Lauren Wilmoth: Introductions, October 7, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island, Alaska
Date: Tuesday, October 7, 2014

Weather Data from the Bridge
Air Temperature: 0.77 °C
Wind Speed: 12 knots
Latitude: 60°07.098′ N
Longitude: 149°25.711′ W

Science and Technology Log

Our departure from Seward was originally scheduled for today, but the ship is having some repairs done, so our expected departure is now Wednesday or Thursday.  In case you were wondering, this doesn’t delay my return date.  Regardless of the fact that we are not underway, there is still so much to learn and do.

Yesterday, I met with Christie, one of the survey techs, and learned all about the Rainier’s mission.   The main mission of the ship is to update nautical charts.  Up-to-date charts are crucial for safe navigation.  The amount of data collected by Rainier if vast, so although the main mission of the Rainier is updating nautical charts, the data are also sent to other organizations who use the data for a wide variety of purposes.  The data have been used for marine life habitat mapping, sediment distribution, and sea level rise/climate change modeling among other things.  In addition to all of that, Rainier and her crew sometimes find shipwrecks.  In fact, Rainier and her crew have found 5 shipwrecks this season!


This is what a shipwreck looks like to the sonar. This is a picture of a shipwreck found by another NOAA hydrographic ship. Photo courtesy of NOAA.


Simplified, hydrographic research involves sending multiple sonar (sound) beams to the ocean floor and recording how long it takes for the sound to come back.  You can use a simple formula of distance=velocity/time and divide that by two because the sound has to go to the floor and back to get an idea how deep the ocean is at a particular spot.  This technique would be fine by itself if the water level weren’t constantly fluctuating due to tides, high or low pressure weather systems, as well as, the tilt of the ship on the waves.  Also, the sound travels at different speeds according to the water’s temperature, conductivity and depth.  Because of this, the data must be corrected for all of these factors.  Only with data from all of these aspects can we start to map the ocean floor.  I have attached some pictures of what data would look like before and after correction for tides.


This shows the advantages of using multibeam sonar to complete surveys. Photo courtesy of NOAA.

Hydrographic data with correction for tides.  Photo courtesy of Christie.

Hydrographic data with correction for tides. Photo courtesy of Christie.

Hydrographic data without correction for tides.  Photo courtesy of Christie

Hydrographic data without correction for tides. Photo courtesy of Christie

I was also given a tour of the engine room yesterday.  Thanks, William.  He explained to me how the ship was like its own city.  In this city, there is a gym, the mess (where you eat), waste water treatment, a potable (drinkable) water production machine, and two engines that are the same type of engines as train engines.  Many of my students were interested in what happens to our waste when we are aboard the ship.  Does it just get dumped into the ocean?  The answer is no.  Thank goodness!  The waste water is exposed to bacteria that break down the waste  Then, salt water is used to produce chlorine that further sterilizes the waste.  After those two steps, the waste water can be dumped.  The drinking water is created by evaporating the water (but not the salt) from salt water.  The heat for this process is heat produced by the engine.  William also explained that there are two of everything, so if something fails, we’ll still be alright.

Me working out at the Rainier gym.

Rainier’s gym

Rainier's back-up generator.

Rainier’s back-up generator 

Personal Log

Sunday, I drove from Anchorage to Seward.  The drive was so beautiful!  At first, I was surrounded by huge mountains that were vibrant yellow from the trees whose leaves were turning.  Then, there was snow!  It was actually perfect, because the temperature was at just the right point where the snow was melted on the road, but it had blanketed the trees.  Alaska is as beautiful as all of the pictures you see.  The drive should have been about 2.5 hours, but it took me 3.5 hours, because behind each turn the view was better than the previous turn, so I had to stop and take pictures.  I took over 100 pictures on that drive.  Once I arrived in Seward, I was given my first tour of the ship and then I had some time to explore Seward.

TeacheratSea 074

One of the views on my drive from Anchorage to Seward


Trying on my survival (gumby) suit

Trying on my survival (gumby) suit

Yesterday (the first official day on the job), I learned so much.  Getting used to the terminology is the hardest part.  There are acronyms from everything!  Immersion is the best way to learn a foreign language, and I have been immersed in the NOAA (National Oceanic and Atmospheric Administration) language.  There is the CO (Commanding Officer), XO (Executive Officer), FOO (Field Operations Officer), TAS (Teacher at Sea or Me!), POD (Plan of the Day) and that is just the tip of the iceberg.  I also had to learn all of the safety procedures.  This involved me getting into my bright red survival suit and learning how to release a lifeboat.

Today, I am going on a dive launch.  The purpose of this launch is to help some of the divers get more experience in the cold Alaskan waters.  I will get to ride on one of the smaller boats and watch as the Junior Officers scuba dive.

Did You Know? 

NOAA Corps is one of the 7 branches of the U.S. uniformed services along with the Army, Navy, Coast Guard, Marine Corps, Air Force, and the Public Health Service Commissioned Corps (PHSCC).

Janelle Harrier-Wilson: Toro’s Tour and the Process of Fishing, October 2, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: October 2, 2014

Weather Data from the Bridge
Lat: 41° 16.5′ N  Lon: 071° 06.3′ W
Present Weather: Cloudy
Visibility: 6-8 nm
Wind:  020 at 28 knts
Sea Level Pressure: 1017.4 mb
Sea Wave Height:  2-3 ft
Temperature Sea Water: 18.4  C
Temperature Air:  14 C

Science and Technology Log

The Henry Bigelow before we left port last week.

The Henry Bigelow before we left port last week.

Have you been wondering how we fish? I know I have shared a lot about sorting the catch, measuring the length and weight of the fish, and taking other data from the fish, but I haven’t shared a lot of details about how we fish. It’s a pretty cool process that involves a lot of science and engineering to get to a place where we have fish coming down the belt in order for us to sort. Let’s take a look at what happens.

  1. Before the season begins, points are randomly predetermined where we will fish. Each of these points is called a station. The captain and the chief scientist work together to plan out which stations will be visited on each leg of the trip and in what order. We are currently on Leg II of the Autumn Bottom Trawl Survey. There are usually four legs each year.
  2. Once we arrive on station, the ship’s officer scouts for the best place to release the nets. The nets need a relatively flat bottom of the ocean floor with no obstacles like rocks that the net could get caught up on. How does the scouting take place? The ship is equipped with both single beam and mutli-beam sonar. The multi-beam sonar is used to create a three-dimensional map of the ocean floor. This map is used to find the best place for us to trawl.
  3. Next, we take data about that particular spot of the ocean. We either send down the CTD, which measures conductivity, temperature, and density of the water, or we do a bongo. The bongo is a set of nets that streams off the ship to collect plankton from the area of the ocean on station. The survey techs are in charge of conducting these tests and collecting the data from them. Before the cruise began, the stations that would have CTDs or bongos were predetermined.
  4. Once the CTD or bongo test has been conducted, we are ready to set out the nets. The nets are set out by the deck crew and involve a complex series of machinery and computers. Our chief scientist, Jakub Kircun shares this about the system and sensors: “Autotrawl System and Scanmar Sensors: Autotrawl is specifically designed to keep the tensions between port and starboard towing wires equal, therefore keeping the net from fishing crooked. Autotrawl will also be able to assist with hangs as it will automatically release wire during a tension spike. The (Scanmar) sensors on the net are used to check the geometry of the net, however that data is not directly tied with Autotrawl. Instead we monitor the sensors to check on a variety of net mensuration parameters, such as wing-spread, door-spread, headrope-height, headrope-depth, bottom-contact, and water-speed-through-trawl. All those parameters are analyzed by a computer program after each tow called TOGA (Tow Operation Gear Acquisition). If all the parameters are within the per-determined tolerances the tow is considered a representative tow. However if the values are outside of these tolerances then the tow would fail the validation and would need to be retowed.”
  5. Once the net is in the water, we  begin streaming. While we are streaming, we are moving slowly in the water, dragging the net behind us. We stream for 20 minutes. We can check the progress of the trawl by watching the sensor readouts. There are sensors in the net that send back live data to the ship.
  6. After we have streamed for 20 minutes, we then haul back the nets. This is the reverse process of when we set the nets out. The net slowly comes back in and begins to be wrapped up and stored. The deck crew puts ropes around the part of the net where the fish are and attaches the net to a crane. The crane moves the net over to the checker.
  7. Once the net is over the checker, the net is opened and the fish are dropped into the checker.
  8. From that point, the watch chief looks through the checker and decides what we will run. This means we don’t collect these things off the conveyor belt instead letting them collect at the end. This is done for the things we caught in large quantities.
  9. From that point, the fish from the checker are loaded onto the conveyor belt and up into the wet lab for us to sort through and process. While we are sorting and processing the fish, the ship is on its way to the next station. The distance between stations varies. We’ve had some that were just over a mile away and others that have been 20 or more miles away. Yesterday, we had a long steam (travel) between stations because the next station was 52 miles away. It took us several hours to steam to that station.

Personal Log

Are you wondering what it’s like to live on a ship? It’s actually pretty cool. I mentioned before that we are on 12-hour watches. While we are on watch, we pack up what we will need for the day in backpacks or other bags. Why? Well, we share rooms with people on the night watch. My stateroom has four bunks. Two of us are on day watch and two of us are on night watch. While the day watch is working, the night watch is sleeping. We don’t want to disturb them so they can get good “night” of rest, so we do not go back to the state room while the night watch is off duty. When we are off duty, they do not come back to the room, either. While we are on watch, we can be really busy sorting and working up a catch. However, depending on how many times we fish during a watch, we may have some free time as well. We have some down time while we are steaming to the next station, during the CTD and bongo tests, and while we are streaming. We jump to work once we start hauling back the nets. We had one day where we were really busy because we visited seven stations during our watch. Sometimes, we have more free time between steams. During that time we can read, have a snack, work on blog posts like I am doing, or sometimes watch a movie. We also have time to eat our meals on watch.

The galley cooks up three meals a day for us. I have only made it in time for breakfast the first day before we started our 12-hour watches. We eat lunch before our watch starts and we eat dinner during our watch. The food is amazing. Dennis Carey is our head steward and chief chef, and he prepares awesome meals for us with his assistant, Luke. However, the galley is open all day, even when a meal is not being served. There are always snacks available like goldfish crackers, Chex mix, cereal, fresh fruit, and ice cream. Plus, there is bread, peanut butter, and jelly to make sandwiches. Sometimes there are pastries, cookies, or other desserts available, too. As you can see, we don’t have to worry about going hungry on the Henry Bigelow!

There is a lounge on board with six recliners and a television set. We can watch satellite TV and movies while we are here. There is also a television in the mess deck. It’s a tradition to watch The Price is Right during lunch time, for instance! We also have an exercise room that has weights, a treadmill, and a bicycle. I haven’t used the gym, but I have worked out with some of the other scientists on board. We can also do laundry, which is pretty important. We pack lightly since we don’t have a lot of room in our staterooms. As you can imagine, our clothes get a little smelly from working with fish all day, so it is nice to be able to do our laundry on board!

Careers at Sea

Ensign Estella Gomez shows volunteer Eric Smith how he plots the ship's course on the chart.

Ensign Estela Gomez shows volunteer Eric Smith how he plots the ship’s course on the chart.

Have you ever considered a career as a commissioned officer? Did you know that the NOAA Commissioned Officer Corps is one of the seven branches of the U.S. uniformed services? We have several officers on board including our commanding officer (the ship’s captain) and the executive officer. I had a chance to visit the bridge the other day, and Ensign Erick Estela Gomez shared what it is like to be part of NOAA’s Commissioned Officer Corps. Most of the officers have a background in science or math that aligns with NOAA’s scientific vision and purpose. To be part of the Corps, you have to have a science or math degree and apply to the program. If you are accepted, you go to training with the Coast Guard. Usually, there are 60 people as part of each training class, 40 from the Coast Guard and 20 from NOAA. The training is like boot camp and includes learning about how to be an officer as well as the science aspects of NOAA. One interesting thing Ensign Estela Gomez shared is that only about 10% of Coast Guard officers actually go out to sea. If you want to be out at sea and be a part of science, the NOAA Commissioned Officer Corp might be for you. Officers move through the ranks starting at ensign. Once an officer has passed training and certification, they can become an Officer On Deck (OOD), which means they can be on watch running the ship on their own.

Lt. Kuzirian takes the oath to accept his new rank as Lt. Commander.

Lt. Kuzirian takes the oath to accept his new rank as Lt. Commander.

As an officer on the bridge, there is a lot to do in terms of monitoring the different gauges and screens. There are radar monitors, engine and generator monitors, ship’s location, and mulitbeam sonar screens just to name a few. Also, the officer on deck has to watch the horizon for other ships and fishing gear in the water. Although there are computer systems to monitor the ship’s track and location, the ship’s location is still plotted on a paper chart. This is a backup in case of computer errors or other problems.

Yesterday, we had the opportunity to watch one of the officers, Lt. Stephen Kuzirian be promoted to Lt. Commander. This does not happen on board ship every day, so it was really cool to be a part of this ceremony. Lt. Commander Kuzirian has a background in oceanography. He currently works in Washington, D.C., but he joined us on this trip for a chance to be at sea and to assist the Henry Bigelow.

Toro’s Tour

Toro won the votes to make the trip on the Henry Bigelow. He thought you might like a tour of the some of the areas on board the ship. As he was working up the tour, the Captain was worried that Toro was a stowaway since he has not fulfilled any science duties while aboard ship!

Did You Know?

The Atlantic Torpedo is an electric ray. It is the largest growing electric ray, and can deliver a shock up to 220 volts!

Atlantic Torpedo Ray

Atlantic Torpedo Ray


Lauren Wilmoth: Get Ready! October 2, 2014

NOAA Teacher at Sea
Lauren Wilmoth
Aboard NOAA Ship Rainier
October 4 – 17, 2014

Mission: Hydrographic Survey
Geographical area of cruise: Kodiak Island
Date: October 2, 2014


My name is Lauren Wilmoth, and I have been teaching biology at Jefferson County High School in Dandridge, TN for 3 years.  Prior to teaching in Jefferson County, I conducted research on pipevine swallowtail (Battus philenor) caterpillars in East Tennessee as a part of my master’s thesis at the University of Tennessee Knoxville.  My research involved a lot of hiking in the woods and catching butterflies with my net.  Who wouldn’t enjoy that?  I learned a lot about how science works while obtaining my master’s degree, and now, as a teacher, I get to share my fascination with nature and my expertise with my students!

Portuguese Man-of-War

A Portuguese Man-of-War (Physalia physalis) like the one I saw as a child. Photo courtesy of NOAA.

I grew up in Alabama, and like many families in Alabama, mine spent many spring breaks at the beach.  We camped every year at state parks on the Florida panhandle.  It was on these trips that I began to appreciate the ocean as a fun and interesting place.  We enjoyed the dune trails and the peculiar dune ecosystems.  We even went deep sea fishing one time, and I didn’t get seasick!  (Hopefully, I will be able to say the same after this trip).  I distinctly remember one time when a Portuguese Man-of-War jellyfish (Physalia physalis) washed ashore.  It was the highlight of my trip to see this strange creature I had never even heard of! Although I grew up enjoying the ocean and it’s bounty (crab and shrimp are my favorites), I didn’t start to understand its importance until I became a biology major in college (oddly enough in the landlocked state of Arkansas).  No matter where you live, you are connected to the ocean through its role in our climate, our water cycle, and as the main source of oxygen on our planet among other things.  The ocean intrigues me with its mystery, and that is the reason I applied to be a part of this NOAA (National Oceanic and Atmospheric Administration) Teacher at Sea Program. I am thrilled about this once in a lifetime opportunity to help with hydrographic research off of the coast of Alaska this fall.  In fact, I learned the news of which cruise I would be on while at Dublin Airport after an amazing vacation with my husband in Ireland.  I checked my e-mail and let out an audible shrill of excitement.


My mother-in-law and me at the Cliffs of Moher in Ireland earlier this summer.

I have never been to Alaska, and I know very little about hydrographic research.  This cruise excites me, because I will have the opportunity to learn something complete new, and after the cruise, I will be able to share what I learned with my students and colleagues! In case you were wondering, hydrographic research involves mapping the ocean floor which is particularly important for safe navigation in these waters.  Also, hydrographic research can involve determining the composition of the seafloor.  If you want to learn more about hydrographic surveys, click on the link.  Of course, you can also learn more about our hydrographic survey by continuing to read my blog during my trip. To complete this hydrographic research, I will be working with the NOAA team aboard the NOAA Ship Rainier.  It contains a lot of fancy equipment used to complete these surveys that I hope to gain a better understanding of on this trip.  This is a large ship.  It is 231 feet long and is equipped with a dining area and 8 smaller boats!  To give you some perspective on its size, it would reach from the end goal line on a football field to the 23rd yard line on the opposite side of the field!  To learn more about NOAA ship Rainier click the link.  Stay tuned to my blog to hear firsthand what life aboard NOAA Ship Rainier is like.

Rainier through an iceberg. Photo courtesy of NOAA.

Janelle Harrier-Wilson: Sunsets, Stars, and Analyzing Sea Life, September 29, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: September 29, 2014

Weather Data from the Bridge
Lat: 39° 34.6′ N  Lon: 072° 14.9′ W
Present Weather: cloudy
Visibility:  7-9 nm
Wind:  140 at  17 knts
Sea Level Pressure:  1010.9 mb
Sea Wave Height:  3-4 ft
Temperature Sea Water:  22.6 C
Temperature Air:  20.8 C

Science and Technology Log

Processing fish as the cutter

Processing fish as the cutter

We are continuing to trawl different areas of the Atlantic Ocean off the coast of the Southern New England area. I have graduated from recorder to cutter. This means that when we process the fish and other sea life that we catch, I get to cut fish open to examine them. I am working with Christine Kircun, and we trade off now almost every other tow taking turns to be the cutter and recorder. Christine has been an awesome teacher helping me learn how to properly cut into the fish, identify the sex and maturity of the fish, examine the contents of the fish’s stomach, and find the otoliths. Otoliths are small hard parts of a fish’s inner ear. They are found in cavities near the fish’s brain. The otoliths are collected and sent back to the lab to be analyzed. As the fish grows, the otolith gets different colored (clearer and white) growth rings  on it similar to a tree. Counting these can tell the age of the fish. Some fish have otoliths that are really easy to find and remove. Other types of fish are more difficult to find and remove, like windowpane flounder. For more information about how otoliths are used for age and growth, click here.

In my last post, I mentioned that there are left and right-eyed flounder. Summer flounder are left eyed, and winter flounder are right eyed. In a catch the other day, we had winter flounder. As we were working up the winter flounder, we discovered a left-eyed winter flounder! That was pretty cool to see since this is a more rare occurrence.

Winter flounder - a rare left-eyed winter flounder

Winter flounder – a rare left-eyed winter flounder

Winter flounder - a right eyed flounder

Winter flounder – a right eyed flounder

Before I left for my cruise, I received a CD with information on it including how to identify many of the common fish we catch at sea. I looked through that presentation several times, and I thought I was ready to identify the fish. However, I didn’t get really good at identifying fish until I saw them in person. For instance, there are several kinds of hake. So far, we have caught spotted hake, red hake, silver hake, and offshore hake. Each one looks slightly different, although the offshore and silver hake are the most similar. Red hake have a slight reddish appearance to their scales, and spotted hake have spots down their side. Now that I have seen each one in person, it is much easier to identify the different types of fish. Fish that seemed really similar in the presentation take on new meaning to you when you are holding them in your hand. It’s reminded me once again that when we are learning new things, the most important thing to do is dig in and try things out. You will learn so much more by doing things like experiments in chemistry and building things in engineering than you would by just reading about it or looking at pictures. I have also learned about the anatomy of fish by watching Christine first do the processing and now doing it myself. It’s really cool to see the insides of the fish and the different stages of growth and development. It’s also really cool to push the contents of the fish’s stomach out onto the board to examine what they have eaten!

I thought you might like to see a short video of the process of sorting the fish off the conveyor belt. You can see the fish coming up the conveyor belt from the checker and pouring onto the conveyor belt in the wet lab for sorting.

Careers at Sea

I have learned something really interesting about working at sea. The scientists onboard this cruise do not spend their entire time out at sea. In fact, most of the scientists go out once or twice in the spring and once or twice in the fall. Just like we are doing an autumn bottom trawl survey, there is also a spring bottom trawl survey. During the rest of the time, they work at the NOAA Northeast Fisheries Lab in Woods Hole, MA. It seems like a really cool balance between doing science in the lab with a pretty normal daily routine most of the year but then having the chance to go out to sea a couple of times a year in order to do field work and be part of an adventure. I did not know that opportunities like this existed. If you love to do science but don’t want to spend all of your time in the lab, a career like this might be really interesting to you. Most of the scientists have degrees in marine science/biology, biology, or other related fields.

Personal Log

After just a few short days, I have settled in to my routine here on the Henry Bigelow. It’s an exciting life because you never know what’s going to come up on the next trawl or what other cool things you will see out at sea. Sometimes, we have been really close to the shore, and you can see the lights of the cities off in the distance. Now, we are offshore, but even out here you aren’t alone. There are ships passing by most of the time, and at night you can see the lights from the other ships off in the distance.

One of my favorite things to do is to head up to the flying bridge to watch the sunset. The past few nights have had beautiful sun sets, and we have had time to enjoy them in between sorting and working up the fish. The flying bridge is the highest part of the ship. It’s above the main bridge where the ship is controlled from. When it’s clear, you can see for miles in every direction. There is also a picnic bench up there, so it’s a great place to sit and read a book while waiting for the next trawl to come in.

After my watch finishes at midnight, I also like to head up to the flying bridge. It’s one of the darker places on the ship at night. As your eyes adjust to the night, the stars begin to appear before you. Out here, the sky kisses the sea, and the stars rise out of the inky black of the ocean. I watched the constellation Orion rise up out of the Atlantic. It was inspiring. There are so many stars. It’s not like the light polluted skies of the Atlanta area. Even with the ship’s lights, you can still make out the bands of the Milky Way. I also saw two meteors streak through the sky the other night.

Did You Know?

The goosefish is an angler fish that lives on the ocean floor on the continental shelf and slope. It uses its angler to attract prey. It has a huge mouth compared to its body. It’s also called poor man’s lobster because the meaty tail of the fish resembles the taste of lobster.



Goosefish mouth

Goosefish mouth

Challenge Yourself

Think you have what it takes to figure out the age of a fish using otoliths? Try this interactive, and share how you did in the comments.


Amy Orchard: Days 9-13 – Conch, NOAA Corps, Seining, & Mission Stats, September 27, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Conchs Surveys and Fish Seining
Geographical area of cruise: Marquesas Keys Wildlife Management Area
Date: September 22-26, 2014

Weather: September 25, 2014 17:00 hours
Latitude 24° 27 N
Longitude 82° 14 W
Broken clouds, Lightening, Funnel Clouds
Wind speed 7 knots.
Air Temperature: 28° Celsius (82.4° Fahrenheit)
Sea Water Temperature: 29.9° Celsius (85.8°Fahrenheit)


Typical Day

Today started as it has every other day – up at 5:15 am, a trip to the gym, 30 minutes of yoga under the stars on the “Steel Beach” on the top deck of the ship, a sunrise and a delicious breakfast by Lito & Bob.

Then science begins at 7:30 am and usually goes till 7:30 pm or later if I am writing, studying fish identification books or asking a million questions of the scientists!


Today I began with small boat trip to assist the conch scientists Bob and Einat (pronounced A KNOT)  Their surveys will be the same all week (in different locations)  They drop a weight tied to a rope with a bouy and dive flag on top.  They dive down the line and survey four transects, to the north, south, east then west.  Each transect is 30 meters by 1 meter.  They only count the Queen Conch within that defined area.  Then they come back up the line and move to the next site.  They have already made 270 dives this summer alone.  Einat told me they may dive up to 11 times a day!  I’m not sure Einat’s hair ever dries out.

measuring tool

This is the tool used to measure the lip (or the curled up front part of their shell) The largest slot would indicate a sexually mature adult, the middle; a young adult and the skinniest (TL stands for Thin Lip) for the youngest.

Einat on the transect line

Here you can see Einat as she glides along the measuring tape which marks the area of study. In her hand she holds a measuring caliper and her clipboard (which she can write on underwater!)

Einat measuring conch lip

Einat measuring a Queen Conch with her measuring tool.

NOAA Corps

While our coxswain ENS Conor Maginn and I waited for Bob and Einat, I asked lots of questions about the  As I have mentioned before, I am impressed with the character, quality and kindness of everyone on board.  I truly hope I am able adequately convey the experiences I have had to my Junior Docents and Earth Campers and perhaps inspire many of you to look into NOAA as a career option.  It’s very possible my career would have taken a different direction if I had known about the NOAA Corps earlier in my life.

The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States.  They are not trained for military action, but rather for positions of leadership and command in the operation of ships and aircraft which support scientific research.  Conor told me about his training which included leadership, 1st Aid and CPR, firefighting, navigation, seamanship and radar.   In addition to the 320 officers in the Corps, there are 12,000 civilian employees; some of these positions do not require an advanced college degree.

Seems like a wonderful agency to work for with great benefits such as seeing the world and supporting scientific data collection which leads to making the world a better place.



We had a stowaway today! It seemed really exhausted once it had finally caught up with the ship. Seems that a storm is blowing in, perhaps it got knocked off course. Can you identify what type of bird this is?



More on Conch

Einat was happy to have me out on the boat with them again.  She claims I am a lucky charm because the only time they have found conch on their surveys has been while I am aboard.  Perhaps I should become a conch whisperer.

really pink conch

I took this photo last week of a Queen Conch at Fort Jefferson. Bob was surprised how pink & purple it was. They get their color from the algae they eat.

Queen Conch have an average life span of 8-11 years, although some in the Bahamas have been aged up to 40 years old.  About the only way to age them is to date the corals which grow on their backs.  They are herbivores which graze mostly on red algae.  They are docile and Bob says “very sweet animals”.  Bob and Einat are surveying to collect more information about their population densities as they will not reproduce unless there are enough numbers in one location.  The Queen Conch is a candidate for the Endangered Species Act.  Harvesting of conch has been illegal in Florida and its adjoining waters since 1986.  This is a big deal because collecting conch for meat, fishing bait and their beautiful shells has been an important part of the Florida Keys since the early 19th century.

When all conditions are just right, a Queen Conch will lay 400,000 eggs at once, called an egg mass.  Only 1 in 8 million of these eggs will survive to adulthood.  Many efforts are being made to help their populations increase including raising for release into the wild.  Bob told me that they have even taught these captive-raised conch how to avoid predation so when they are released they can survive.

conch with egg mass

Bob and Einat were very excited to see Queen Conch laying egg masses. Understandably so since the eggs hatch 5 days after being laid, there is a very short time frame in which to see this in the wild.

I try to be as helpful on the small boats as I can be.  Here is a slide show of me working really hard to pull the weight dive flag back to the boat.


This slideshow requires JavaScript.


Receiver Data Retrieval

Today the divers retrieved acoustic receivers from the ocean floor which have been out for a year in order to bring the data top side for analysis.

The work the FWC has been doing in this area has been vital to providing the data necessary to show that these reserves act as connected highways essential to numerous species of fish and to justify the creation of these large ecological reserves which closed 150 square miles to commercial and private fishing.  Their data shows an increase in both the abundance and size of at least 4 species of fish in the protected areas where there was a decrease or no change at all in the non-protected areas in the same region.

It has been fulfilling to give a hand in collecting this critical data.



The small boat took us to the Marquesas Islands today for some seine netting.  The fish biologists were not sure what to find since they don’t have opportunities to get this far out.  They were especially pleased to see Lane Snapper since they rarely find them.  We also saw 17 other fish species.  These mangrove islands are crucial habitat for juvenile fish.  Many species will spend the beginning of their lives in the sea grass beds near the islands, seek refuge as they grow within the mangroves and then head out to deep waters to live their lives as large adults.

Best thing to happen today – I finally saw a sea turtle!  They surface only occasionally but then dive back down so quickly that it is really hard to get a photograph of them, therefore no photo to share, but it is certainly a wonderful memory I will keep with me forever.

Dominoes King

The game was on again at the end of the second week.  The science team lost its crown.  The Commanding Officer of our ship LCDR Jeff Shoup won the championship and thus the crown stays on the Nancy Foster – right where it is meant to be.

Dominoes King

Commanding Officer of our ship LCDR Jeff Shoup – reigning Mexican Train winner


We pulled into Key West a day early, giving me plenty of time to finish up my writing and collect some statistics from our 13 day scientific cruise:

  • Florida Fish and Wildlife Conservation Commission personnel – 10
  • Florida Keys National Marine Sanctuary Personnel – 7
  • University of North Carolina at Wilmington Remotely Operated Vehicle Operators – 2
  • Nancy Foster Officers – 9
  • Nancy Foster Crew – 14
  • Teacher at Sea – 1
  • Media Reporter at Sea – 1
  • ROV Operations – 14 hours and 20 minutes underwater
  • ROV digital stills – 957
  • ROV longest dive – 4 hours and 10 minutes
  • ROV deepest dive – 128 meters (420 feet)
  • Multibeam seafloor mapping distance – 787.9 linear nautical miles
  • Dives – 167
  • Fish surgeries performed- 8
  • Acoustic Receivers exchanged – 6
  • New Acoustic Receivers Installed – 5
  • Reef Fish Visual Census (or fish counts) – 40 dives on 11 stations
  • Seine Net pulls – 5
  • Number of species of fish counted in seines – 18 species
  • Total fish counted during seining – 290
  • Conch surveys- 14
  • Conch measured – 57
  • Conch females laying eggs – 2
  • Egg masses – 1
  • Facebook Reach on the FKNMS Account with Cruise Posts as of 8:15 on 9/26/2014:  528,584
  • Laughs – lots!
  • Fun had – tons!
  • Days/Nights of sea sickness for Amy – 0
  • Number of accidents- 0

Mission was a success!

Challenge Your Observational Skills

Can you find the fish in this photo?  Hint, it is NOT yellow!

hide and seek

You will have to zoom in to find this itty, bitty fish. Good luck finding it!

NOTE:  Scott Donahue, Chief Scientist for this cruise, actually found TWO fish in this photo!  Can you find them both?  He has a good eye!

BONUS QUESTION:  Can you identify the fish in the photo once you find them?

Answer to the last blog’s question:  Goliath Grouper is no longer being considered for Endangered listing because their populations have recovered due to a fishing ban.

Definition of the word EXTIRPATED:  Completely removed from an area.


Sunset at port - Key West

Sunset at port – Key West

The sun has set on my adventure, now it’s back to Arizona.  I leave better educated, but with plenty of questions to still find answers to.  I leave more inspired.  I am a better scientist, educator and a better person because of my Teacher At Sea experience.

A heart-felt “Thank You!” goes out to each and every person who made it possible for me.

Janelle Harrier-Wilson: Learning about Life at Sea, September 26, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: September 26, 2014

Weather Data from the Bridge
Lat: 40° 11.3’N  Lon: 073° 52.7’W
Present Weather: CLR
Visibility: 10 nm
Wind: 326 at 5 knts
Sea Level Pressure: 1020.4 mb
Sea Wave Height: 2-4 ft
Temperature Sea Water: 20.4° C
Temperature Air: 23° C

Science and Technology Log

On the ship, there are two science watches: noon to midnight (day shift) and midnight to noon (night shift). I am assigned to the day shift. We left port late Tuesday afternoon, but we made it to our first trawl site a few hours later. When the nets brought back our first haul, I had a crash course in sorting through the fish. The fish come down and conveyor belt from the back deck to the wet lab. In the wet lab, the first thing we do is sort through the fish. The more experienced scientists are at the front sorting through the larger species and sometimes the more abundant ones. The largest species of fish go in large baskets, the medium sized ones go into large buckets, and the smaller ones go into smaller buckets. Each basket or bucket only has one species in it. During our first trawl, there was a smaller amount of fish to sort through, but we had a lot more fish the second trawl. It took us longer to sort through the larger fish.

Once the fish are sorted, we go to our cutter/recorder stations. At our stations, we sort through the buckets of fish one by one. Right now, I am a recorder. This means that I record the information about each fish into the computer. It’s a really cool computer system. First, the bucket it scanned. On the computer screen, a message pops up to tell us what type of fish should be in the bucket. If that is what we have, we say “Yes” to the prompt and continue. Then, we dump the contents of the bucket into a well waiting for inspection. The cutter pulls the fish out, one by one, and begins to take measurements. The first measurement is usually length. The tool for taking the measurements is integrated into the computer system. The fish are laid out on the ruler, and a sensor is tapped at the end of the fish. This sends the fish’s measurement to the computer. The Fish Measuring Board is a magnetic system. The tool that we use to measure the fish is a magnet. The board is calibrated so that when the magnet touches a specific area of the board, it will read the appropriate length. The computer then tells us what measurement to take next. Usually it is weight. On the other side of the Fish Measuring Board is the scale for the larger fish. There is also a small scale for smaller specimens. When the weight is recorded, the computer then prompts for additional measurements which are taken from the fish. During our second trawl, we worked up a bucket of summer flounder. One of the summer flounder was huge! I had not seen a flounder that big before!

One of the things that has really impressed me so far is the integration of the science and the technology. The computer system that records measurements is integrated into the ruler and scale right at the work bench (the fish measuring board). When we take samples from the specimen, a label is printed right at the station, and the sample is placed into either an envelope, zip bag, or jar for further handling. It reminds me of how technology makes the job of science more streamlined. I can’t imagine how long it would take for the processing and sampling of the fish if we had to take all of the measurements by hand! Technology is a valuable tool for scientists at sea.

Careers at Sea

Henry Bigelow Engine Room

Henry Bigelow Engine Room

We left port on Tuesday, September 23. Before we left, I had a chance to explore the ship and ran into chief engineer Craig Moran. He sent me to the engine room for a tour, and I met John Hohmann. John is the first engineer on the Henry Bigelow. He showed me around the engine room including the generators, the water system, and the shaft to the propeller. It was pretty quiet in the engine room since we hadn’t left yet, but it is a loud, warm place when the ship is at sea.

I had a chance to chat with John about his background in engineering. He has a specialization in marine engineering. Marine engineers really need to be a jack-of-all-trades when we are out at sea. If anything is not working right on the ship, they are called out to fix it. This can include any of the machinery in the engine room, the electrical systems, the water purification system, and even fixing the cooking equipment in the galley! Life at sea can be demanding as they can be called at any time day or night to fix an integral piece of machinery. However, engineers generally work 30 days at sea and then are home for 30 days. One thing John wanted you all to know is that there will always be jobs for engineers. If you are interested in marine engineering, it can help you travel the world. John has been all over the world to many interesting countries. The other thing that I found interesting is that he says you need to be able read and follow instruction manuals in order to fix an issue. He also said an essential skill for an engineer is problem solving. Marine engineering entails a lot more than I had initially thought, and it is really cool to be able to talk to John and learn about marine engineering from him first hand.

Personal Log

I arrived to the ship Monday evening (September 22). Since the ship wasn’t scheduled to leave port until the next day, most of the team was not on board yet. I was able to find my stateroom and get settled in. Tuesday, things started to pick up on ship. There was a dive at 9:00 to check the hull of the ship, so I had a chance to watch the divers slide into the water and later climb back out. The rest of the science team arrived just in time for lunch. I then had time to explore the ship (I found the important places: the laundry room and the gym!), and get to know the science team a little bit better. The ship started undocking around 16:00 (4:00 pm), and we were on our way to sea. We went up to the flying bridge, the highest deck on the ship, as we left Rhode Island. It was beautiful up there as we passed by Newport and the surrounding areas. There is an old lighthouse that is now used for event spaces, and a house built up on a small rocky island. At 17:00, it was dinner time. We eat our meals in the mess, and the meals are prepared in the galley. I knew I needed to eat a good meal because my watch for the night officially started at 18:00 and would last until 24:00.

The sea was pretty calm yesterday, so it was a good introduction to the ways of life on a ship. So far, I have not had any trouble adjusting to life onboard ship. I was worried about sea-sickness, but I came prepared and have felt great so far. A lot of the crew have mentioned that I should be fine, and that I’ve already found my sea legs. I think perhaps I have found my sea stomach but not my sea legs! I do periodically lose my balance when walking through the corridors. Thankfully, there are handrails everywhere to catch my balance just in case. Maybe I’ll find my sea legs in a few more days, but I am pretty clumsy even on land!

Janelle Wilson wears immersion  suit for abandon ship drill.

Trying on my Immersion Suit

Safety drills are also an important part of sea life. Each person has their own immersion suit and personal flotation device (PFD). These are in case we have to abandon ship. We need to be able to put our immersion suit on in 60 seconds. The immersion suit is kind of like a wet suit, but it has lights on it and other tools. There are also lifeboats on board. There are three types of emergencies we need to be prepared for: abandon ship, man overboard, and fire/other emergency. Just like we have fire drills at school to help us know where to go in the case of a fire, these drills help us prepare for emergencies.

Did You Know?

You can tell a summer flounder from a winter flounder by the side the eyes are on the fish. You look at the fish as if it were swimming up right. Summer flounder eyes are on the left, and winter flounder eyes are on the right. Summer flounder are called left eyed, and winter flounder are called right eyed.

Challenge Yourself

What additional information can you find out about marine engineering careers at sea? What type of training do marine engineers need, and what schools offer marine engineering?


Sue Zupko, Miscellaneous, September 18, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 18, 2014

Weather Data from the Bridge
Lat 39°10.4’N     Lon 0714°18.7W
Present Weather PC
Visibility 10 nm
Wind 153° 5kts
Sea Level Pressure 1015.1
Sea Wave Height 1-2 ft
Temperature: Sea Water 22.3°C
Air 21°

Science and Technology Log

Flags are just one way the ship communicates. There is equipment which ships use to communicate information to other ships. Ships in the area appear on the Bigelow’s radar. The NOAA Corps can even find out their name and what type of ship it is. It’s almost like an email address which lets you know who is sending you the message. We have had naval vessels, sailboats, yachts, container ships, research vessels, cruise ships, etc. appear on radar.

The Bigelow has a protocol (rule) which says if another ship comes within one mile of our perimeter (the radar even shows the big circle like a halo around its position), the officer on duty must make radio contact and ask them to change course. This is especially important if we are trawling or dropping the bongo (plankton net) or CTD. All this information gets logged into the Deck Log which is an official document. It is critical for the officers to keep accurate information and observations during their watch so others know what has been happening and for future reference should the ship have an emergency.

Last night on the fly bridge I noticed that the green and white lights were on. I knew from talking to Ensign Estela that this was the signal at night for “we are trawling”.

Bridge light controls for signals.

Bridge light controls for signals.

Flags, lights, radar, radio, Facebook , web pages and email. These are all methods the Bigelow has used to communicate while I’ve been aboard.

Personal Log

Dave filets a flounder

Dave filets a flounder

We were sharing stories on our watch and Dave told of when he sailed in the Pacific for a Sea Semester, sailing as mariners of old did. He had to navigate using the stars. We were able to do that on the flying bridge last night. The Big Dipper was visible and it was clear we were traveling NW. Soon, the ship changed course (direction) and headed right toward Polaris (the North Star) so we knew we were traveling north.

This is our last day of trawling. Tomorrow we steam back to Newport and get in late. People are excited to see their families again. I have to wait until Saturday to return home since my plane leaves early that day. We weren’t sure what time we would get in on Friday and there were no later flights for me. I am looking forward to seeing my family, but sad to be leaving the sea. Fortunately, we only had a couple of “rockin’ an a rollin’ ” days which made me feel a little “off”. When that happened, everyone was so kind. Many people asked if I was feeling better when they saw me after the waves died down. Crackers were a big help.

Atlantic City

Atlantic City (courtesy of Wikimedia)

Currently (no pun intended) we are off the Jersey shore and can see Atlantic City.  My mother used to live near the shore when she was a little girl and her father had a boat. She loved the ocean. No doubt the shore has changed quite a bit in 75 years. The ocean is a change agent. Man is, too. Our land, climate, and weather often change as a result of the sea–currents, tides, storms all contribute. We help change the ocean, too. Hopefully, we are getting better about it by not dumping pollutants in as much as we once did. Part of NOAA’s mission is to check for pollutants to help keep the marine environment healthy. Yes, the ocean is vast, but man’s lack of understanding of the ocean causes us to do things which are harmful to the ocean environment. I worry about all the plastics wrapping the fresh foods in the supermarkets now. We used to just pick the items we wanted in the meat and produce sections. Now most things are pre-wrapped and much is processed. We need convenience due to our busy lives, but at what cost to our environment and our health? Perhaps we need to visit the farmer’s market more and ask for meat to be in more biodegradable wrappers.

As I sit here enjoying the sun glistening off the ripples caused by a gentle breeze, I realize how much I love the ocean. Its storms and the wildness of it have my respect, but there is a draw to its vastness, the incredible diversity within it, its changeability, and variety of colors. I am so grateful for this opportunity to discover and learn by sailing with NOAA. So far, I know of at least one of my students who is in college for marine biology. I wonder what influence these NOAA experiences will have on my current and future students.

Miscellaneous Information

The ship has a system similar to your car’s odometer. It measures short trips as well as total miles covered. According to the MX420 GPS on the ship on the bridge, the Bigelow has traveled 54,254 nm.

MX420 GPS shows how many miles it has traveled.

MX420 GPS shows how many miles it has traveled.

Getting ready for processing fish is similar to how fire fighters dress. Jump in the boots, pull up the pants, and you’re ready. We head out to the conveyor belt and sort the fish. Many hands make the work load light. Here we are sorting croakers and weakfish. If one person on the line misses a fish, the next one gets it. Then we consolidate similar species into one container.

After removing a fish’s otolith, they are stored in envelopes and put into this sorting system. The samples are taken back to the lab to determine the age of the fish.

It’s a Win-Win situation. Skilled Fisherman, Steve, catches up on light reading about sharks in the Dry Lab. He then goes out and helps deploy the CTD  and Bongo nets.  He also taught me to mop floors on the bridge.  A skilled fisherman is multi-talented and, as I learned, can do many things very well.

Engineer, Kevin Van Lohuizen

Engineer, Kevin Van Lohuizen

Engineers, such as Kevin Van Lohuizen, who is on temporary assignment from the Reuben Lasker, works often in 107° heat. They are responsible for fixing anything mechanical broken on the ship from the washing machine to toilets to generators. They can “do it all”. Thank goodness for the engineers. Kevin earned his Bachelor’s of Marine Engineering Technology from the California Maritime Academy. By the way, Kevin says you should always have a flashlight with you on a ship in case the lights fail.

Rudder in hold.

Rudder in hold.

The rudder is double-actuated which means it can add a little bit of turning ability . The Bigelow‘s rudder, which turns the ship, has a small turning radius similar to a sports car (turns on a dime) rather than the normal rudder’s radius which is more like a truck (turns take forever and need a lot of space). There are two pumps for the rudder, which are switched daily.

What happens to Styrofoam cups when submerged in a bag to 300 m and are brought back up? My students colored Styrofoam cups with Sharpees and we submerged them. I had it in the dry lab and was asked to open the bag in the wet lab. Why do you think that would be? This bag was totally full when submerged. Look at it afterwards.

Remember that a clean ship is a happy ship? At the end of the last watch, everyone starts cleaning, from the Chief Scientist to the lowly Teacher at Sea.  We were all handed scrub brushes and a pail of soapy water. The deck hands cleaned the net and the deck. The other watch scrubbed all the buckets (I found them on the fantail at 1:30 am doing this).


Did You Know?

There are over 26,000 species of bony fish, making fish the most speciose vertebrate animal (by number of species).

Question of the Day

What are plankton and why are they important? Plankton are plants and animals which cannot move on their own and rely on currents and wind to move them. Phytoplankton make about 80% of our oxygen and are the basis of the marine food chain. What do you think?


Planktos in Greek means “wanderer”. Plankton is derived from this.

Something to Think About

Tallest bar shows most of the fish were measured at that length.

Tallest bar shows most of the fish were measured at that length.

Nicole was explaining that the protocols are set up by scientists looking for certain data about catch. She always seems to know when the jaguar will scream, meaning we need a special measurement or to preserve a sample. She had me pull down a monitor and pull up the fish we were processing at the time and had me pull up a bar graph for that species.  She showed how for every 1 cm of length of the fish, the protocol was to ask for information. When I measured and it was longer or shorter than the average, we had more processing to do. Once we hit our quota for that protocol, the rest were just measured and added in. So, if my fish ranged from 19-21 cm, I would have to do special measurements or get samples for just three fish within that range. If the range was 15-25, it could be a lot more, depending on the lengths of the fish caught. The more fish sampled the more it falls into a bell curve, similar to our heights. You’ll notice some students are tall, others are short, most fall in between. They don’t need to repeat getting the information on every fish–it would probably be pretty close to the same data.

Challenge Yourself

Carry cloth bags to the grocery store rather than using their plastic or paper bags. In many areas stores charge for each plastic bag. Recycle as much as possible and encourage others to do the same. Yes, it takes a little effort, but if more people did this we would reduce our trash going to landfills or into the ocean.

Sunset from flying bridge of the Bigelow

Sunset from flying bridge of the Bigelow

Animals Seen Today

We saw a lot of the same species all day. We collected Sea Robins, rays, skates, and Croakers by the hundreds, even thousands. I was able to measure a 40 pound ray and several large skates. Earlier this week we had rays which were so big, we had to call out all the deckhands from the watch and several scientists to weigh and measure them using the crane. One was 240 pounds and the other just 192 pounds.