a fish on a recent groundfish surveyPhoto Credit: Melissa Barker

I will be the third Teacher at Sea to work on the SEAMAP Summer Goundfish Survey this year, so I have been lucky to learn a lot from the two teachers who have already been to sea. Check out their blogs to see how the project is going so far:

  • Chris Murdock from Iowa City, Iowa was on the first leg (June 7 to 20, 2017).
  • Melissa Barker from Lafayette, Colorado was on the second leg (June 22 to July 6, 2017).

 

 

 

Personal Log

1 - PRA

The school where I teach in Broomfield, Colorado.  Photo Credit: Prospect Ridge Academy

I am honored to have been accepted into the Teacher at Sea program. It was my love of learning that led me to a career in teaching in the first place, so I really appreciate the opportunity immerse myself in a new scientific adventure, and I can’t wait to share the experience with my 9th grade biology students when I get home. I hope that they will be as inspired as I am by the real work that scientists do. There is so much still to learn about the world around us, especially in new frontiers like our oceans – the skills and concepts we learn in class are only the beginning!

1 - In Class

In class with two of my former students.  Photo Credit: Prospect Ridge Academy

Like most of my students, I have always lived in landlocked states. I’ve visited a few beaches, collected some shells, and splashed in the waves, but have very little experience with the ocean beyond that. I’ve definitely never been on a ship like the Oregon II before, so I’m curious to see what challenges await aboard. I think the most difficult part will be adjusting to the sounds, smells and motion of a fisheries ship. I’m expecting tight quarters, loud engines and fishing equipment, stinky fish, and probably some seasickness. We’ll see if that turns out to be true…

Back home in Colorado, I enjoy hiking, biking, gardening, cooking and exploring the amazing outdoors with my wonderful husband, Mike, and our hilarious two-year old daughter, Evie.

1 - Family Hike

My family out for a hike in the beautiful Colorado mountains

1 - Family Bday

Me, My husband, Mike, and our daughter, Evie

 

 

 

 

 

 

 

Did You Know?

The SEAMAP program has been going on for over 35 years and makes all of the data it collects freely available to other scientists, government agencies, the fishing industry, and the general public.

The Teacher at Sea program was established in 1990 and has sent over 700 teachers to sea!

 

Questions to Consider:

Research: How has all of the data collected over the years through SEAMAP been used?

Reflect: What might have happened if this data was not available?

Predict: What types of things do you think we will do while on the Oregon II to make sure that our data is collected in a “scientifically rigorous” way?