Elizabeth Bullock: Day 5, December 15, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: December 15, 2011

Weather Data from the Bridge
Time: 3:15pm
Air Temperature: 23.6 degrees C
Wind Speed: 15.8 knots
Relative Humidity: 56%

Science and Technology Log

Liz takes a water sample
Here I am taking a water sample from the CTD.

Let’s talk about the flurometer!  The flurometer is  a piece of equipment attached to the CTD which is being used on this cruise to measure the amount of chlorophyll (specifically chlorophyll_a) in the water being sampled.  It works by emitting different wavelengths of light into a water sample.  The phytoplankton in the sample absorb some of this light and reemit some of it.  The flurometer measures the fluorescence (or light that is emitted by the phytoplankton) and the computer attached to the CTD records the voltage of the fluorescence.

The flurometer can be used to measure other characteristics of water, but for this research cruise, we are measuring chlorophyll.  As you know, chlorophyll is an indicator of how much phytoplankton is in the water.  Phytoplankton makes up the base of the marine food web and it is an important indicator of the health of the surrounding ecosystem.

At the same time that our cruise is collecting this information, satellites are also examining these components of water quality.  The measurements taken by the scientific party can be compared to the measurements being taken by the satellite.  By making this comparison, the scientists can check their work.  They can also calibrate the satellite, constantly improving the data they receive.

Combined with all the other research I’ve written about in previous blogs, the scientists can make a comprehensive picture of the ecosystem with the flurometer.  They can ask: Is the water quality improving?  Degrading?  Are the organisms that live in this area thriving?  Suffering?

Nelson records data from the CTD
Nelson records data from the CTD.

Collecting data can help us make decisions about how better to protect our environment.  For example, this particular scientific party, led by Nelson Melo, was able to inform the government of Florida to allow more freshwater to flow into Florida Bay.  Nelson and his team observed extremely high salinity in Florida Bay, and they used the data they collected to inform policy makers.

Personal Log

Today is my last full day on the Walton Smith.  The week went by so fast!  I had an amazing time and I want to say thank you to the crew and scientific party on board.  They welcomed me and taught me so much in such a short time!

Thank you also to everyone who read my blog.  I hope you enjoyed catching a glimpse of science in action!

Answers to Poll Questions:

1)      In order to apply to the Teacher at Sea program, you must be currently employed, full-time, and employed in the same or similar capacity next year as

a. a K-12 teacher or administrator

b. a community college, college, or university teacher

c. a museum or aquarium educator

d. an adult education teacher

2)      The R/V Walton Smith holds 10,000 gallons of fuel.  By the way, the ship also holds 3,000 gallons of water (although the ship desalinates an additional 20-40 gallons of water an hour).

Jacquelyn Hams: 3 December 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: December 3, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 0930
Wind Direction: 232.10
Wind Speed (m/s): 3.4
Air Temperature (C): 27.7
Relative Humidity: 77%
Dew Point: (C): 23.7
Precipitation (mm): 42.2

PAR (Photosynthetically Active Radiation (microeinsteins): 1942.5

Long Wave Radiation (w/m2): 409.3
Short Wave Radiation (w/m2): 373.1

Surface Water Temperature (C): 28.70
Sound Velocity: 1541.5
Salinity (ppm): 33.7
Fluorometer (micrograms/l): 0.3
Dissolved Oxygen (mg/l): 2.4
Water Depth (m): 4422

Wave Data from WAMOS Xband radar

Wave Height (m) 0.5
Wave Period (s): 7.4
Wavelength (m): 86
Wave Direction: 1140

Science and Technology Log

Surface Fluxes Group

The Surface Fluxes group consists of James Edson, University of Connecticut, Ludovic Bariteau, University of Colorado Cooperative Institute for Research in Environmental Sciences (CIRES), and June Marion, Oregon State University. This group measures the amount of radiation and heat into and out of the ocean and was covered in the November 12, 2011 blog posting.

The purpose of this posting is to highlight the work of Ludovic Bariteau who is measuring the carbon dioxide flux between the atmosphere and ocean. For redundancy and testing, the carbon dioxide in the atmosphere is measured with several infrared instruments pictured below. Two of the instruments are in the pilot stage and were developed for this research cruise. The equipment used for measuring carbon dioxide in seawater is done in collaboration with Wade McGillis from Lamont-Doherty-Earth Observatory (LDEO). Ludovic plans to refine the instrumentation based on the pilot test. The carbon dioxide data will be correlated with surface flux data to present a complete picture of ocean atmosphere fluxes.

Photograph of flux instruments.
Photograph of flux instruments on the mast. The instruments measuring air CO2 are indicated by the black arrows. Image credit: James Edson.
Ludovic Bariteau in front of instrument to measure carbon dioxide fluxes.
Ludovic Bariteau in front of the specialized instrument to measure carbon dioxide fluxes between the ocean and atmosphere.
Closeup of carbon dioxide flux instrument.
The above photograph is a close-up of the apparatus used to measure the carbon dioxide content in the ocean water.
Ludovic Bariteau pointing to CO2 measurement device.
Photograph of Ludovic Bariteau pointing to one of the air CO2 measurement devices in the pilot stage.

        

Data printout of Carbon dioxide values of air and water measured from instrumentation aboard the Revelle provided courtesy of Ludovic Bariteau
Data printout of Carbon dioxide values of air and water measured from instrumentation aboard the Revelle provided courtesy of Ludovic Bariteau

.

What about the MJO?

Previous postings described the work being done by the 7 science groups and the instrumentation being used to measure the various characteristics of the ocean-atmosphere interaction that may be part of the active phase of the MJO. Readers of this blog may be asking the same question that some of my students are now asking, “Did you experience the MJO?”

Data collected to date by the science groups suggests that we experienced an active MJO phase. Although It will take years to analyze and correlate the data collected from the various organizations involved in Project DYNAMO, the Revelle experienced high winds, colder surface water surface temperatures, and the intermittent storms separated by quiescent periods that are believed to accompany the active phase of the MJO. Based on initial data this active phase may have occurred between the approximate dates of Nov. 24 through Dec.2.

Wyrtki Jet Current

Before discussing the effects of the MJO on Indian Ocean circulation, it is useful to provide a brief background on the currents in the Indian Ocean which are more complicated than those in the Atlantic and Pacific Oceans in several ways:

  • Indian Ocean currents are poorly defined
  • They are influenced by the presence of the Eurasian continent
  • They are more variable than the Atlantic or Pacific Ocean currents. Some Indian Ocean currents vary with the seasons. For example, on the top diagram below, notice there are two unnamed gyres located in the northern hemisphere west and east of India.

Diagram of Indian Ocean Currents

The Revelle left station on December 2, and began north south transects across the equator to delineate the extent and the speed of the Wyrtki Jet Current. The Wyrtki Jet is a narrow jet-like surface current that flows eastward during the transition periods between the Northeast and Southwest Monsoon currents and is believed to accompany the active phase of the MJO.

A summary of the monsoon system in the Indian Ocean taken from the pdf version of Regional Oceanography: An Introduction by Tomczak and Godfrey. The Wyrtki Jet may be the Equatorial Jet identified on the below diagram.

Wyrtki jet speeds of 150 cm/s eastward at the surface were identified during the cruise.  In addition a current flowing westward was identified at a depth of 100 m. The purpose of the transects is to delineate the lateral and vertical extents of these currents.  The currents are measured using four Acoustic Doppler Current Profiler (ADCPs) located in the hull of the ship (these are Doppler sonars, analogous to Doppler radar and lidar measurements discussed in previous blogs).

Personal Log

I worked the winch for the last drop of Chameleon on Leg 3 of Project DYNAMO aboard the R/V Revelle.  I must say that I am proud of my work as a “Winch Winder”.  In the past 5 weeks, I experienced a range of emotions regarding the winch.  I initially felt fearful of working solo on such a valuable instrument. Once I began working solo, I was still intimidated because the winds and currents are so variable at the equator. Intimidation was finally replaced by competence after operating the instrument in 40 knot winds without slamming it into the ship! Aurelie Moulin was kind enough to shoot this video of me just before Chameleon was pulled out of the water on the last drop.

I would like to share my interview with Jude Irza, Ordinary Seaman aboard the R/V Revelle who provides extremely thoughtful advice and insight regarding career choices and preparation that may be helpful not only for students unsure of their future, but for those who may desire a career change at any stage in life.

Photograph of Jude Irza

Question: What made you decide on a career in this field?

 That question is straight forward enough but my answer is a little bit convoluted.  I never woke up one day and decided that I wanted to become a Merchant Marine and work on Oceanographic Ships.  In fact, I have been fortunate to have had two careers before this one:  Naval Officer and Finance Manager.  Here’s how I embarked on my first two careers.

 First, I attended college on a Naval Reserve Officers’ Training Corps Scholarship.  After college, I went to Flight School in Pensacola, Florida, and flew as a navigator in the United States Navy.  While in the Navy, I decided to expand my horizons and earn a Masters in Business Administration. While completing my MBA, I decided that a career in finance would be challenging and rewarding.  So I resigned my commission and I worked at a large telecom company in San Diego.  Later, I had the opportunity to join a telecom start-up and later a consulting company.   Although I enjoyed working in finance for fifteen years, I was ready to do something exciting and different.  I had always thought working as an Officer in the Merchant Marine would be fun. Expecting to be too old for this career, I was surprised and pleased when my research uncovered a new program where I could go to sea and work towards a Third Mate License through a two-year program offered by the Pacific Maritime Institute (PMI) in Seattle, Washington.  So, approximately two years ago, I joined the program and was partnered with the Scripps Institute of Oceanography.  I joined the R/V Revelle as an Ordinary Seaman.  Already, this is my fourth trip on the R/V Revelle and I am close to finishing PMI’s program.  I hope to take my Coast Guard License exams next summer and have my 1600 ton 3rd Mate License shortly thereafter.

 Question:  What are the positives and negatives of this line of work?

 The exact nature of the work depends on what billet or position one is filling and to an extent that determines the positives and negatives.  For example, an Ordinary Seaman like me spends most of the time cleaning, removing rust and painting.  Work is performed both inside and outside of the ship.  Mates, however, are Merchant Marine Officers, and spend most of their time standing watch, on the bridge of the ship.  Most, if not all, merchant mariners would agree that being able to travel and see the world are positives in this line of work.  The biggest negative is separation from family members for months at a time.  Typically, at Scripps, we are out to sea for eight months out of twelve.  Moreover, especially at the lower level positions, the work can be arduous and sometimes monotonous.

 Question:  What advice would you give students who are unsure of their career goals?

 I would give students five pieces of advice:

1. Get Information and Prerequisites – Get on the internet and research the careers in which you might be interested.  Learn about what qualifications and prerequisites are necessary for each career.  Try to find a person who is in that career and ask them good questions.  Be realistic, but also look for unconventional pathways.

 2. Inventory your Skills and Abilities – Try to determine what you enjoy doing and what you are good at.  Try and see what careers other people chose that have your talents and abilities.

 3. Get Real-World Experience – Try and experience careers directly without investing too much time and energy by taking a part-time, internship or volunteer position.  You’ll learn an enormous amount by working alongside other people.

 4.  Change your Career if you find that it is not Right for You – Some people, including myself, are not suited to only one career.  Don’t be afraid to try something new if you no longer find enjoyment in your current line of work.  But be financially responsible and try to not incur too much debt especially in your younger years.  You want to keep your options open and debt can limit options.

 5.  You are Never Too Old to Start Again – I am forty-five years old, but feel energized doing something new.  I don’t know if I will be in this career ten years from now, but I am certainly enjoying it now.

Elizabeth Bullock: Day 3, December 13, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: December 13, 2011

Weather Data from the Bridge
Time: 4:45pm
Air Temperature: 23.5 degrees C
Wind Speed: 15 kt
Relative Humidity: 68%

Science and Technology Log

Liz deploys a drifter
I'm deploying a drifter!

Last night, we deployed our first drifter.  There will be three deployed over the course of this cruise.  The frame of this drifter is built by the scientists at AOML (Atlantic Oceanographic and Meteorological Laboratory).  Afterwards, they attach a satellite transmitter so they can track where the drifter goes.  This helps them measure the surface currents.

What are some other types of research being conducted onboard?  I’m glad you asked!  Two NOAA researchers, Lindsey and Rachel, are studying water chemistry and chlorophyll.  They take samples of surface water from the CTD to study CO2 and the full carbonate profile.  They also use water collected at many different depths to study the chlorophyll content.  Chlorophyll is an indicator of the amount of phytoplankton in the water.

Collecting water from the CTD
Collecting water from the CTD.

Sharein, a PhD student at the University of Miami Rosenstiel School of Marine and Atmospheric Science, is studying a specific type of plankton called copepods.

The particular copepod that she is studying is food for the larval stages of some commercially important species of fish such as bill fish (which include blue marlin, sail fish, white tuna, and yellowfin tuna) and different species of reef fish.  If a species is commercially important, it means that many people depend on this particular fish for their livelihoods.

Female Copepod
Here is one of the species of copepods that Sharein is studying.

Do you think you would be interested in working at sea?  You would be a good candidate if you:

1)      Like meeting new people and working as part of a team

2)      Are interested in the ocean, weather, and/or atmosphere

3)      Don’t mind getting your feet wet

Personal Log

When we were on our way to the Tortugas, we didn’t have cell service and the TV in the galley had no signal.  It was nice to be disconnected for a while.  Although there are still 29 computers onboard which all have the internet, so we’re hardly off the grid!

It was hard at first to adjust to the night shift, but everyone onboard was really supportive.  Working the night shift means that you work from 7pm to 7am.

Species seen last night in the Neuston net:

Flying fish

Needle fish

Different kinds of sea grasses and sargassum

Moon jellies

Elizabeth Bullock: We Are Underway! December 11, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: December 11, 2011

Weather Data from the Bridge
Time: 2:30pm
Air Temperature: 24.5 degrees C (76 degrees F)
Wind Direction: 65.9 degrees east northeast
Wind Speed: 15.8 knots
Relative Humidity: 78%

Science and Technology Log

Today is the first day of the research cruise.  The R/V Walton Smith left its home port in Miami, FL this morning at about 7:30am.  After a delicious breakfast, the crew and scientific party received a safety briefing from Dave, the Marine Tech.  We learned about the importance of shipboard drills and we were shown the location of all the safety gear we might need in case of an emergency.  This ship works like a self-contained community.  The crew of the ship must also be the policemen and firemen (or policewomen and firewomen).

After our safety briefing, the science party went outside to our first station of the day.  The first piece of equipment we put into the water was a CTD.  The CTD is named after the three factors the equipment measures: conductivity, temperature, and depth.  The CTD will be deployed at precise locations along our route.  Since they conduct this research cruise twice a month, they can see if conditions are changing or staying the same over time.

Liz at computer
Here I am, reading the data that came up from the CTD.
CTD
This is the CTD, which measures conductivity, temperature, and depth.

Question for students: What is the relationship between salt and electrical conductivity?  If the salt content in the water increases, will it conduct electricity better or worse?

The next piece of equipment we deployed was the Neuston Net.  This net sits at the water line and skims organisms off the surface of the ocean.  The net is in the water for 30 minutes at a time.  After bringing the net onto the deck, the fun part starts – examining the contents!  Our Neuston Net had two main species: moon jelly (Aurelia) and sargassum.  The term sargassum actually describes many species, so the scientists on board will study it carefully in order to classify which kinds they caught in the net.  Sargassum is an amazing thing!  It is planktonic (which means that it floats with the current) and it serves as a habitat for bacteria and small organisms.  Since it is such a thriving habitat, it is also a great feeding ground for many different species of fish.

Once we emptied the contents of the Neuston Net, Lindsey and Rachel, two of the scientists on board, began to measure the quantity of each species they caught.  In order to measure the weight of the moon jellies, they used the displacement method.  This is because we can’t use regular scales onboard.  Here are the steps we took to measure the moon jellies:

1)      We poured water into a graduated cylinder and recorded the water level.  For example, let’s say that we poured in 100ml of water.

2)      We put a moon jelly into the graduated cylinder and recorded the new water level.  For example, let’s say that the new water level read 700ml.

3)      We subtracted the old water level from the new, and we could tell the volume of the moon jelly we had caught.  For example, based on the numbers above, we would have caught a 600ml moon jelly!

Neutson Net
Lindsey examines what we caught in the Neuston Net.

Both the CTD and the Neuston Net will be deployed many times over the course of the cruise.

 

Personal Log

Despite a bit of seasickness, I am having a wonderful time!  Everyone on board is very welcoming and happy to answer my questions.  Everyone is so busy!  It seems like they have all been working nonstop since we arrived on board yesterday.

Answers to your questions

First, let me just say that these are great questions!  Good job, Green Acres.  Here are some answers, below.

1)      How do the currents make a difference in the water temp?  The currents play a major role in water temperature.  In the Northern Hemisphere, currents on the east coast of a continent bring water up from the equator.  For example, the Gulf Stream (which is a very important current down here in Florida) brings warm water from the tropics up the east coast of the United States.  This not only keeps the water temperature warm, but it also affects the air temperature as well.

2)      How does the current affect the different algae populations?  Currents regulate the flow of nutrients (which phytoplankton needs to survive).  Strong currents can also create turbidity, which means that it stirs up the water and makes it harder for light to penetrate the water column.  As you know, phytoplankton rely on sunlight to grow, so if less light is available, the phytoplankton will suffer.  I’m told by Sharein (one of the phytoplankton researchers) that algae are hearty creatures.  This means that as long as the turbid conditions are temporary, algae should be able to thrive.

Elizabeth Bullock: Introduction, December 8, 2011

NOAA Teacher at Sea
Elizabeth Bullock
Aboard R/V Walton Smith
December 11-15, 2011

Introduction

Hello! My name is Elizabeth (Liz) Bullock and I work for the NOAA Teacher at Sea Program (TAS).  Before I worked at NOAA (the National Oceanic and Atmospheric Administration)  I was in graduate school at Clark University in Worcester, MA studying Environmental Science and Policy.  As my final project, I created an environmental curriculum for the Global Youth Leadership Institute (GYLI).  Through this experience, I realized how much I love both science and educating others about the importance of the natural world.

I have been invited to take part in a research cruise on the R/V Walton Smith.  I will be participating in the Bimonthly Regional Survey / South Florida Program Cruise.  The researchers on this survey are  from NOAA’s Atlantic Oceanography and Meteorological Laboratory (AOML) which is located in Miami, FL.

What will we be studying?  The scientists on this survey are very interested in knowing about the strength and health of the ecosystem.  They can judge how strong it is by looking at various indicators such as water clarity, salinity, and temperature.  They can also record information about the phytoplankton and zooplankton that live in the water.

Question for students: Why do you think it is important to learn about the phytoplankton and zooplankton?  What can they tell us about the ecosystem?  Please leave a reply with your answers below by clicking on “Comments.”

Here is a map of the route the R/V Walton Smith will be taking.

Research Map
The R/V Walton Smith will be leaving Miami, FL and traveling around the Florida Keys into the Gulf of Mexico.

I am so excited and I hope you will follow along with me on this journey of a lifetime!

Jacquelyn Hams: 25 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: November 25, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 0830
Wind Direction: 2340
Wind Speed (m/s): 9.6
Air Temperature (C): 25.5
Relative Humidity: 90.6%
Dew Point: (C): 24.3
Precipitation (mm): 41.3

Long Wave Radiation (w/m2): 442.5
Short Wave Radiation (w/m2): 114.6

Surface Water Temperature (C): 29.60
Sound Velocity: 1544.9
Salinity (ppm): 35.3
Fluorometer (micrograms/l): 0.3
Dissolved Oxygen (mg/l): 2.5
Water Depth (m): 4637

Wave Data from WAMOS Xband radar

Wave Height (m) 2.1
Wave Period (s): 8.9
Wavelength (m): 123
Wave Direction: 2780

Science and Technology Log

NASA TOGA C-Band Doppler Radar Group

The TOGA (Tropical Ocean Global Atmosphere) Radar Group consists of Michael Watson, NASA Contractor from Computer Science Corporation, Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia; Elizabeth Thompson, Colorado State University; and Owen Shieh of the University of Hawaii.

The following paragraphs provide a brief description of TOGA C-Band Doppler Radar.

Radar is an acronym for radio detection and ranging. Radar was developed just before World War II for military use but now serves a variety of purposes including weather forecasting. Radar is an electronic device which transmits an electromagnetic signal, receives back an echo from the target and determines various characteristics of the target from the received signal. Doppler radar adds the capability of measuring direction and speed of a target by measuring the Doppler Effect, or the component of the wind going either toward or away from the radar.

  • Doppler radar is divided into different categories or bands, according to the wavelength of the radar.  Some common Doppler bands are:
  •  S-band radars operate on a wavelength of 8-15 cm and are useful for far range weather observation.
  •  C-band radars operate on a wavelength of 4-8 cm and are best suited for short-range weather observation.
  •  X-band radars operate on a wavelength of 2.5-4 cm and are useful for detecting tiny precipitation particles

The NASA TOGA C-Band radar has a range of 300 km. In addition to the TOGA C-band radar, the ship has both S and X band radar. These three systems allow large and small-scale forecasting capabilities.

When not deployed on field campaigns, TOGA radar resides at Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, Virginia, where it gathers meteorological data and supports launches.

The large dome in the center houses the NASA Doppler C-Band radar antennae. Image credit: Jacquelyn Hams
The large dome in the center houses the NASA Doppler C-Band radar antennae. Image credit: Jacquelyn Hams

During Leg 3 of Project DYNAMO, TOGA radar scans are performed in the following intervals:

Automated high-resolution scans for a 150 km radius every 10 minutes

  • Automated high-resolution scans for a 300 km radius at the top and bottom of the hour (every 59 and 29 minutes)
  • Vertical cross sections at 9,19,39 and 49 minutes past the hour.

 Below are examples of radar scan images of a single storm cell and rainfall provided courtesy of Owen Shieh.

The TOGA Radar image on the left is a horizontal image looking down on the rain.  The ship is in the center. North is straight up toward the top of the image. The radar range is 150 km. The arrow indicates a single storm cell that is located 40 km from the ship. Towards the east (right side of the diagram) are large areas of light rain, indicated by white arrows.  Radar image on the right is a vertical cross section through the storm cell (indicated by the black arrow). The top of the storm extends up to 5 km and contains moderate rain indicated by the yellow color.
The TOGA Radar image on the left is a horizontal image looking down on the rain. The ship is in the center. North is straight up toward the top of the image. The radar range is 150 km. The arrow indicates a single storm cell that is located 40 km from the ship. Towards the east (right side of the diagram) are large areas of light rain, indicated by white arrows. Radar image on the right is a vertical cross-section through the storm cell (indicated by the black arrow). The top of the storm extends up to 5 km and contains moderate rain indicated by the yellow color.
TOGA Radar image on the left is the same as above, except taken 10 minutes later.  Notice that the storm cell (indicated by the black arrow) is closer to the ship, approximately 37 km away.
TOGA Radar image on the left is the same as above, except taken 10 minutes later. Notice that the storm cell (indicated by the black arrow) is closer to the ship, approximately 37 km away.
The TOGA radar image above is taken from a range of 300 km.  These images are taken every 30 minutes.  There are four areas of light to moderate rain surrounding the ship (indicated by white arrows).  Notice the scale of the storm cell (indicated by black arrow) looks considerably smaller. The large scale TOGA Radar image allows a wider view of the aerial distribution of rain.
The TOGA radar image above is taken from a range of 300 km. These images are taken every 30 minutes. There are four areas of light to moderate rain surrounding the ship (indicated by white arrows). Notice the scale of the storm cell (indicated by black arrow) looks considerably smaller. The large-scale TOGA Radar image allows a wider view of the aerial distribution of rain.

Personal Log

The day after Thanksgiving, the Ocean Mixing Group decided to pull the T Chain out of the water after discovering a couple of damaged cables. The Chief Scientist ultimately decided to move the ship to another location on the other side of the buoy. It was extremely windy that day and the team was trying to perform this task in hard hats which constantly blew off in the wind. I am sure we looked extremely comical to those who were watching. In addition, we had to juggle large pieces of foam used to protect the T Chain which promptly blew away. There were at least seven of us and I thought we probably looked like a scene from a Marx Brothers movie.

We are experiencing squalls on almost a daily basis that are separated by quiet calm periods and occasional sunshine. Weather data indicates that we may be in the active phase of the MJO. I managed to get some interesting sunset photographs with the cloud formations.

These photographs were taken at sunset on the Indian Ocean between squalls. Image credits: Jacquelyn Hams
This photograph was taken at sunset on the Indian Ocean between squalls. Image credits: Jacquelyn Hams
This photograph was taken at sunset on the Indian Ocean between squalls. Image credits: Jacquelyn Hams

My students want to know how I am adapting to the lack of privacy. This is not my first time on a ship and I own a sailboat so being at sea is not an uncommon experience for me. However, being at sea this long with so much to accomplish in a short time has caused the lack of privacy to become a big issue for me. In addition to covering the 7 science groups for this blog, I am teaching the last 5 weeks of my classes via distance education and posting assignments for my students based on data obtained on this cruise.

There are little things on the ship that make the lack of privacy more tolerable. There are steak Sundays that include a tasty non-alcoholic ginger beer – a weekly treat. There is also Yoga everyday from 1:00 p.m.to 2:00 p.m. I brought one of my yoga DVDs from home as did others so we have a variety of programs and do not get bored. The standing poses are difficult on a moving ship, but I manage to get through it.

I am beginning to realize that I enjoy my time on the winch with Chameleon because that is the only time I am physically alone. I am thinking to myself how crazy and scary it is that my idea of spending quality alone time involves a noisy sampling instrument! But alas, even Chameleon cannot make up for the fact that I miss my own private bathroom.

One morning while waiting for the sunrise on the bow, I was treated to quite a show of jumping fish. The fish are tuna and are jumping to avoid predators. I have seen jumping fish many times while on the winch, but never so many and for such an extended period of time. They continued their performance until well after breakfast. I shot this video shortly after breakfast.

Jacquelyn Hams: 24 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: November 24, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 0830
Wind Direction: 246.10
Wind Speed (m/s): 9.3
Air Temperature (C): 27.4
Relative Humidity: 86.1%
Dew Point: (C): 25.10
Precipitation (mm): 25.1

PAR (Photosynthetically Active Radiation) (microeinsteins): 177
Long Wave Radiation (w/m2): 454.3
Short Wave Radiation (w/m2): 36.7

Surface Water Temperature (C): 300
Sound Velocity: 1545.9
Salinity (ppm): 35
Fluorometer (micrograms/l): 0.9
Dissolved Oxygen (mg/l): 2.6
Water Depth (m): 4637

Wave Data from WAMOS Xband radar

Wave Height (m) 2.2
Wave Period (s): 15.3
Wavelength (m): 290
Wave Direction: 29000

Science and Technology Log

Aerosols Group

 The Aerosols Group consists of Derek Coffman, Langley Dewitt and Kristen Schultz from the NOAA Pacific Marine Environmental Lab (PMEL) in Seattle, Washington. The Aerosols group measures the chemical, physical, and optical properties of sub and supermicron aerosols (liquids or solids suspended in gas) in the lowest layer of the troposphere. Aerosols are important in the study of climate change and the largest unknown due to the complicated nature of the particles. Aerosols are being studied in the MJO experiment to determine how they affect the radiative balance and how the MJO affects aerosols.

The measurements and analyses include:

  • real-time and filter-based analysis of the aerosol chemical composition
  • size distributions from 20 nm to 10 microns (aitken mode to course mode aerosols)
  • particle number concentrations
  • aerosol scattering and absorption
  • cloud condensation nuclei (CCN)
  • total mass of filtered collected aerosol
  • O3 and SO2 gas phase measurements.

Aerosols are captured via an opening in the inlet (mast). The base of the inlet consists of 21 individual sample lines. The inlet is designed to collect particles in average marine conditions without preferentially selecting particles and is efficient in collecting particles up to 10 microns in diameter.  Each sample line connects to a specific instrument for analysis. The captured aerosols are sampled for physical, chemical, and optical properties. . In general, for the ocean, particle sizes that are <1 micron are typically more anthropogenic, while particles >1 micron are sea salts and generated by wind and rain.

Aerosols are captured through the Inlet (mast).
Aerosols are captured through the Inlet (mast).
Base of aerosol inlet with sample lines.
Base of aerosol inlet with sample lines.

Impactors are attached to the sample lines to separate and collect aerosols. Each impactor has a filter to capture a particular particle size range. The filters are removed from the Impactors in a clean lab for analysis. Half of the samples collected are analyzed on the ship and the remaining samples are analyzed at the NOAA PMEL Lab in Seattle, WA. Analytical methods used on the ship to measure chemical species are ion chromatography, liquid chromatography with mass spectrometry (LCMS), total organic carbons (TOC), and organic carbon and elemental carbon (OCEC). The optical properties measured include scattering and absorption. Scattering is measured by an instrument called a nephelometer and absorption is measured by a Particle Soot Absorption Photometer (PSAP). The physical properties measured are total particle concentration and size distribution of the particles. Condensation particle counters (CPCs) measure the particle concentrations and size distribution is measured by a Scanning Mobility Particle Sizer (SMPS), The Aerosol Mass Spectrometer measures the size and chemical composition of non-refractory submicron aerosols.

Kristen removes impactor for sampling
Kristen removes impactor for sampling
Vacuum Pump closet houses vacuum and pressure needs for the aerosol vans.
Vacuum Pump closet houses vacuum and pressure needs for the aerosol vans.
Filters are removed from the impactor.
Filters are removed from the impactor.
Example of a clean filter (left) and sampled filter containing exhaust from the ship (right).
Example of a clean filter (left) and sampled filter containing exhaust from the ship (right).
The Aerosol Mass Spectrometer captures and analyzes the chemical composition of aerosol particles in near real time (every 5 minutes).
The Aerosol Mass Spectrometer captures and analyzes the chemical composition of aerosol particles in near real time (every 5 minutes).
Derek in the Aerosol van pictured with various instrumentation.
Derek in the Aerosol van pictured with various instrumentation.
The diagrams pictured above are based on a model prepared by Derek Coffman. The back trajectories on the left show that sub micron aerosols are dominant in the continental air mass and there is also more organic aerosol that is likely causing the absorption in the continental air mass. The clean marine diagram shows that sub micron aerosol is greatly reduced and aerosols >1 micron (coarse mode) play a dominant role in scattering in the air mass.
The diagrams pictured above are based on a model prepared by Derek Coffman. The back trajectories on the left show that sub micron aerosols are dominant in the continental air mass and there is also more organic aerosol that is likely causing the absorption in the continental air mass. The clean marine diagram shows that sub micron aerosol is greatly reduced and aerosols >1 micron (coarse mode) play a dominant role in scattering in the air mass.

Personal Log

Thanksgiving week proved to be the most interesting weather of the cruise. The winds picked up to 48 knots on Thanksgiving Day. This made for a real exciting time on the winch. During several drops (each time Chameleon is lowered in the water column), I had to hold on to the canopy with one hand, and the winch with the other so I would not fall over when the swells hit the stern of the ship.

I was surprised that Chief Scientist Jim Moum continued to work on his computer and did not run out to snatch me away from his valuable research instrument! If he had that much confidence in my ability to handle the situation, I had to prevail. Just as I was convincing myself I had to prevail, I heard the bridge call on the hand-held radio. I could not understand the communication and did not want to release the winch since it was difficult to control in the wind. Someone from the Ocean Mixing Group came out to tell me that the bridge called and could not control the ship direction and to take Chameleon out of the water. By this time Chameleon was trailing behind the ship and I could not see if it had gone under the ship. A bit of chaos ensued and I saw a boat hook out of the corner of my eye as crew prepared to get Chameleon out. Somewhere in the midst of the chaos, Jim Moum came on deck and decided that profiling could continue. By that time the ship had re-positioned, however, the wind speed was the same. Jim surveyed the situation and said that he had profiled in far worse weather conditions and went back to his work. I breathed a huge sigh of relief when my shift was over that night and Chameleon was not damaged.

Thanksgiving Day was another day of collecting data. The cooks prepared a Thanksgiving Dinner and I think I speak for all of the scientists when I say we appreciated the turkey and all the trimmings.

Scott, a Wiper in the Engineering Department asked me if I would like an interesting video of a crew job for the website. Scott is a polite crew member and has an interest in education. My first question was “What is the job description for a wiper?” I was told that a wiper is an unlicensed engine room staff member. According to Scott, he empties trash, cleans, and performs other projects as needed such as needle gunning (removing paint and rust from metal surfaces) natural air vent shafts as seen in the video below. I wasn’t prepared for the noise when I shot this video.

There are no gorgeous sunrise and sunset photographs to end this blog – we are probably in the beginning stages of the MJO. There is a tropical cyclone to our north and the outer bands were reaching the ship. We are experiencing squalls with high winds. It is unusual to have cyclones during the MJO event – they usually develop in the wake of the cycle according to the Atmospheric Soundings Group. I get dressed in rain boots and gear and run to the winch and run back inside when my shift is over. Although I am sure you would like to see a photo, it is not exactly a desirable Kodak moment for cameras. Stay tuned, the weather is bound to change.

For this post’s quiz, please answer in the comments of this post:

Using the Aerosol source diagram above, what particle size aerosols are dominant in
continental air masses and what particle size aerosols are dominant in clean marine air masses?

 

Jacquelyn Hams: 14 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: November 14, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 1045
Wind Direction: 262.60
Wind Speed (m/s): 135.8
Air Temperature (C): 28
Relative Humidity: 79.7%
Dew Point: (C): 24.20
Precipitation (mm): 42.4

PAR (Photosynthetically Active Radiation) (microeinsteins): 1101.5
Long Wave Radiation (w/m2): 410.3
Short Wave Radiation (w/m2): 192.5

Surface Water Temperature (C): 29.8
Sound Velocity: 1545.1
Salinity (ppm): 34.8
Fluorometer (micrograms/l): 0.2
Dissolved Oxygen (mg/l): 2.8
Water Depth (m): 4637

Wave Data from WAMOS Xband radar

Wave Height (m) 1.3
Wave Period (s): 13.2
Wavelength (m): 236
Wave Direction: 2800

Science and Technology Log

Ocean Mixing

All about CTDs

A CTD is a standard instrument used on ships to measure conductivity, temperature and depth. Three CTD systems are being used during Leg 3 of Project DYNAMO to measure CTD.

  • The Revelle deploys the ship’s CTD twice a day to a depth of 1,000 m. The CTD measurements can be viewed on a monitor in the computer room.
Ship's CTD
Ship's CTD
Ship's CTD in water
Ship's CTD in water
Ship's CTD data display
Ship's CTD data display
Data obtained from the ship's CTD
Data obtained from the ship's CTD
  • The Ocean Mixing group is using a specialized profiling instrument that was designed, constructed, and deployed by the microstructure group at the College of Oceanic and Atmospheric Sciences, Oregon State University. The instrument, called “Chameleon”, measures CTD and turbulence. Chameleon takes continuous readings to a depth of 300 m as it is lowered through the water column. The top of the instrument has brushes to keep the instrument upright in the water and make it hydrodynamically stable so that very precise measurements of turbulence can be achieved. These measurements allow computations of mixing, hence the name Ocean Mixing Group. The instrument freely falls on a slack line to a depth of 300 m after which it is retrieved using a winch. The Chameleon has been taking continuous profiles at the rate of about 150/day since we have been on station and will continue taking measurements for the next 28 days.
Photograph of Chameleon
Photograph of Chameleon
Close-up of Chameleon's sensors
Close-up of Chameleon's sensors
Data obtained from the Chameleon
  • The T Chain CTD aboard the ship was also designed by the microstructure group at the College of Oceanic and Atmospheric Sciences, Oregon State University. This instrument measures CTD in the near-surface (upper 10 m) using bow chain-mounted sensors (7 Seabird microcats + 8 fast thermistors). The T Chain takes data every 3 seconds, and although that is not very fast, the data is extremely accurate (within 1/1000th of a degree – 3/1,000th of a degree). The T Chain is mounted on the bow and has been taking measurements continuously since we have been on station. These measurements focus on the daytime heating of the sea surface and the freshwater pools created by the extreme rainfall we have been observing and which is associated with the MJO.
Photograph of T Chain
Photograph of T Chain
Data obtained from T Chain
Data obtained from T Chain

NOAA High Resolution Doppler LIDAR (Light Detection And Ranging) Group

A Brief Introduction to LIDAR

The following introduction to LIDAR systems was provided by Raul Alvarez.

In LIDAR, a pulse of laser light is transmitted through the atmosphere. As the pulse travels through the atmosphere and encounters various particles in its path, a small part of the light is scattered back toward the receiver which is located next to the transmitter. (You may have seen similar scattering off of dust particles in the air when sunlight or a laser pointer hits them.) The particles in the atmosphere include water droplets or ice crystals in clouds, dust, rain, snow, aircraft, or even the air molecules themselves. The amount of signal collected by the receiver will vary as the pulse moves through the atmosphere and is dependent on the distance to the particles and on the size, type, and number of particles present. By keeping track of the elapsed time from when the pulse was transmitted to when the scattered signal is detected, it is possible to determine the distance to the particles since we know the speed of the light.

Once we know the signal at each distance, it is now possible to determine the distribution of the particles in the atmosphere. By measuring how the light was affected by the particles and the atmosphere between the LIDAR and the particles, it is possible to determine things such as the particle velocity which can yield information about the winds, particle shape which can indicate whether a cloud is made up of water droplets or ice crystals, or the concentration of some atmospheric gases such as water vapor or ozone. The many kinds of LIDARs are used in many different types of atmospheric research including climate studies, weather monitoring and modeling, and pollution studies.

Typical lidar signal as a funciton of range
Typical lidar signal as a function of range
Photograph of Ann and Raul inside the LIDAR van.
Photograph of Ann and Raul inside the LIDAR van.
Raul explains the inner workings of LIDAR aboard the ship. From left to right: 1st photo shows Raul and the LIDAR system; 2nd and 3rd photos display the optical components of the LIDAR; 4th photo is the rotating scanner base.
Raul explains the inner workings of LIDAR aboard the ship. From left to right: 1st photo shows Raul and the LIDAR system; 2nd and 3rd photos display the optical components of the LIDAR; 4th photo is the rotating scanner base.
The four cone-shaped devices are differential GPS antennae used to correct for the motion of the boat.
The four cone-shaped devices are differential GPS antennae used to correct for the motion of the boat.

An integrated motion compensation system is used to stabilize the scanner to maintain pointing accuracy. As you can see from the video below, the scanner maintains its position relative to the horizon while the ship moves.

The slides below represent a Doppler LIDAR data sample from Leg 3 of the Revelle cruise. The images and slides were provided courtesy of Ann Weickmann.

Image credit: Ann Weickmann
Image credit: Ann Weickmann
Image Credit: Ann Weickmann
Image Credit: Ann Weickmann
Image credit: Ann Weickmann
Image credit: Ann Weickmann
Image credit: Ann Weickmann
Image credit: Ann Weickmann
Image credit: Ann Weickmann
Image credit: Ann Weickmann

Personal Log

The R/V Revelle is not a NOAA ship. It is part of the University-National Oceanographic Laboratory System (UNOLS) and part of the Scripps Institution of Oceanography research fleet. A few crew members were kind enough to take time from busy schedules to talk with me about their careers. Students may find these interviews interesting especially if they are exploring career options.

The food aboard the Revelle is very good thanks to our cooks, Mark and Ahsha. They are very friendly crew members and always happy to accommodate the diverse eating schedules of scientists who have to work during meal hours.

Mark Smith, Senior Cook
Mark Smith, Senior Cook
Ahsha Staiger, Cook
Ahsha Staiger, Cook

Meanwhile back on the winch, I am beginning to get the hang of it. I will not say that I am comfortable, because I am always aware that I am in charge of a very expensive piece of equipment. I alternate between operating the winch, operating the computer, standby time (to assist as needed) and free time.

Jackie on the computer in the Hydro lab.
Jackie on the computer in the Hydro lab.
Dramatic cloud formation at sunrise.
Dramatic cloud formation at sunrise.

Jacquelyn Hams: 13 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: November 13, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 810
Wind Direction: 262.400
Wind Speed (m/s): 2.7
Air Temperature (C): 28.1
Relative Humidity: 77.3%
Dew Point: (C): 23.7
Precipitation (mm): 40.2

PAR (Photosynthetically Active Radiation) (microeinsteins): 2092.5
Long Wave Radiation (w/m2): 413.3
Short Wave Radiation (w/m2): 442.7

Surface Water Temperature (C): 29.50
Sound Velocity: 1544.8
Salinity (ppm): 35.2
Fluorometer (micrograms/l): 69.7
Dissolved Oxygen (mg/l): 3.2
Water Depth (m): 4637

Wave Data from WAMOS Xband radar

Wave Height (m) 0.7
Wave Period (s): 8.1
Wavelength (m): 103
Wave Direction: 2090

Science and Technology Log

Atmospheric Soundings

In addition to launching radiosondes, the Atmospheric Soundings Group operates a Wind Profiler to observe air mass density directly above the radar. Each beam sends back a return and more returns indicate humid or rainy conditions. The wind profiler operates twenty-four hours a day on the ship. The wind profiling is revolutionary for this cruise in that 8 profiles per day will be performed by three people who are dedicated to this experiment.  This detail will allow the scientists to see small scale variations in the atmosphere that have not been seen in the past with fewer profiles.

Wind Profiler displays light winds and little air movement (left).  Colors indicate high intensity and fast air movement (right). The image on the right was captured during an episode of rainfall.
Wind Profiler displays light winds and little air movement (left). Colors indicate high intensity and fast air movement (right). The image on the right was captured during an episode of rainfall.

Ocean Optics

The Ocean Optics team is led by KG Fairbarn of the Earth Research Institute at the University of California Santa Barbara.  KG does three optics casts a day using a Microprofiler.  The data can be viewed on the computer in real time as the instrument is lowered through the water column to a depth of 50 meters. The Microprofiler measures the irradiance within the visible light spectrum.

Irradiance is defined as the measure of solar radiation on a surface in watts/m2.The amount of irradiance absorbed within the water column is a function of chlorophyll and nutrients. The Microprofiler contains a flourometer to measure chlorophyll and KG obtains the nutrient content from water samples collected from the Revelle CTD.

In terms of Project DYNAMO, KG is measuring light that penetrates a layer of water and heat that penetrates the ocean. This information allows scientists to quantify the heat distribution through the water column and relate it to the flux (transfer or exchange of heat) at the surface and flux at the air-sea interface.

Revelle CTD with Niskin bottles attached for collecting water samples
Revelle CTD with Niskin bottles attached for collecting water samples

Personal Log

Life at Sea

What is it like to live aboard a ship that is operating 24/7? There are negatives and positives. It is busy and often noisy. Doors are always closing and opening and the maintenance is constant. Privacy is non-existent.  I often get up early and go on the bow to watch the sunrises and sunsets and to get some quiet time.  However, I don’t have much time to ponder the negatives of life at sea as I am very busy familiarizing myself with and reporting on all 7 science groups. I work a split watch with the Ocean Mixing Group between 1500 and 2100. In addition, I am creating, posting, and grading assignments for my classes at Los Angeles Valley College.

On a positive note, the science teams are interesting, happy with their work, and pleasant to work with. I share a room with another scientist where I have the top bunk. I share lab “office space” with the Atmospheric Soundings group, but float around the ship to the library and other spots for a change of scenery.  There is always something good to eat and every day there has been a fresh salad bar at lunch and dinner.  The cooks are really nice and try hard to please everyone on the ship which everyone knows is an impossible task.

 

I find a quiet space to take notes.
I find a quiet space to take notes.
Sometimes we get visitors on deck.
Sometimes we get visitors on deck.
Office lab mates Lou Verstraete, National Center for Atmospheric Research (left), and Jonathan Wynn Smith, Ph.D. student, Howard University (right).
Office lab mates Lou Verstraete, National Center for Atmospheric Research (left), and Jonathan Wynn Smith, Ph.D. student, Howard University (right).

I was surprised that non-plastic biodegradable materials are dumped at sea and there is a lot of it on a cruise that lasts this length of time. The plastic is burned on the ship in an incinerator. Also, the ship engines operate 24/7 to keep the ship in a fixed location (the term used for a fixed location is “on station”).

Inside the incinerator room.
Inside the incinerator room.
Entrance to the incinerator room.
Entrance to the incinerator room.

Overall, the positives outweigh the negatives on this cruise. My work with the Ocean Mixing Group is going very well and the other scientists are extremely helpful and often contribute to the development of lesson plans for the classes I am teaching from the ship. The positive attitudes of these researchers more than compensates for any negative parts of the cruise. And, as I mentioned in a previous posting, there are endless opportunities for interesting photographs.

 Meteorologists would like this cloud formation.
Meteorologists would like this cloud formation. (Photo By Jackie Hams)
This photograph is actually a red moon at night.
This photograph is actually a red moon at night. (Photo By Jackie Hams)

Jacquelyn Hams: 12 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean

Date: November 12, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 1045
Wind Direction: 2580
Wind Speed (m/s): 2.8
Air Temperature (C): 28
Relative Humidity: 67.6%
Dew Point: (C): 21.4
Precipitation (mm): 40.3

PAR (Photosynthetically Active Radiation) (microeinsteins): 2274.5
Long Wave Radiation (w/m2): 429
Short Wave Radiation (w/m2): 659

Surface Water Temperature (C): 29.7
Sound Velocity: 1545.1
Salinity (ppm): 35.2
Fluorometer (micrograms/l): 65.5
Dissolved Oxygen (mg/l): 3.3
Water Depth (m): 4640

Wave Data from WAMOS Xband radar

Wave Height (m) 1.7
Wave Period (s): 12.8
Wavelength (m): 226
Wave Direction: 1950

Science and Technology Log

The Revelle is now on station and will remain in this location for approximately 28 days to conduct measurements of surface fluxes, wind profiles, C-band radar, atmospheric soundings, aerosols, sonar- based ocean profiling and profiling of ocean structure including turbulence.  Please note that the exact position and course of the ship will not be posted in this blog until Leg 3 has been completed and the ship is back in port in Phuket, Thailand. Although piracy is not anticipated at the station location, it has been a problem in other parts of the Indian Ocean and the policy is not to publicize the coordinates of the ship.

Surface Fluxes

The Surface Fluxes group measures the amount of radiation and heat into and out of the ocean. There are several dome instruments on the Revelle to measure atmospheric radiation, acoustic and propeller sensors to measure winds and a “sea snake” to measure the sea surface temperature. The term flux is defined as a transfer or exchange of heat. The sum of the terms in the equation below indicates how much radiation is in the ocean. If the sum >0, the ocean is warming.  If the sum is <0, the ocean is cooling. Below each term is a photograph of the ship-board instrument used to measure it.

Ocean Mixing

Today I deployed the Los Angeles Valley College drifting buoy. Before leaving Los Angeles, the students in my introductory Physical Geology and Oceanography classes signed NOAA stickers that I placed on the buoy before releasing it into the Indian Ocean.  A drifting buoy floats in the ocean water and is powered by batteries located in the dome. The drifting buoys last approximately 400 days unless they collide with land or the batteries fail. The buoy collects sea surface temperature and GPS data that are sent to a satellite and then to a land station where the data can be accessed. Drifting buoys are useful in tracking current direction and speed. Approximately 12 drifting buoys will be deployed from the Revelle during Leg 3 of the Project DYNAMO cruise.

Personal Log

Can you have pirates before a pirate drill?

After we arrived on station, a science meeting was held to provide instructions regarding safety and emergency procedures for mandatory drills such as fire safety, abandon ship, and pirate drills.  Drills are typically scheduled once a week and we have already assembled for a fire drill.  A pirate drill was scheduled for the following week.

I began my orientation working with the Oregon State University Ocean Mixing Group. My role on the research team is to assist with the operation of the “Chameleon”, a specially designed ocean profiling instrument that is continuously lowered and raised to the surface taking measurements while on station.  My job is to rotate between operating the winch (used to lower and raise the instrument) and the computer station. The computer station operator is in constant communication with the winch operator and tells the operator when to raise and lower Chameleon.  In addition, the computer operator logs the critical start and end times of each run and keeps track of the depth of the instrument.

Jackie operates the winch. My goal is to keep the instrument safe and have a perfect wind.
Jackie operates the winch. My goal is to keep the instrument safe and have a perfect wind.

I was just beginning to learn to operate the winch when an alarm sounded followed by the words “Go to your pirate stations, this is not a drill, repeat, this is not a drill”.  I must admit I was a bit stressed.  When I came on this trip, I knew there was a remote risk, but I thought it was extremely remote.  Everyone assembled in the designated area and it turns out that a fishing boat was approaching the ship and the Revelle does not take chances if the boat appears to be approaching boarding distance to the ship.  There have been two instances where we have assembled for safety following the alarm and the words “This is not a drill, repeat, this is not a drill.”  In both cases, fishing boats were too close for comfort.  As I began operating the winch, I watched a fishing boat off in the distance for a few days and became more comfortable knowing that the ship is taking extreme caution to protect all on board. All this excitement and before we even had a pirate drill!

Fishing boat spotted near the Revelle
Fishing boat spotted near the Revelle


But all is well somewhere out here on the equator and the Indian Ocean provides many opportunities for photographing amazing sunrises and sunsets.

Sunrise on the Indian Ocean
Sunrise on the Indian Ocean (photo by Jackie Hams)
Sunset on the Indian Ocean
Sunset on the Indian Ocean (Photo by Jackie Hams)

Mark Silverman: An Unfortunate Situation, November 16, 2011

NOAA Teacher at Sea
Mark Silverman
Onboard NOAA Ship Oregon II
November 11 – 13, 2011

Mission: Cancelled

I arrived safely in Pascagoula Mississippi.  I was met by an awesome and enthusiastic group of scientists from the Southeast Fisheries Science Center (SEFSC).  Unfortunately I was told the ship had a problem with its water heater and the cruise may be in jeopardy.  I had a tour of the lab and saw the OREGON II from the dock.  All I could do was wait.

OREGON II at the Pascagoula, Miss. SEFSC dock awaiting repair.

After several attempts at repair by the CO and crew, I was told that the heater was not repairable.  A new heater was needed, and this was a lengthy process.  To my great disappointment, the mission was scrubbed.  I know all the scientists were equally saddened by the turn of events.  I was to return home without sailing.  I am sorry to bring this news to all my students and others who were following this Blog.  It is no one’s fault,  just the circumstances that occurred.   I can only hope that I can join another NOAA TAS mission in the near future…

Signing Off,

Mark Silverman

Stephen Bunker: Current Drifter, 24 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 24 October 2011

Science and Technology Log

Homemade current drifter
A current drifter we lowered off the RV Walton Smith.

At a couple of stops on the cruise we dropped some current drifters overboard. These current drifters will float at the surface of the water and travel with the gulf current. On top of the drifter there is a transmitter that will send a signal to a satellite. The scientists can then track movement of these drifters and map the ocean currents.

This drifter, I learned, was simply made. The materials, except for the GPS transmitter, can be found at a local hardware store and tackle shop.

Personal Log

Scientists at work
(from left to right) Brian, Maria, Nelson & Kuan at work on the RV Walton Smith.

My cruise with the R/V Walton Smith has been exciting. It has been great to learn how science — in particular oceanography — is done. Scientists are dedicated, focused people. I can tell they love what they do.

The crew of the R/V Walton Smith are incredible. I have a lot of respect for anyone that can parallel park something the size of a house. Talk about teamwork!

To finish off, here are some sunset photos taken on the voyage.

Sunset 9/19/2011

Stephen Bunker: Data Sampling, 23 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 23 October 2011

Weather Data from the bridge

Time: 6:23 PM
Wind direction: Northeast
Wind velocity: 5 m/s
Air Temperature: 25° C (77° F)
Clouds: stratocumulus

Science and Technology Log

Collecting data is what science is all about and scientists can measure many different things from the ocean. They generally take these measurements in two different ways: discrete and ongoing samples.

Cheryl is preparing filter samples made from water collected with the CTD. These samples will be frozen and analyzed later in a laboratory on shore.

Discrete sampling means scientists will take samples at different times. When we take measurements at regular intervals, we can compare the data and look for patterns. On the R/V Walton Smith we take discrete samples each time the CTD is lowered. At approximately every two weeks RV Walton Smith will revisit the same location and collect data again. These bi-monthly data samples will let the scientists compare the data and look for patterns.

Remember when we collected weather data in class? We were also doing discrete sampling. We collected weather data from the morning and afternoon each school day. We would record precipitation, wind velocity and direction, air temperature, barometric pressure, and cloud types. Remember the pattern we noticed? When the afternoon temperature was cooler than the morning, we would have precipitation the next day.

Pump and valve system used for water sampling
Here is the pipes, valves and instruments used to take ongoing samples of surface water.

Ongoing sampling is also done on the R/V Walton Smith. On the fore, port (the left front) side of the ship, ocean water is continually sucked into some pipes. This surface water is continually pumped through instruments and water chemistry data is collected.

This continual data sampling is recorded on a computer and graphs can be made for  different characteristics of water chemistry. When continual data is graphed, the graphs have a smoother shape than they would with discrete samples.

Initially I thought that we were just collecting data each time we stopped to lower the CTD. Actually we had been collecting data throughout the entire voyage.

Kuan is monitoring his ongoing data collection of dissolved inorganic carbon.

Kuan, one of the scientists on our cruise, was measuring the amount of dissolved inorganic carbon in the ocean. The process of doing this has typically been a discrete sampling process that involves chemically analyzing water samples, Kuan has developed an instrument that would take ongoing water samples and measure the amount of dissolved inorganic carbon continually.

His instrument would tap into the water pipes above and take ongoing samples throughout the trip. He also wrote a computer program that would record, calculate, and graph the quantity of dissolved inorganic carbon. He even collects GPS data so he can tell where in the ocean his samples were taken. His experiment, I learned, is cutting-edge science or something that hasn’t been tried before.

Personal Log

I hadn’t realized the close connection there is between our earth’s atmosphere and its oceans. I understood how the ocean temperatures and currents  affect our weather systems. But, I didn’t understand how on a micro scale this happens as well. The ocean will exchange (absorb and give off) carbon dioxide and many other molecules with the air.

Why is it important to understand how the ocean and atmosphere interact? We often hear how greenhouse gasses are contributing to climate change. Carbon dioxide, considered a greenhouse gas, is one of the inorganic carbon molecules absorbed and given off by the oceans. When it is absorbed, it can make the ocean slightly more acidic which could harm the micro organisms that are in the ocean food chain

Understanding the interaction between atmosphere and ocean will help us understand why some areas of the earths ocean absorb more carbon dioxide and others don’t.

Jacquelyn Hams: 7 November 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

Mission: Project DYNAMO
Geographical area of cruise: Leg 3, Eastern Indian Ocean
Date: November 7, 2011

Weather Data from the R/V Revelle Meteorological Stations

Time: 1100
Course on Ground
Wind Direction:   195.50
Wind Speed (m/s):   2.1
Air Temperature (C):  27.6
Relative Humidity:   81.7%
Dew Point: (C):   24.4
Precipitation (mm):   6.0

PAR (Photosynthetically Active Radiation) (microeinsteins): 517.4
Long Wave Radiation (w/m2): 405.3
Short Wave Radiation (w/m2): 60.5                                                                            

Surface Water Temperature (C): 28.7
Sound Velocity:  1540.6
Salinity (ppm): 32.45
Fluorometer (micrograms/l): 65.2
Dissolved Oxygen (mg/l): 3.6

Wave Data from WAMOS Xband radar

Wave Height (m) 1.6
Wave Period (s): 18.4
Wavelength (m):  312
Wave Direction:   2650

Science and Technology Log

Background

Leg 3 of the Project DYNAMO research cruise began, on November 6, 2011 from Phuket, Thailand at approximately 1430. The DYNAMO Leg 3 research cruise consists of seven scientific groups conducting experiments in the following areas:

  • Surface Fluxes
  • Atmospheric Soundings
  • Aerosols
  • NOAA High Resolution Doppler LIDAR
  • TOGA Radar
  • Ocean Optics
  • Ocean Mixing

My primary role on this cruise is to work with the Ocean Mixing group led by Dr. Jim Moum from Oregon State University. The Ocean Mixing Group is responsible for sonar measurements of ocean current profiles, high frequency measurement of acoustic backscatter, turbulence/CTD profiling instruments and near surface CTD (Conductivity, Temperature, Depth) measurements. I will be working with other scientific groups as needed and have organized my Teacher at Sea blog to report on daily activities by science group.

Sampling Activities

We have been cruising for a couple of days to the sampling station in the eastern Indian Ocean and are still within the Exclusive Economic Zones (EEZ) of Thailand, India, and other countries.  Here is an interesting fact that I learned about the EEZ – it not only applies to resources, but also applies to data collection.  What this means to the R/V Revelle, is that the scientists cannot collect data until the ship clears the 200 nautical mile EEZ for the counties.  After clearing the EEZ, the science groups can begin data collection.

Atmospheric Soundings

Data collection began on the ship on November 8 and one of the first groups I observed was the Atmospheric Soundings group.  This group is responsible for launching radiosondes using helium balloons (weather balloons).  A radiosonde is an instrument that contains sensors to measure temperature, humidity, pressure, wind speed, and wind direction. Although the balloons can hold up to 200 cubic feet of helium, on this cruise, each balloon is filled with 30-35 cubic feet of helium.   As the radiosonde ascends, it transmits data to the ship for up to 1 ½ hours before the weather balloon bursts and falls into the ocean.  The weather balloons have been reaching an average altitude of 16 km before bursting. Approximately 260 weather balloons will be launched during Leg 3 of the cruise.

The Radiosonde

Watch the video clip below to watch the deployment of a weather balloon.


Computer screen shot of radiosonde data. Temperature is red, relative humidity in blue, wind speed is in green and wind direction is purple.

Ocean Mixing

The Ocean Mixing group began the deployment of XBTs (Expendable bathythermographs) on November 10, 2011. XBTs are torpedo shaped instruments which are lowered through the ocean to obtain temperature data. The XBT is attached to a handheld instrument for launching by a copper wire. Electronic readings are sent to the ship as the XBT descends in the ocean. When the XBT reaches 1,000 meters, the copper line is broken and the XBT is released and falls to the bottom on the ocean.

 

First step in getting the XBT ready.
Here I am getting ready to launch the XBT.
Launching the XBT
Computer screen shot of thermocline (change in temperature with depth) obtained from XBT instrument. The green shaded curve displays the historical record for comparison.

 

Personal Log

I arrived in Phuket, Thailand on November 3, 2011 after a 19-hour plane ride.  After dinner and a good night’s sleep, I went to the ship to get acquainted with my new home for the next 6 weeks.  Select the link below for a tour of the R/V Revelle.

http://shipsked.ucsd.edu/ships/roger_revelle/.

Aboard the R/V Revelle in Phuket, Thailand

The Revelle sailed from Phuket on November 6.  As the ship sailed to station, I captured the beauty of the Indian Ocean.

.

A beautiful day on the Indian Ocean.

Paige Teamey: November 7, 2011

NOAA Teacher at Sea
Paige Teamey
Aboard NOAA Ship Thomas Jefferson
October 31, 2011 – November 1, 2011

Mission: Hydrographic Survey
Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island
Date: November 7, 2011


Weather Data from the Bridge

Early Morning Sunrise

Clouds: 2/8 Cu, Ci
Visibility: 10 Nautical Miles
Wind: SE 21 knots
Temperature 14.0° Celsius
Dry Bulb: 14.1 ° Celsius
Wet Bulb: 12.0 ° Celsius
Barometer: 1024.2 millibars
Latitude: 41°08’232″ ° North
Longitude: 072°04’78″ ° West

Current Celestial View of NYC:

Current Moon Phase:

Current Seasonal Position (make sure to click on “show earth profile):

http://www.astroviewer.com/ http://www.die.net/moon/ http://esminfo.prenhall.com/

OR

http://www.learner.org/

Science and Technology Log

Monday started with my alarm beckoning my eyes to open at 4:15am.  I found my right pointer finger hitting snooze not once, but twice, only to finally move myself from the medium of a dreamlike state to a stand-up position at 4:36.  I made it to the galley for breakfast and a safety brief for the 3102 launch.

Safety Brief. Mapping locations and surveys to be accomplished along Fisher Island.

Today I will be joining COXSWAIN Tom Bascom and HIC  Matt Vanhoy to perform near-shore surveying on sections that have both holidays and missed information.  Holidays do not mean we will be scanning for Santa’s missing sleigh, or find Columbus’s ship Santa Maria run aground, but rather areas that have been previously surveyed and unfortunately recorded absolutely no information.  Holidays occur sometimes due to rough seas, oxygen, as well as possible rocky ocean floors.

After Tom, Matt, and I were lowered in the 3102 by the davit and help of the TJ crew, we went to Fisher Island and began the slow mowing movements of surveying.  The ride to Fisher Island was incredibly bumpy and the entire deck was wet from the swells pushing up at the bow.  Currently there are winds upwards of 16 knots and a chill in the air.  Vanhoy is below deck in the surveying room and Bascom is manning the boat.  Me, well, I am observing for now and loving the chaotic changing seas.  After about 2 hours on deck with Tom I went below to the survey room… that lasted about 20 minutes.  I became really sea sick and returned to deck with Tom.  Matt told me that he often gets sea sick while surveying on the launches and will come up to the stern, puke, and continue on through the day (wow).  When you are on a launch the motions of the ocean are magnified and you can feel the movements much more so than on the ship.

Polygons and

While we were passing by the massive houses located on Fisher Island, Tom commented that unless there is love inside the homes, they are like the numerous clam shells we find already emptied and eaten by fish and gulls.  He said that peace and happiness is not a large house, but the land that surrounds the home.  Tom has been on the open waters for the past 30 years and has found solace in simplicity.  He is a determined individual who presses on and is concerned with following protocol and ensuring the safety of those around him.

After lunch we finished our survey sections and still had 3 hours before needing to return so went around the area and collected bottom samples.  Bottom samples (BS) is probably the most fun thing I have been able to help with on the ship.  We used a  device called the Van Veen Grab system and lowered it into the water. When we thought the Sampler was in contact with the ocean floor we pulled a few times up and down on the line and then hoisted the grabber to the deck.

The bottom samples are taken for the fisheries division as well as for ships that are interested in areas that they will be able to anchor in.  For the most part we pulled samples of course sand and broken clam shells (I hope this is no reflection of Fisher Island).  The further away from the shore line we went the more courser the sand became as well the more rocks we sampled.  Most of the rocks were metamorphic and consisted of marble and a little quartzite.  This surprised me given the location.  I though most of the rocks would be sedimentary based on the surrounding topography and surface features.

I appreciate Tom and Matt taking the time to review and connect me into each process.  Tom taught me how to drive the launch… that was really FUN.  With all of the monitors it was hard to discern between reality and a glamorous video game.  Radar showed me where I was going, and a survey map outlined the areas I was trying to move to in order to take the next bottom sample.  Watching everything at once is not easy to do because you also have to pay attention to the waters.  The shoals (shallow waters) often have “pots” which are lobster traps placed everywhere.  The pots have a cage on the bottom of the ocean floor and a huge buoy at the surface so you can locate them and steer clear of them.

Upon returning to the ship, I watched yet another amazing sunset and Matt take the survey data from the ship and upload it on the ship’s network while Tom and ENS Norman hosed down the salt from the deck and prepped the 3102 for a new day.

ENS Norman Hosing down 3101 after surveying Fisher Island for the day.

Paige Teamey: November 6, 2011

NOAA Teacher at Sea
Paige Teamey
Aboard NOAA Ship Thomas Jefferson
October 31, 2011 – November 1, 2011

Mission: Hydrographic Survey
Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island
Date: November 6, 2011


Weather Data from the Bridge

Clouds: Clear
Visibility: 10 Nautical Miles
Wind: SE 9 knots
Temperature 14.3 ° Celsius
Dry Bulb: 11.5 ° Celsius
Wet Bulb: 8.9 ° Celsius
Barometer: 1030.0 millibars
Latitude: 41°10’59″ ° North
Longitude: 072°05’63″ ° West

Current Celestial View of NYC:

Current Moon Phase:

Current Seasonal Position (make sure to click on “show earth profile):

http://www.astroviewer.com/ http://www.die.net/moon/ http://esminfo.prenhall.com

OR

http://www.learner.org/

Science and Technology Log

Sunset on either Thursday, Saturday, or....two months ago :).

Frank said an interesting thing today that resonated with a feeling that I have been unable to define. He said that when you are working at sea, every day is a Monday. This specific survey trip is 12 days long, which translates to 11 Monday’s and one Friday. That means there are no weekends, time is not longitudinal, rotational, or accompanied by changing scenery (going from home to the subway to school…all different backdrops). One day drips into the next, sparked by small things that you note as change and reference with a new day. We even had to vote on whether to observe daylight savings this weekend, or pretend it did not exist until we landed in New London on Friday.

Time at Sea.

I awoke yesterday and had the same breakfast I have had for the past week (still tasty, thanks Ace!!); however, there was nothing to punctuate why this day was indeed Saturday and not Friday. Mike the E.T. sat at the same table he had the day before and piled one condiment after the next onto his breakfast until perfection was reached, just as he has done each prior day. I smiled and laughed and told jokes with each of the crew members just as I have each day since I arrived.

Mike: Perfection in every bite.

The mess hall is like an accordion. It acts as a center piece that brings all of us together. After each meal the crew disappears back to the their stations. In this 208ft ship 36 members find their space and focus moving back to our stations to perform our individual duties. When meals begin anew we are pulled back together to resonate until we move away yet again. This center piece is essential otherwise we would continue with our duties whether it be Tuesday evening or Sunday morning. I enjoyed thinking about Frank’s sentence. This idea spoke of time not in hours or minutes, but as a continuum. Time on the TJ is marked with very simplistic relatively small changes that many of us would not pay attention to in our regular New York lives. A small conversation that sparks ideas, or subtle nuances that you begin to discover in an individual especially while sharing silence together, or a new smell that is adrift in the air that allows you to remember Tuesday from Friday (remember Tuesday when we smelled…). A series of simplistic small moments allows you to mark one day from the next.

Brilliant Tom prepping 3102 for a secure departure from the TJ.

There is a lovely gentleman named Tom who has been on numerous ships for over 30 years. He told me his line of work suits him best because he likes being able to keep to himself and if he was unable to work on ships he would be a hermit high on a hill (just a little joke). He has marked time by haircuts or noticing his shirt is slowly falling apart, or having to shave. He does not speak in days, just marked events. His longest time at sea without seeing land was 167 days…

Rock dove...can you find him?

Yesterday, Saturday…I mean Sunday, was marked by a small rock dove staring at me from the deck while I was standing on the bridge as I normally do with Joe and Tony during the 4-8 shift. The dove landed on the steal guard rail and then nestled in an incredibly small nook located in the bow next to the front mast and remained with the ship for the next two hours. It puffed its feathers to a measurable extension and settled in with the rest of the TJ crew. This dove punctuated my day and allowed me to differentiate time from Saturday.

"It's the people that make you happy--that is why I continue. Without people it is like having one shoe," says Tom.

There is constant conversation involved with seeing family, returning home, having creature comforts in hand’s reach, and kissing a wife, husband, or missed child. However many of the crew have also spoken of how even though time away from the ship is welcomed, after a while, they miss these days. Working with and on the ocean takes a certain kind of someone. These individuals tend to have patience, perseverance, and motivation to live on a ship and continue with focus each Monday. Each crew member on the TJ seems very much at ease and almost in a Zen-like state. From what I have observed there is no bitterness or disgruntled workers roaming the ship. Everyone here has served on multiple ships and is self-contained. Silence marks most of the day and conversations occur naturally when the tides are right.

For the last three days I have spoken with every surveyor on the ship at length to understand each stage of the nautical chart making process. I want to know the history, the importance, and most importantly the science. There are many stages and processes that go into the eventual updated chart (this process can take upwards of 1.5 years depending on the layout, and how well the data was accurately retrieved). I have been learning about this information and shooting videos bit by bit in order to make an introduction to hydrographic surveying for those that are following (thanks mom). November 3-5 have been my devoted days to understanding these new ideas. I will hopefully finish with the editing and have the video published soon.

Until then, smooth sails with no gales.

Personal Log

Meals:

Breakfast: Scrambled eggs with cheese and two pancakes (coffee of course!)

Lunch: Grey noodles…no seriously

Dinner: Spicy noodles with green beans (YUM)

Paige Teamey: November 2, 2011

NOAA Teacher at Sea Paige Teamey Aboard NOAA Ship Thomas Jefferson October 31, 2011 – November 11, 2011

Mission: Hydrographic Survey Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island Date:  November 2, 2011

Weather Data from the Bridge
Clouds: clear
Visibility: 10 Nautical Miles
Wind: SW 5 knots
Temperature 13.9 ° Celsius
Dry Bulb: 13.5° Celsius
Wet Bulb:  10.0 ° Celsius
Barometer: 1626.8 millibars
Latitude: 41°08’39″ ° North
Longitude: 072°05’43″ ° West

 Current Celestial View of NYC:

 Current Moon Phase:

 Current Seasonal Position (make sure to click on “show earth profile):

 http://www.astroviewer.com/  http://www.die.net/moon/ http://esminfo.prenhall.com

OR

http://www.learner.org/

Science and Technology Log On a NOAA ship, similar to a military vessel, everyone has specific titles.  It would be like calling your principal or mom a CEO (Chief Executive Officer) followed by their last name.  Comparably on a ship there are tons of acronyms like (f.y.i., a.k.a, or my favorite o.m.g.). However, the acronyms the shipmates use are for titles and instead of fun text phrases they are based on status and certification. Ship acronym/name examples: CO: Commanding Officer XO: Executive Officer FOO: Field Operations Officer Ensign: “Fresh Meat” or Junior Officer Boatswain (Bosun): a Wage Mariner in charge of equipment and the crew GVA: General Vessel Assistant Today was full of events.  I awoke at around 6:02am and went outside to breathe in the fresh air and watch the day break.   After eating yet another delicious breakfast in the mess hall (cafeteria…we aren’t that messy) I was told by the FOO Davidson I would be going out on my first launch.  I was placed on the 3102 which unfortunately does not currently have any hydrographic equipment  (we hope to obtain a scanner this weekend sent from a Pacific Ocean NOAA ship). Today our mission is to go to the shores of Montauk, Long Island and retrieve data from a tidal instrument that was logging the daily tidal changes.  Normally these instruments can be accessed via satellites, however the most recent Nor’ Easter compromised the instruments and made its information inaccessible via the internet.  BGL Rob (Boatswain Group Leader) normally would be taking the helm (steering wheel of boat) and Frank (surveyor) and Ensign  Storm’n Norman also came along.  Ensign Norman is currently learning how to navigate a small ship for a new license so took the helm while BGL Rob supervised (she needs to log so many hours behind the helm before sitting for the exam).  All four of us piled into the 3102 while a massive davit (hydraulic lift) placed the 3102 from the TJ into the Atlantic Ocean. The technology behind the davit blew me out of the water (not really), but it was pretty amazing.  The ship was moving 5.8 mph (you walk about 1.5-2mph) while 3102 was being lifted out of the water. Boatswain Rob gave great tips to Ensign Norman; however, Ensign Norman was confident and very much in control of 3102 and did a fantastic job driving us to and from Montauk.  Once we arrived at Montauk, Frank opened the weather station and a huge amount of water poured out (probably why it wasn’t transmitting data).  It took quite a while to get the information downloaded on the computer we brought, because the system was out of date with current technology (so interesting how fast technology moves). While Frank was on the phone with an engineer stationed in Seattle I walked along the dock and met a lovely gentleman named Joe and his dog, Lil’ Sugar.  Joe was also a captain of a ship and ferried people to and from Block Island.  Joe was a very warm gentle soul who spoke of his years at sea and all of the unique experiences he has been fortunate to have on multiple vessels.  Currently Joe works as a Captain for a whale watching company (apparently Right Whales are migrating).   After my lovely chat with Joe and quick walk around I returned to the group.

Message in a bottle found on Montauk Beach.

Upon returning Frank had found a note in a bottle that a woman named “Karen” had thrown into the ocean and washed ashore in Montauk.  We presumed Karen was from somewhere in Connecticut (based on the cell phone number).  We called her number, but she did not retrieve her phone.   I will say for all of you wistful bottle throwers.  If you do this, make sure you use glass (it doesn’t break down to little plastic bits that fish mistakenly eat for food) and be imaginative with your note (I am not advocating for anyone to throw a bottle into the ocean).  Karen’s was very plain and gave little background or visual.  It was more fun talking with the group and imagining all of the personality and character she may have had (most of this was based on the jar she placed the note in…it was a Trappist Preserves jelly jar).  Trappist Preserves usually retails for $27.00 and is hand-made by monks in an Abbey located in Massachusetts.

Kimberly the Great in front of Acquisition Screen locate off of the Bridge.
Kimberly the Great in front of Acquisition Screen locate off of the Bridge.

When I returned to the TJ I spent the rest of the day (almost 6 hours) in the acquisition room, located on the bridge, with Kimberly the Great.  Kimberly is a seasoned surveyor (meaning she has been aboard the TJ for seven years) and was able to break down each surveying screen in an incredible way.  (Read Nov. 3-4 for a break down of Hydrographic surveying)

Davey Jones Shadow??? Skull and bones shadow in the acquisition room.

Personal Log Breakfast:  2 fried eggs, oatmeal, 1 hashbrown Lunch:  Deli sandwich with coffee Dinner:  Vegetarian “chicken” patty with tomato sauce and cheese, and corn Dessert:  Chocolate Cake (Happy Belated birthday XO!!!)

Paige Teamey: October 31, 2011 – November 1, 2011

NOAA Teacher at Sea
Paige Teamey
Aboard NOAA Ship Thomas Jefferson
October 31, 2011 – November 11, 2011

Mission: Hydrographic Survey
Geographical Area: Atlantic Ocean, between Montauk, L.I. and Block Island
Date:  October 31, 2011


Weather Data from the Bridge

Clouds: Overcast
Visibility: 10 Nautical Miles
Wind: Var.
Temperature 14 ° Celsius
Dry Bulb: 12.0 ° Celsius
Wet Bulb:  8.0 ° Celsius
Barometer: 1228.4 millibars
Latitude: 41°71’58” ° North
Longitude: 072°0’07” ° West

Science and Technology Log

Good Morning Thomas Jefferson!  Today I woke up and felt very spritely.  Even though we were still docked I was excited to see a new city and leave Connecticut’s shores by noon.  I started by walking around New London and learning about its

Halloween Morning on Thames RIver Harbor. Thomas Jefferson is on the left and a U.S. Coast Guard ship is on the right.

history.  New London is a mariners town and is home to a Naval submarine base as well as the United States Coast Guard Academy.  New London was also home to the Eastern shores largest whaling industry in the 1700’s.

After having a glimpse of New London (only 2.5 hours north of NYC) I returned to the Thomas Jefferson and watched as the ship readied herself to leave the dock and begin yet another survey (mapping the ocean floor) of the ocean floors.  While I watched the deck hands, officers, and surveyors ready the ship I asked random shipmates who exactly worked aboard the Thomas Jefferson.  Based on our conversation I was able to make the following chart.  This chart breaks down the five basic groups that are aboard the Thomas Jefferson.  The only person I did not account for is the amazing ET (Electronics Technician), Mike, who helps with all computer and system related problems (there are enough aboard to keep him busy 24/7.

 Who works on the Thomas Jefferson:

Stewards (Kitchen Crew)

Dave cooking a tasty dinner.

Deck Department

Tom repainting the exterior of ship.

Hydrographic Surveyors

Surveying crew (Frank, Matt, FOO Mike, and XO Denise)

Mechanical Engineers

Ivan and Otis manning watch.

NOAA Corp Officers

Ensign Anthony on constant alert in the bridge.
Let’s start with the cooking crew, because food is the best place to begin any conversation. .  Dave, Nester, and Ace are the stewards for this journey and make incredibly tasty meals…even vegetarian ones for me and Shaina (Shaina is on an internship with NOAA while she attends College in Seattle).  The kitchen on a ship is also called the “galley.” The deck department works by maintaining the ship.  The tasks  include chipping and painting (this is important because the sea water is constantly chemically eroding the surface of the ship) moving the launches in and out of the TJ, and keeping the ship balanced as a whole.  The “surveyors…”  this team is quite large and essential to the ship because they conduct and perform all of the seafloor mapping (hydrographic surveying).  The surveyors work around the clock and continually modernize old nautical charts to be used commercially and for recreation purposes. The mechanical engineers or “the heart of the ship.”  The ME’s maintenance the engine, electricity, sewage, water, and keep all life lines to the ship running.  There are multiple positions in the ME department:CME (Chief Mechanical Engineer), licensed engineers, JUE (junior unlicensed engineers) oilers, wipers, GVA (General Vessel Assistants). The officers are essentially the supervisors or parents of the ship.  The officers  “run” the ship in respect to giving directions, deciding where TJ will go, how fast she (all ships are referred to as she) should go, and pull the stops when things aren’t going well or need to be revised.

 What is a scientific research vessel?

So, let’s break it down.  The Thomas Jefferson specifically is used to map sea floors, however it can be called to plane crashes (they saved a pilot last year off of the Florida keys!!) when they go down in the area or ship wrecks.  The Thomas Jefferson, or TJ, has three deployable ships (small ships that can be moved from the larger ship to the ocean).  Two of the deployables are hydrographic survey launches named 31-0-1 and 31-0-2 (aptly named for their position on the ship) and the FRV (fast rescue vessel).  The 31-0-1 and 31-0-2 are used daily to map areas that have shoal bottoms (shoal=ship term used for shallow).  Sadly the 31-0-1 is awaiting a new multibeam scanner so instead is used for small missions like going ashore to pick up mail (this is

Deploying 3102

very exciting for the crew) or retrieving tidal data from instruments that lost power from our Nor’Easter last weekend (this is also exciting because it allows you to go onto land).  TJ is 208ft long (just short of a block).   Thomas Jefferson was the first President to realize the importance of surveying and safe navigation.   Thomas Jefferson’s father, Peter was a land surveyor and was able to emphasize the importance of national surveying to his son.  Thomas Jefferson commissioned the first surveying crew through the U.S. Government and as a result NOAA named their ship after him.

A scientific research vessel basically means I am not on a cruise ship, and unfortunately there is no swimming pool, or drinks with little umbrellas.  Instead it is like a business office on the water. Everybody is working all of the time.  The only difference is that everyone eats and sleeps in the same place they work.  Everybody works in 4 hour “watches.”  If you are the 4-8 watch that means you work from 4am-8am and 4pm to 8pm everyday.  Though this watch may not interest you, I love it because you are able to observe the sunrise and sunset each day.

Red skies at night a sailors delight, Red skies in morning a sailors warning. (SUNSET)

Other watches are from (8am-12pm and 8pm to 12am) and (12am-4am and 12pm-4pm).  Imagine waking up at school, eating breakfast going to school for four hours (let’s say 4am-8am), taking a break and going back to school again for another 4 hours (4pm-8pm) and then going to sleep  only to wake up the next morning to start anew.  On a research vessel work is achieved and performed 24/7.  I can wake up any hour and move throughout the ship to find the “new crew” that are on just beginning their new watch.

How She Moves:

OKAY, so the motion of the ocean (known to me as seasickness).  The motion is kind of like being on the subway and not holding onto anything.  If the subway moves back and forth on a ship that would be called the roll (like you rocking from right to left foot), if we were able to take a subway car and move it up and down that would be known as the heave, if you took the subway car and just tipped it up in the front (bow) and down in the front (bow) this would be known as the pitch and last but not least if you swung the subway car through turn after turn, right to left to right to left again this would be known as the yaw or side to side from port to starboard.  Depending on the weather or if you are anchored (when the ship lets down a chain connected to a huge weight that is pushed into the sand) you can have ALL FOUR motions going at the same time.  Last night while we were anchored offshore, the TJ was rock’n and roll’n and we had yaw, roll, heave, and pitch all while moving in a circle around the anchor…and I sadly was able to see my dinner twice in one evening!

Do I need to go to college to work on a ship?

Some of the positions require technical skills in surveying that can not be acquired without going to college, however the majority of the positions are trades that can be taught in a semester or year-long course.  Many of the wage mariners aboard did not attend college, but instead attended a maritime school for one semester to one year depending on their rank.  Many of the mechanical engineers were trained either in the Navy or at a trades school as well.   There is a maritime school in NYC between Hunts Point and Queens (click on purple/blue mariners school).   If you are interested in becoming a NOAA Corps Officer you will have to graduate from a four-year college/university with a major in any science discipline.  The NOAA Corps Officer training program is also located in NYC.

Interested in NOAA ship jobs:  http://www.sunymaritime.edu/Academics/Continuing%20Education/index.aspx

Learn more about NOAA: http://www.corpscpc.noaa.gov/flash/recruit_video.html

NOAA Student Scholarships:  http://www.oesd.noaa.gov/noaa_student_opps.html

Personal Log

Meals:

Breakfast:  2 fried eggs, oatmeal

Lunch: mac n’ cheese with beans

Dinner:  Tofu curry


Date: November 01, 2011

Weather Data from the Bridge

Clouds: 3/8 Cumulus
Visibility: 10 Nautical Miles
Wind: NW 21Knots.
Temperature 13.9 ° Celsius
Dry Bulb: 13.5 ° Celsius
Wet Bulb:  10.0 ° Celsius
Barometer: 1626.8 millibars
Latitude: 41°08’39” ° North
Longitude: 072°05’43” ° West

Science and Technology Log

First quarter moon

It is late at night and I am sitting on my bunk bed (top bunk) or crouching rather against the wall.  I was given sheets and a pillow from NOAA to use for my trip, however I brought a small blanket my sister bought for me ages ago.  It is true, creature comforts bring smiles and happiness in the quietest moments.  My curtains are swaying back and forth, my coat sways to the same rhythm and there is a small creak from my bathroom door trying to break free from its steal holds.  I just came from outside to breathe in one last crisp breath of air and peak at the first quarter moon shining on the Atlantic waters. It is amazing to look upwards or in any direction above the horizon and observe the celestial nighttime stars brilliantly held in the sky.  Tonight there are no skyscrapers or brownstones blocking my view.

Sunset from the bridge.

At night-time, when we anchor, I find the best position for me to be in, is laying down (or crouching).  This seems the only time my food wants to fight gravity.  We have had smooth sailing thus far (with exception to this evening).

Today I was able to observe and listen to multiple meetings in the “plot room.”  The plot room consists of all of NOAA’s hydrographic surveyors.  Some surveyors were plotting today’s scan while others scoured through old data looking for areas on the most recently made map that were missing information and identifying features on the maps such as rocks, piers, sunken ships, and other interesting features.

True shape of Earth with daily changing tides (shape of Earth is called an Oblate Spheroid, not a circle)

While in the plot room I spent much of my time with James as he amazingly went through all of the many areas of surveying.  One of the major issues of mapping the seafloor is finding the “true depth” of the ocean.  The ocean rises and falls each day due the gravitational effects from the moon (tides).  NOAA and the hydrographic surveyors must take this tidal change into account in order to determine the “REAL” depth of the ocean.  The surveyors must also account for the motions of ship lifting the beam when it is yawing, pitching, heaving, or rolling.

Fire Drill!!

Halfway through my lecture with James the Thomas Jefferson sounded its bell for a fire drill. In school during fire drills everybody vacates the building, however on a boat it is important for “All hands on deck.”  This is when everyone comes to specific areas they have been assigned to on the deck (mine is the bridge or second level).  I met John and Kurt who are also visiting the Thomas Jefferson and we stood in the cold for about one hour as the deck crew pulled three different fire hoses from below and shot them into the water in order to test if they work.  Initially this black brackish water shot out because the hoses had been sitting for so long, but eventually the hoses streamed clear salt water.

Myself and Ivan in our "Gumby" suits.

Upon going inside from the fire drill another bell rang loud and clear calling all persons to deck for a mandatory “man-over-board” drill.  When there is a man/woman overboard everyone is to wear their pfd (personal flotation device or life vest) a warm hat, and bring along their immersion suit (also known as a gumby suit).  I did not know we were supposed to wear a hat, so I looked like the only one trying to not follow orders…whoops.  After the drill I had to try on my gumby suit with Ivan, and wished I could have worn it for Halloween.  The “Gumby” suit floats and is incredibly warm, so if the boat goes down you do not necessarily need a life raft in order to stay warm and afloat.

When I returned to the plot room James had found a ship wreck and was cleaning the image.  When the surveyors clean the images they remove fish, seaweed, or anything that takes away from the seafloor map.

Ship Wreck from aerial view (viewed from above).
Shipwreck profile (from the side). The grey stuff in back is a school of fish that will eventually be removed from the image.

Personal Log

There is an exercise room on deck and I went running after dinner today.  It was really hard to run because not only are you on a machine that is moving, but the machine is located on a boat that is moving.  Even though I was able to run 3 miles, I felt like I had run 5 miles while trying to fight the motions of the ship.  It felt like I was exercising while standing on a roller coaster that was moving.

Exercise Room

Meals:

Breakfast: Grits and scrambled eggs

Lunch:Veggie Lasagna, green beans, Veggie Chili

Dinner:Veggie chili, potatoes

Dessert:  Strawberry shortcake (I had mine without the strawberries…delicious)

Paige Teamey: Introduction and Excitement about Approaching Voyage, October 31, 2011

NOAA Teacher at Sea
Paige Teamey
Aboard NOAA Thomas Jefferson
October 31, 2011 – November 11, 2011


Sailing on the Hudson River Estuary next to Liberty Island.

Greetings, my name is Paige Teamey and I will be sailing on NOAA Ship Thomas Jefferson  as part of NOAA’s Teacher at Sea Program.  I am a graduate of Wheaton College with a double major inPhysics and Environmental Science.  I am a native Oregonian, but have called Brooklyn, NY home for the last eight years.  I love the outdoors and have had many opportunities to explore upstate New York and observe a side of the east coast that is raw and beautiful.  I have a great love for being outside and spending as much time as I can with my family.

I have lived and taught high school earth science, anatomy and physiology, forensics, experimental design, and material science for the past seven years at Brooklyn Academy High School.  I deeply enjoyed the students I taught as well as the faculty and community that existed at  the school and in the neighborhood of Bed-Stuy.

Iridescent Family Science

I departed from Brooklyn Academy this year to follow a passion and help provide students at a younger age access to science and engineering with  Iridescent.   Iridescent is a non-profit science and engineering educational organization located in Hunts Point, NY  where our vision is to use science, technology and engineering to develop persistent curiosity and to show that knowledge is empowering.  Iridescent is a community-based educational outreach organization that supports student growth through lifelong mentorships and community sharing, development, and learning.

Hunts Point is located on a peninsula and is home to the largest food distribution site in the world as well as the largest fish market in the world outside of Japan.  Hunts Point receives enough food annually by ship to feed 30 million people in and around New York City.  Hunts Point is a tidal strait located between the Bronx River and the East River.  Each ship that Hunts Point residential and food distribution port (notice the Bronx River and East River) travels from their homeland bringing products to NYC relies on nautical charts in order to steer around shallow areas, especially at low tides (check out the current moon phase today).  On my voyage with NOAA, I will learn how to conduct seafloor mapping (hydrographic surveying) of Block Island in order to update and generate nautical maps.

95% of our oceans have yet to be explored!!!  Humans have only researched, taken data, and “observed” 5% of our Earth’s watery shores.  Gene Feldman an oceanographer and earth explorer stated it best by describing the ocean as a really a hard place to work in the following statement,

70% of our world contains OCEANS.
70% of our world contains OCEANS.

“In many ways, it’s easier to send a person to space than to the bottom of the ocean. The ocean is dark and cold. In space, you can see forever. Deep in the ocean, you can’t see much. Your light can’t shine very far.”

Life exist in a very small slice on land when compared to the enormous depths of our oceans.

Life on land occurs in a very thin layer from just below the ground to the tops of our tallest trees  (about 1 mile or 20 blocks) .  In the ocean life occurs in every layer where some areas are more than seven miles deep (140 blocks).  NOAA (National Oceanic and Atmospheric Administration) is an amazing organization that has hundreds of scientists and engineers exploring and learning about our oceans everyday.  NOAA shines new light on our oceans unexplored worlds everyday.

For the students and families following my journey Shine your light!!  Be curious with a passion.  Keep your eyes open to the skies, below your feet, into the wind, with every step to school/work or while sitting in silence… question everything.  I look forward to bringing you answers and videos to any questions or any interests you have about my journey.  Click on the words when they are highlighted purple/blue in order to learn more.

You can follow my journey and adventures in this blog and daily ship position via the NOAA Ship Tracker.  Just click on the hyperlink, enter the ship tracker and select the Thomas Jefferson from the drop down menu on the right side of the screen.

NOAA Thomas Jefferson

Stephen Bunker: Sargassum Experiments, 21 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 21 October 2011

Weather Data from the bridge

Time: 11:30 AM
Wind direction: Northeast
Wind velocity: 8 m/s
Air Temperature: 23° C (73° F)
Clouds: cirro cumulus

Science and Technology Log

Net Tow
That's me tending the Neuston net as it's being towed aside the R/V Walton Smith.

One of the many experiments we are doing on board is to learn about a plant that grows in the ocean called Sargassum. This tan plant floats near the surface and along in the current. It grows throughout the world’s topical seas. It can grow into large mats the and can be as large as boats and ships. Sargassum provides an environment for distinctive and plants and animals that are not found other places. These ecosystem rafts harbor many different organisms.

On the third stop of the CTD cycle we drag a Neuston net along side of the boat. For 1/2 hour, night or day, the boat takes a slow turn as we drag the net along the surface as we collect samples.  Almost all of the animals below are what we have found in the Neuston net.

We’ll haul in the net and remove the contents. We’ll first try to get all of the animals out. The animals usually don’t survive but every once in a while we can save them (see below for some of the animals we captured with the net).

We’ll next sort the plant life that we collect in the net. Of course we are looking for Sargassum, so we will separate out all of the sargassum.

So, how do you measure what you get? We measure it by volume much like our mom’s measure shortening for cookies. We will fill up a graduated cylinder part way with water, put the samples from the net into the cylinder and then measure how much water they displace.

For example, if we put 2500 ml of water in the graduated cylinder, then put Sargassum in the cylinder, the water level now measures 5500 ml . We then know that there are 3000 ml  (5500 ml – 2500 ml = 3000 ml) of Sargassum by volume measure.

Everything we collect from the net, we measure and record.

Personal Log — Animals I’ve seen

  • Flying Fish— Yes, believe it or not, there are fish that fly. Last night as were preparing to lower the CTD, I noticed silvery-blue streaks in the water. One of the scientists with me explained that they are Flying Fish (Exocoetidae) and the lights of our vessel attracts them and many other types of fish to the surface at night. As soon as she explained this, one of them shot out of the water and glided about a meter and ducked back into the water. Read more about Flying Fish here.
  • Rock Fish
    This fish was found as we unloaded the Moch net.

    Rock Fish — Each time we drag the Moch Net for the Sargassum survey, we can expect interesting things. Last night we captured a type of Rock Fish.

  • Spotted Eel — We also found an eel that has white spots. I tried my best to see if I could more specifically identify it. We have saved it in an aquarium on board the R/V Walton Smith.
  • Mystery Fish
    Help identify this mystery fish. Make a comment below if you think you know what it is.

    Mystery Fish — This fish has many of us stumped. It has a long nose but when the fish opens its mouth, you can see that the pointy part is connected to its lower jaw. Put your investigative skills to use and help me identify the fish. Post a comment if you think you know what it is. For an enlarged view, click here.

  • Moon Jellies — Many people call them Jelly Fish but actually they don’t belong to the fish family at all. They don’t even have a backbone. When we carefully picked these animals up, with gloves on of course, it feels like picking up Jello with your hands; it just slips through your fingers. You can find more about Moon Jellies, Aurelia aurita, at the Monterey Bay Aquarium. You can also find general information about Jellyfish at National Geographic Kids.
  • Sharptail eel
    This eel was found when we were collecting Sargassum.

    Sharptail eel — It’s about half a meter in length and squirms all over. The scientist studying the Sargassum, has saved it in an aquarium so we can observe it. Its scientific name is Myrichthys breviceps.

  • Honey Bee — Believe it or not a honey bee joined us. There was no land in view and a honey bee landed on me. The wind must have blown the bee to sea and it was probably very happy to find a place to land that was not wet.
  • Porpoise — We also call these dolphins. Sometimes a pod of porpoises will get curious and  investigate our boat. They will circle us, swim along side and even ride our bow wave.

Mark Silverman: Introduction: Prior to Fall Groundfish Survey Cruise, October 28, 2011

NOAA Teacher at Sea
Mark Silverman
Aboard NOAA Ship Oregon II
November 11 – 21, 2011

Hi.  My name is Mark Silverman and I will be sailing aboard the Oregon II beginning November 11, 2011. I  am a graduate of the University of Florida with a Bachelors of Science in Zoology.  I am an avid fisherman, snorkeler and SCUBA diver and a general outdoor enthusiast with a great love for the ocean and a fascination with all types of science.

Diving in the Kerama Islands off Okinawa Japan last summer.

I am currently teaching Chemistry at Homestead Senior High School, Homestead, FL.  Homestead Sr. serves about 2500 9-12 graders, a mix of urban and rural populations, at the the extreme southern tip of the Florida mainland.  I have been teaching since 1985, the last 16 years at Homestead Senior.

In my classroom.

South Florida is a unique environment in the U.S.  The climate is subtropical and many unique animals and plants are found here that are found nowhere else on the U.S. mainland.  We are surrounded by the waters of the Atlantic Ocean, Caribbean, Florida Bay, and the Gulf of Mexico.  Two national parks, Everglades National Park and Biscayne National Park, bound the east and west sides of Homestead.  Additionally, the northern terminus of the only living coral barrier reef adjacent to the U.S. mainland is found off our coast.  So, you can easily see why the ocean is so important to our way of life.  Ocean and climate literacy is extremely important in South Florida and as such I’m very excited to be participating soon in my second Teacher at Sea adventure!  Since I will be sailing during the school year this time, my students will be more even intimately involved than in the past.

That’s me “surfing” a whale shark this summer off of Tori in Okinawa, Japan!! ( I was not actually riding or injuring the animal in anyway…just a cool photo angle). Photo by: Chad Galvez

For those of you new to Teacher at Sea and Teacher at NOAA, I would like to share a little.  NOAA stands for National Oceanic and Atmospheric Administration.  NOAA is responsible for a wide variety of important functions, throughout the United States and the world, related to oceans, weather, and climate, including, but not limited to creating weather reports, tracking hurricanes, studying long-term climate, mapping the sea floor, creating nautical charts, studying fisheries with sustainable use as the goal, and managing MPA‘s (Marine Protected Areas).  NOAA Teacher at Sea is a program that promotes Ocean and Climate Literacy and NOAA career opportunities by allowing educators to participate in actual scientific research aboard research vessels and then bring back what they have experienced and learned to their classrooms.  I was a Teacher at Sea for the first time in the summer of 2006 aboard the NASA Ship MV FREEDOM STAR, where I assisted with a grouper and lionfish survey off the southeast coast of the United States (Yes, lionfish, a non-native species, but more about that later).

On the bridge of the NASA ship MV FREEDOM STAR in 2006.

After being involved with the development of NOAA Teacher in the Lab in 2007, I spent two summers, 2009 and 2010 at the Southeast Fisheries Science Center (SEFSC) on Virginia Key, Florida, as a pilot Teacher in the Lab.  There, I worked under the direction of Dr. Trika Gerard in the Early Life History Lab.  My work included identifying, counting, and sorting juvenile fish samples from Brewer’s Bay in the U.S. Virgin Islands.  The second summer I also extracted otoliths (ear bones…I will tell you more about otolith chemisty in the near future too) and prepared them for radioisotope analysis.  Subsequently the lab group hosted my students on several occasions during a fantastic field trip!  Working with Dr. Gerard, her lab manager Estrella Malca, and the many other professional scientists at SEFSC was a unique and wonderful experience which gave me a true insight into the work they do on a daily basis.  While I was there in 2010, the BP Gulf Oil spill crisis was going on.  Although this was a truly tragic event, watching these professionals mobilize in a crisis was an incredibly exciting and fascinating experience!

Snapper otolith after extraction and cleaning.
Extracting otoliths at NOAA SEFSC Juvenile and Larval Fishes lab in 2010.
Sorting and identifying fish samples at SEFSC in 2009.

I truly look forward to another great experience with NOAA TAS!!  I will be sailing out of Pascagoula, Mississippi aboard the NOAA ship Oregon II, a 170 foot trawler, set up as a fisheries research vessel.  I will be participating in a leg of the Fall Groundfish Survey.  This yearly survey monitors bottom fish in the Gulf of Mexico and is

The Fall Groundfish Survey area.

an important fisheries management tool. You can follow my journey and adventures in this blog and via the NOAA Ship Tracker.  Just click on the hyperlink, enter the ship tracker and select the Oregon II (R2) from the drop down menu on the right side of the screen.

The OREGON II.

I look forward to your virtual participation and comments!

 

Stephen Bunker: Science Experiments on the R/V Walton Smith, 20 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 20 October 2011

Weather Data from the Bridge

Time: 11:39 AM
Wind direction: North-northwest
Wind velocity: 4.5 m/s
Air Temperature: 23 °C (75° F)
Clouds: Alto cumulus

Science and Technology Log

We left port today at about 6:30 AM, before the sun had even come up. We are  headed out to the Florida Keys. The rain has stopped as well as the wind. We left Miami Harbor as the sun was coming up.

Our scientific research will take place along the Florida Keys, a chain of low-lying  Islands that arc around the southern tip of Florida. The R/V Walton Smith will stop at predetermined stops and take measurements.

There are many science experiments happening on board. In each post, I will try to highlight a different experiment. I’ll start off with the CTD  because it is the experiment that drives our schedule throughout our cruise.

The Conductivity, Temperature, & Depth Instrument. Everyone on board calls it the CTD for short. The CTD schedule is our game plan. At about every 3 -5 hours — night and day —  we’ll cycle through a series 3-4 CTD drops.

Lower CDT
These are the instruments on the lower part of the CTD.

On the bottom of the CTD are a number of instruments that give real-time data to a scientist on board the boat. The conductivity part of the instrument measures how much electricity passes through the sea water. Using a mathematical algorithm that takes in account temperature and how much current passes through the water, we can determine the density (salinity) of the water.

Full CDT
The CTD on deck. The grey tubes fill with water.

The top part of the CTD has 12 cylinders that can trap water. Those are the grey tubes you see in the picture to the left. There are lids on the top and bottom of each tube that can be closed with a remote control from inside the boat. In this way the scientists can take water samples from any depth of water.

So, when we arrive at one of these predetermined location we’ll lower the CTD.

Once the CTD is just below the surface of the water and everything checks out, the scientist will radio to the crane operator to lower the CTD to within a meter of the bottom of the ocean. That can be anywhere from 5 meters to over 100 down. As the CTD lowers, the scientist monitors the CTD instrument real-time readouts. Using a graph of the data, he or she will decide at which locations to close the cylinders on its return trip to the surface.

CDT Control Center
Nelson monitors the CTD data as it is collected.
Water sample processing
Cheryl is processing water samples from the CTD.

Once it surfaces, we’ll  assist in placing the CTD back on the deck and securing it. We’ll then take water samples from the grey tubes. Those water samples will be analyzed in one of the laboratories on the boat. The water samples will show us chemical properties of the water.

Personal Log

Teamwork works! It takes a lot of teamwork to make things happen on board. Guiding the boat to the precise locations is the easy part for the crew. They have a GPS to help them do it. After they get there they have to maintain the location. That’s hard when currents, wind and waves, move the boat which is the size of a house. Then they delicately raise and lower the CTD.

Dave Diving
Crew member Dave preparing to dive in order to remove ropes caught in the ship propeller.

If something happens, they also need to fix it. They can’t drive it to a repair shop. They have to fix things on the spot. During the night, some ropes from lobster traps got tangled into one of the propellers. One of the crew put on scuba gear, got in the water, and removed the ropes.

The group of scientists have been organized into a day shift from 7:00 AM to 7:00 PM and the other half is on the night shift for 7:00 PM to 7:00 AM. This can be uncomfortable to have to stay awake all night, but it also means they have to sleep during the day. The day shift will also have a heavier work load because there are additional experiments that have to be done during the sunshine.

The bridge of the SV Walton Smith
Crew member Bill at the helm of the R/V Walton Smith

Cathrine Fox: Issue Sixteen: Lumpsucker (there is no more perfect title)

NOAA TEACHER AT SEA
CATHRINE PRENOT FOX
ONBOARD NOAA SHIP OSCAR DYSON
JULY 24 – AUGUST 14, 2011


Mission: Walleye Pollock Survey
Location: Kodiak, Alaska
Date: October 25, 2011

Personal Log:
"It's not a party without a lumpsucker?"
“It’s not a party without a lumpsucker?”
What is the best birthday party you ever had? Let me set the stage for you to picture mine. It was a theme celebration: the guests came as a superhero or supermodel. Everyone was in costume. Balloons covered the floor. People brought so many flowers that I started putting them in washed out mayonnaise and pickle jars. The cake was homemade: I can’t now remember if it was chocolate oblivion or an upside-down fruit. I just remember that it was made from scratch. There were prizes for the best costumes. People danced for hours. I didn’t think that it could have ever gotten better. Until recently. Recently, I discovered lumpsuckers. For all of these years, I had no idea that my 29th could have gotten any better. Until now. Now I know that It’s not a party without a lumpsucker (Cartoon citations 1, 2 and 3).

Adventures in a Blue World, Issue 16
Adventures in a Blue World, Issue 16


Smooth and spiny lumpsuckers.
Smooth and spiny lumpsuckers.

I should explain why I chose a squishy dumpling with fins for the final cartoon of Adventures in a Blue World. It isn’t because my 29th birthday balloons should have been adorned by adorable fish (although admittedly they would have been grand). It is because, once again, I have found yet another inhabitant of our planet that I was ignorant of. As a biology teacher, I like to think that I have a fairly good handle on life, especially of our Animalia Kingdom. Who could have guessed, in their wildest dreams, that there were creatures like the lumpsucker that inhabit our oceans–our planet? With only 3% of the oceans explored, I can’t even fathom what else is out there. If we don’t explore, catalog and protect our oceans, we may never know.

I want to thank the Teacher at Sea Program of NOAA for an excellent and amazing adventure. In particular, the crew of the Oscar Dyson, the scientists of MACE, my fellow Teacher at Sea (rockstar) Staci DeSchryver and Elizabeth McMahon deserve special recognition. Thank you all so much.

Until our next adventure!
I wish you fair winds and following seas, a sailor’s farewell…

Cathrine Prenot Fox

Last evening: green flash watch.
Last evening: green flash watch.
Leaving Kodiak, AK.
Leaving Kodiak, AK.
Before I left I may have tagged some of the hard hats with cartoons...
Before I left I may have tagged some of the hard hats with cartoons…

Cathrine Fox: Issue Fifteen: So you want to be a scientist…

NOAA TEACHER AT SEA
CATHRINE PRENOT FOX
NOAA SHIP OSCAR DYSON
JULY 24 – AUGUST 14, 2011

Mission: Walleye Pollock Survey
Location: Kodiak, Alaska
Date: October 20, 2011

Personal Log:
Perhaps you are sitting at your desk right now, contemplating finishing work that you probably should be doing, or putting the last touches on a college application, or wondering if anyone brought any treats to share that are sitting in the lounge waiting your attention. Maybe it is late at night, and you are wishing that your work tomorrow was just a little more exciting.

Winslow Homer, Breezing Up.  National Gallery of Art.
Winslow Homer, Breezing Up. National Gallery of Art.

What if your work tomorrow looked like this? Why not choose a life at sea instead? Think of this: thousands before you have gone off to sea… …and while it isn’t as romantic as it once was with pirate attacks and years away from home, it is now a lot more comfortable. Perhaps you have always dreamed of becoming a commanding officer of a ship, or a boatswain, or an engineer… How does one do it? How do you get to live, work, and learn through the National Oceanic and Atmospheric Administration? Look no further friends, I have just the right reading material to get you started: So you want to be a scientist? (Cartoon citations 1, 2 and 3).

Of particular interest to me (not surprisingly) are the opportunities for science research and exploration. I was captivated by Dr. Edith Widder’s research about bioluminscence, interested in the 2004 Titanic Expedition, and humbled by the wealth of knowledge presented in interviews with people from a variety of ocean careers.

Adventures in a Blue World, Issue 15
Adventures in a Blue World, Issue 15

Until our next adventure,
Cat

Kodiak Harbor
Kodiak Harbor
Measuring Walleye Pollock.
Measuring Walleye Pollock.
Dawn on the Dyson
Dawn on the Dyson
Bobble-heads on the Bridge.
Bobble-heads on the Bridge.
Insert your photo here: Life at Sea!
Insert your photo here: Life at Sea!

Stephen Bunker: Weather Delay, 17 October 2011

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

Mission: South Florida Bimonthly Regional Survey
Geographical Area: South Florida Coast and Gulf of Mexico
Date: 17 October 2011

Weather Data

For this blog entry I’ll give a brief report for weather. I’m still learning my way around the ship and and how to find where weather data is recorded.

It’s overcast with light rain.

Science and Technology Log

When I arrived at the RV Walton Smith I learned that our cruise would be delayed a couple of days because of weather. So I’m not out on the Ocean yet. In the Gulf of Mexico between Florida and the Yucatan Peninsula a combination of cold fronts and moist air are creating rain, rough seas, and wind that would make data gathering dangerous in the Florida Keys. Safety first is the motto.

AOML Photo
NOAA's Atlantic Oceanographic & Meteorological Laboratory (AOML)

Coincidentally, just across the street from where the RV Walton Smith is docked is the Atlantic Oceanographic and Meteorological Laboratory (AOML). At the AOML this day meteorologists, scientists that study how the atmosphere and how it affects the earth and life on the earth, were interested in getting as much information as they can about this storm system. When the rest of us are taking cover from a storm, these scientists are out gathering data so they can better predict when and how storms act.

Both the meteorologists from AOML and our team of scientist were interested in this storm system for different reasons. They wanted to study the storm and we wanted to know if we could safely leave to do our scientific research. Our lead scientist for the cruise, Nelson Melo, invited me to attend a map discussion where the weather conditions were discussed. A map discussion is a meeting where scientists view, discuss, and decide what they can learn from a storm.

Map discussion at AOML
Map discussion at AOML

It was great to see that their satellite images of the storms were on the web were everyone can see them. Here is a sample of what they showed in the meeting.

Storm system over Gulf of Mexico
Animation of storm system over the Gulf of Mexico
NOAA 42
NOAA 42 Aircraft

This storm is headed toward Florida and has the possibility of growing into a tropical storm. In any case, we can plan for more rain, wind, and rough seas until it passes. The AOML scientists decided to request one of NOAA’s aircraft to observe the storm and we are going to stay put until the storm passes.

Personal Log

The soonest we could leave would be Thursday. The crew of the RV Walton keeps busy maintaining and keeping the vessel in top shape for when we do leave. I don’t feel much rocking while the boat is in dock.

Jacquelyn Hams: Introduction 17 October 2011

NOAA Teacher at Sea
Jackie Hams
Aboard R/V Roger Revelle
November 6 — December 10, 2011

My name is Jacquelyn (Jackie) Hams and I  am an Associate Professor and Chair of the Earth Science Department at Los Angeles Valley College (LAVC).  LAVC is a two-year college within the Los Angeles Community College District which consists of 9 major campuses, several satellite locations, and over 120,000 students.

Photograph of TAS Jackie Hams
Teacher at Sea Jackie Hams with the St. Croix River in the background.
This photograph was taken in October 2011 during the Geological Society of America Annual Meeting in Minneapolis, MN.  The St. Croix River which flows between Minnesota and Wisconsin is in the background.  In just a few weeks my background photos will look significantly different as I embark on my NOAA Teacher at Sea experience in the Indian Ocean.

I am participating in an investigation of ocean-atmosphere interactions in the equatorial Indian Ocean involving meteorologists, oceanographers, and climate scientists from 13 countries called Project DYNAMO (Dynamics of the Madden-Julian Oscillation).   The Madden-Julian Oscillation (MJO) is a 30-90 day tropical weather cycle that starts over the equatorial Indian Ocean and moves eastward into the western Pacific Ocean where it impacts other  global weather and climate patterns such as El Nino-Southern Oscillation (ENSO),  Asian monsoons,  tropical storm development in the Pacific and Atlantic oceans, and Pineapple Express events.  Specialized instruments will be deployed and operated on ships, aircraft, and islands in the Southern Indian Ocean, Maldives Islands, Diego Garcia British Indian Ocean Territory, and the Eastern Indian Ocean to collect data and study the MJO at its source.

 I am a Teacher at Sea on Leg 3 of a research cruise aboard the R/V Roger Revelle in the eastern Indian Ocean which is scheduled from November 6 – December 10 beginning and ending in Phuket, Thailand.  My students are not just following my adventures via this blog – I will be teaching the last 5 weeks of my Oceanography and Physical Geology classes from the ship.  This Teacher at Sea experience is also about learning in real-time and will be a true test of Distance Education!
Photograph of the Research Vessel Roger Revelle
R/V Roger Revelle. Image credit: Scripps Institution of Oceanography

Here are some great general Project DYNAMO links to bookmark and follow Leg 3 of the cruise.

  • DYNAMO Home Page.  Select the DYNAMO Field Catalog menu on the left, then the Reports menu at the top of the page to view the latest report from the R/V Roger Revelle.  You can also view the latest satellite imagery in the Indian Ocean. http://www.eol.ucar.edu/projects/dynamo/

Please remember that I am a TEACHER at Sea and therefore, yes, there will be a quiz at the end of each of my posts.

To begin, test your knowledge of the geography of southeast Asia and see if you know exactly where Phuket Thailand is located.

Stephen Bunker: Introduction, 11 October 2011

Photo of Stephen Bunker
NOAA Teacher at Sea Stephen Bunker

NOAA Teacher at Sea
Stephen Bunker
Aboard R/V Walton Smith
October 20 — 24, 2011

The time is quickly approaching for me to start on my NOAA Teacher at Sea voyage. Before I head off I should tell a little about myself. I’m a 3rd grade teacher at Northridge Elementary in Orem, Utah. In my previous 18 years of teaching, I’ve taught students ranging from kindergarten through 6th grade. Of all the subjects I teach, I think science is the most fun.

I’ve participated in many professional development opportunities, but I think this will be the most unique. Living at sea on a NOAA ship doing research with scientists and then sharing what I experience and learn with others will be  loads of fun.

In addition, I’ll be at sea when my students are in school. So, “Hello class!” I’m hoping they follow this blog. If you have a question for me, please post a comment below. I’ll make sure to respond either from ship or when I return.

RV Walton Smith
This will be my home for 5 days.

I’ll be aboard the R/V Walton Smith for a week. The RV Walton Smith is based in Miami, Florida and we will be doing a Hydrographic Survey. That’s science speak for measuring and collecting data about ocean features such as temperature, water clarity, microscopic plant and animal life and currents and tides. The scientists are interested in learning how the Deepwater Horizon oil platform accident is affecting the plant and animal life in the Florida Keys.

It takes a lot of planning to get ready for this type of voyage. Our lead scientist has made a map of the area where we will be.

A map showing where we will do our research.

Check back, because the next time you’ll hear from me will be from the Florida Keys.

Kaci Heins: Final Blog, October 7, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Farewell Alaska

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Friday, October 7, 2011


Weather Data from the Bridge

Clouds: Partly Cloudy  1/8
Visibility: 10+ Nautical Miles
Wind: 4 knots
Temperature
Dry Bulb: 8.5 degrees Celsius
Barometer: 1018.5 millibars
Latitude: 54.47 degrees North
Longitude: -132.32 degrees West

Science and Technology Log

One of the Main Engines

Every day we tend to take for granted the simple things in life such as having electricity to power to charge our cell phones, to be able to turn on the water whenever we need a drink, or to make sure the toilets flush in the restroom.  When we are on a ship at sea for a long period of time, it is important that all of these systems that impact of our daily life are functioning properly.  We cannot take an extension cord and run it from the port to wherever we are heading so that we have electricity.  The Rainier, like any other ship, is like a floating city and is self-sufficient in its abilities to generate its own electricity, create and store its own fresh water, process its own sewage, and still get to where it needs to go.

There are two 12 cylinder two-cycle diesel engines that power the ship.  Each engine is geared independently to individual propeller shafts.  This means that the ship can actually be steered by adjusting the pitch or “bite” of the propellers.  The average speed for the Rainier from these engines is about 12 knots.  Power is generated on the ship through two 415 kilowatt, 450 volt, 3 phase, 60 cycle generators, which are driven by the diesel engines.  The generated voltage is stepped down through transformers to supply the 120-volt power for lighting, appliances, and electronic equipment on the ship.  The heat rejection from the diesel engines is also used for the evaporators which help produce the ships water.

Engine for the Generator

There are two water storage tanks that can hold up to 8390 gallons of water.  This amount of water will only last us a couple of days because the ship uses about 2000 gallons of water a day.   There are two flash type distilling plants that generate our potable water, which converts sea water into our fresh water for the ship.  They are able to convert around 6000 gallons of fresh water a day for all of the needs of the ship.  Hot water and steam for our needs are provided by two pressurized hot water boilers that use diesel fuel to heat the water up to around 360 degrees Fahrenheit.

Hot Water Boiler

All of these various systems and machinery are the lifeblood of the ship.  They help provide the basic needs for the crew in order to survive for long periods of time at sea and for the ship to fulfill its mission. Without the engineers monitoring and maintaining the ships equipment we could not accomplish the tasks required of the ship .  There is extensive amounts of hands-on experience and training that comes with this territory of keeping the ship alive.  This training can come from collegiate academies, prior military service, trade schools, or wanting to come into an entry-level position to experience life at sea.

*Special thanks to Cliff Elsner for giving me an extensive tour of the engine room and helping me share this information about the heart of the ship.

Personal Log

Rainbow During a Survey

It’s funny how a person adapts to their environment over time.  I was so excited to be going to Alaska to take part in this experience, but I had no idea what it would be like or how much I would learn.  Noises that were beyond annoying at the beginning of the trip become a constant humming that the Rainier shares each day.  The vibrations and gentle sway that would keep you up until the wee hours of the morning, start to rock you to sleep each night in preparation for the days work ahead.  However, there are times when she may want to rock, but the Pacific Ocean wants you to roll. Then there isn’t much sleep to be had.  The weather would like to break the Rainier, but she is a floating fortress of steel that continues on knowing there is a job to be done.  It is a constant rhythm with this ship.  The waves keep time and rarely does anyone miss a beat.  The pulse and the life of the ship stay in complete sync.   With everyone doing their part we come to the finale as we finish the last day of work and pull into port.  There is a welcomed intermission between journeys as we head into Ketchikan, Alaska.

I did see a moose in Alaska!

I am so grateful for this experience to see Alaska, to see the wildlife, and to see what hydrographic surveying is all about.  However, I never imagined I would meet so many wonderful people on this ship.  Each person I came in contact with had wonderful characteristics, personalities, and skills to share.  I admire what each person has to contribute from every department on the ship.  If they were not here then the ship would not function to its fullest potential and complete its mission.  I am thankful for each handshake, each ear to ear smile, the jokes played on each other and myself, the hearty laughter at dinner that keeps us all sane, the hugs of support, the high fives of accomplishment, but most importantly the many lessons that you have taught me that I will keep with me for a lifetime.  I love this ship, I love this crew, and I loved this experience.  Thank you to everyone that made this possible.

Thank You Rainier!

Interview with the Captain

Crew Interviews

Animals Spotted!

Blue Heron

Whales (Species Unknown)

Sea Otters

Question of the Day

Kaci Heins: Surveying and Processing, September 30 – October 3, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mrs. Heins Taking a CTD Cast


Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Tuesday, October 4, 2011


Weather Data from the Bridge

Clouds: Overcast 7/8
Visibility: 8 Nautical Miles
Wind: 21 knots
Temperature
Dry Bulb: 12.0 degrees Celsius
Barometer: 997.0 millibars
Latitude: 55.23 degrees North
Longitude: -133.22 degrees West

Science and Technology Log

Watching The Sonar

I was able to go out on another launch boat Sunday to collect survey data.  It was a beautiful day with amazing scenery to make it by far the best office I have ever been too.  Despite the fact that the ship is usually “off the grid” in many ways, the location of their work environment, or office, in Alaska is visually stunning no matter where you turn.  Keeping your eyes off the cedar trees and focused on the sonar in a launch can be challenging at times!  However, when there is a specific job to be done that involves time and money, then the scenery can wait until the job is finished.  During Sunday’s launch survey we had to clean up some “Holidays” and acquire some cross line data.

View Of the Data Acquired For the Ship On The Bridge

The word “Holiday” might lead to some confusion about what you might think we are doing when you read that word.  Holiday =vacation right?  In this case it is when there is a gap, or missing information, in the survey data that is acquired.  This poses a problem for the survey technicians because this leaves holes in the data that they must use for their final charts.  Holidays can be caused by the boat or ship being off the planned line, unexpected shoaling (or where the water gets shallow) so the swath width decreases, or a slope angling away from the transducer so that a return path for the sound wave is not possible.  The speed, direction, weather, swells, rocking of the boat, and the launches making wider turns than anticipated. It is easy to see where holidays occur as we are surveying because amidst the rainbow of color there will be a white pixel or square showing that data is missing.  When we are finished surveying or “painting” an area, we communicate with the coxswain where we need to go back and survey over the missing data or holidays.  If there are holidays or data is missing from the survey, then the survey technicians must explain why the data is missing in their final Descriptive Report.  This document covers everything that was done during the project from how the area was chosen to survey, what data was collected, what data wasn’t collected and why.  This is where holidays are explained, which could be due to lack of time or safety concerns.

Ship Hydrographic Survey

This launch was a little different because we were cleaning up holidays from the Rainiers’ multibeam.  Not only do the smaller survey boats collect sea floor surface data, but the Rainier has its own expensive multibeam sonar as well.  The ships sonar is called a Kongsberg EM 710 and was made in Norway.  Having the Rainier fitted with a multibeam sonar allows the ship to acquire data in deeper water and allows for a wider swath coverage.  The lines that are surveyed on the ocean floor are also much longer than those in a launch.  This means that instead of taking around 5-10 minutes to acquire a line of data, it can take around 30 minutes or more with the ship.  This is great data because again, the ship can cover more area and in deeper water. We also took the ships previous data and ran cross lines over it.  The importance of running a cross line over previous survey data helps to confirm or deny that the data acquired is good data.  However, there is a catch to running a cross line.  To confirm the data they have to use a different system than what was used before, the cross line has to be conducted on a different day, and it has to be during a different tide.  All of this is done to know for sure that the data is acquired has as few errors as possible before the projects are finished.

Rainier Multibeam Sonar

Personal Log

Each day when the scientists go out and survey the ocean floor they acquire tens of gigabytes of information!  The big question is what is next after they have acquired it all?  When they are on the launch they have a small external hard drive that holds 500 gigabytes to a terabyte of information plugged into their computer.  At the end of the day all their information and files are downloaded to this hard drive and placed in a water tight container in case it happens to get dropped.  Keeping the newly acquired data safe and secure is of the utmost importance.  Losing data and having to re-survey areas due to a human error costs tens of thousands of dollars, so everything must get backed up and saved constantly.  This is where I have noticed that computer skills and file management are so important in this area of research.

Once we get off of the boats the data is brought upstairs to what is called the plot room.  This is where all the survey technicians computers are set up for them to work on their projects.  The technicians that are in charge of downloading all the data and compiling all the files together is called night processing.  There are numerous software programs (tides, CTD casts, POS, TPU, Hypack,) and data from these programs that all have to be combined so that the technicians can produce a finished product for the Pacific Hydrographic Branch (part of Hydrographic Surveys Division), who then process the data some more before submitting to Marine Charting Division to make the final chart. The main software program that combines all the different data is called Caris and comes out of Canada.  Once all of the data has been merged together it allows the technicians start cleaning up their data and produce a graphic plan for the launches to follow the next day.  Every movement on the keyboard or with the mouse is very important with surveying because everything is done digitally.  Numerous new files are created each day in a special way so that anyone that reads the name will know which ship it came from, the day, and the year.  File management and computer skills are key to keeping the flow of work consistent and correct each day.

Hydrographic Survey Data In Caris

We have also had numerous fire drills while on the ship.  This is very important so that everyone knows where to go and what to do in case of an emergency.  They had me help out with the fire fighters and the hose this time.  I learned how to brace the fire fighter so that the force from the hose doesn’t knock them over.  I never knew that would be an issue with fire fighting until this drill.  I learn so many new things on this ship every day!

Fire Drill Practice

Student Questions Answered


Kingfisher

Animals Spotted

Kingfisher

Sea Otters

Question of the Day

Cathrine Fox: Issue Fourteen: Late Night Television

NOAA TEACHER AT SEA
CATHRINE PRENOT FOX
NOAA SHIP OSCAR DYSON
JULY 24 – AUGUST 14, 2011


Personal Log:
Late night television=brain torture. I think late night t.v. might be designed to shrink brain neurons: shopping networks, exercise shows, self help and reality programs. Some studies have even linked watching late night t.v. to obesity and sleep deprivation. I’d rather stab myself with a butter knife than be trapped on a couch watching a self help guru in the middle of the night… …On the Oscar Dyson, though? You couldn’t drag me away from the 4:30 a.m. screen, as it shows a live feed of the floor of the ocean 100 meters below us.

The camera drops were just one part of the night-time research aboard the Oscar Dyson. Dr. Jodi Pirtle, a post doctoral research associate at the University of New Hampshire Center for Coastal and Ocean Mapping, utilized her lab hours to explore and document “untrawlable” portions of our survey area. Rocky bottoms, pinnacles, shelves… …all make it difficult to drop a net down to get an accurate reading of groundfish diversity and abundance without destroying the net.

Throughout the night the ship maneuvers tight turns to provide high resolution acoustic signals of the bottom. My fellow Teacher at Sea, Staci DeSchryver, describes the ship’s movements as akin to “lawn mowing.” My father, watching the NOAA ship tracker online after one of these sessions, asked if the captain had had one too many cocktails (absolutely not, by the way). These turns, in addition to making me sleep like a baby, provide an overlapping and highly accurate map of the ocean floor. Below is a multibeam image of a seamount (underwater mountain) mapped during the 2004 Gulf of Alaska Seamount Expedition.

"In this multibeam image of Ely Seamount, the caldera (aka the Crater of Doom) is visible at the apex of the seamount." Image courtesy of Jason Chaytor, NOAA
“In this multibeam image of Ely Seamount, the caldera (aka the Crater of Doom) is visible at the apex of the seamount.” Image courtesy of Jason Chaytor, NOAA

After a night of intensive napping, I mean mapping, I go on shift at 4am. I know I have mentioned this before, but I have the best job in the world: my first task in the morning is helping with camera deployment. I am sure you will agree after checking out Issue 14 that several camera drops equal the best Late Night T.V. I have ever seen (Cartoon citations 1 and 2).

Adventures in a Blue World, Issue 14
Adventures in a Blue World, Issue 14

Until our next adventure,
Cat

Retrieving the camera. Snakehead.

Not to be redundant, but the best job ever.
Not to be redundant, but the best job ever.

Marian Wagner: My Final Words and Hurricane Irene’s in Charge, August 23, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: Tuesday, August 23, 2011

A Fine Bunch to Live with at Sea: Front: Katie Rowe (Scientist), Sarah Goldman (Scientist Watch Chief, Night), Stephen Long (Scientist), Warren Mitchell (Lead Scientist). Middle: Marian Wagner (Teacher-at-Sea), Shelly Falk (Scientist), Christina Schobernd (Scientist, Video). Back: John Bichy (Marine Technician), Richard Huguley (Engineer), Harry Carter (2nd Mate), Raymond Sweatte (Captain), Michael Richter (1st Mate), David Berrane (Scientist Watch Chief, Day), Mike Burton (Scientist). Missing: Joel Formby (Master of the Galley)

Weather Data from the Bridge (the wheelhouse, where the controls of the ship are)

E-NE Wind at 10 knots  (This means wind is travelling 10 nautical miles per hour,
1.15 statute miles = 1 nautical mile)

Sea depth where we traveled today ranged from 33 meters to 74 meters

Seas 2-4 feet (measure of the height of the back of the waves, lower the number = calmer seas and steadier boat)

Science and Technology Log

IRENE: On Tuesday evening, we discussed the impact of Hurricane Irene on our cruise plans, and scientists and crew needed to make a decision about when we should return to dock. Originally, the plan was to return in the morning on Friday, August 26, but due to projections of Irene, they predicted that the seas would be too rough for us to lay traps beyond Wednesday (8/24).  When the seas are too rough, the traps bounce around and cameras do not pick up a steady, reliable picture.  When seas get to be 6-7 feet+ on a boat the size of the R/V Savannah (92 feet long), it also makes our work (and life) on the boat very difficult. Additionally, with Irene’s landfall projected in North Carolina, where half of the scientists live, they would need to get home in time to secure their homes and potentially evacuate.  Not in the case of Irene, but if a hurricane was expected to hit Savannah/Skidaway, where the boat moors, the ship’s crew would need to prepare for a hurricane-mooring.  To do this, they would run the ship up the Savannah River and put on a navy anchor that weighs 3,000 pounds.  Even with the use of the electric crane, it’s not an easy task to pull a 3,000 pound anchor onboard.  This would not be done unless a direct hit to the area was expected.  It has been done once before to the Savannah in the 10 years of her existence.  The forecast did not project Savannah to be affected by Irene, so we did not need to prepare for a hurricane mooring.

After difficult deliberation on Tuesday night about hurricane Irene’s potential Category (see how hurricanes are ranked here), and considering the success of the research accomplished on the trip already, scientists decided the most practical and reasonable decision was to dock Tuesday night, unpack Wednesday morning, and allow North Carolina scientists to return to their homes by Wednesday night.  (From reports I received post-Irene, there was landfall of the hurricane eye over their houses, but the storm weakened between Wednesday night and Saturday and was Category 1 when it came ashore.  None of them sustained significant loss.  Many downed trees and three days without power, but no floods or structure damage. Phew!)

NOAA’s National Weather Service is the sole official voice of the U.S. government for issuing warnings during life-threatening weather situations.  Follow Seattle’s “Weather Story” at NOAA’s National Weather Service.

OUR RESEARCH PROCESS…A STORY CONCLUDED

Here on my final blog entry, I want to finish the story of our research process.  Here’s the story I’ve told so far, in outline form:

  1. research begins with baiting fish traps and attaching cameras, and we stand-by on deck
  2. when we arrive at a research location with reef fish habitat (as observed via depth sounder and GPS), we drop the trap to the bottom and it sits for 90 minutes; buoys float above each trap so we can find and retrieve them near where traps were deployed, we run the Conductivity, Temperature, and Depth Profiler (CTD) to get information about abiotic conditions at each sampling site. The CTD takes vertical water column profiles, measuring: Pressure, Temperature, Conductivity/Salinity, Chlorophyll fluorometer, Color dissolved organic matter fluorometer (CDOM), Photosynthetic Active Radiation (PAR), Backscatter, Dissolved oxygen, and Transmissometer -10 and 25 cm path lengths
  3. after 90 minutes have passed, we return to the traps and pick them up, and secure the fish caught
  4. we identify each fish, measure length, weight, and frequency (how many fish were      caught), and then keep the fish that our research is targeting
  5. in the wet lab, we dissect target fish, removing parts of fish that are sent back to the lab for further research

AT THIS POINT, WE ARE DONE with our research with the bodies of the fish, but we have 99% OF THE FISH’S BODY LEFT! What should we do?

I was very impressed with the compassionate and humane action the scientists do with the fish after research.  Scientific research guidelines don’t dictate what a research study should do with edible fish flesh. We could have just discarded fish back into the ocean. However, scientists see an opportunity to provide food to people in need of  nutritional support in our communities, and they coordinated with a regional food bank in Savannah to do just that. Despite the work and time it takes to process the fish for donation, it did not seem to be considered a burden at all by any of the scientists.

I am perfecting my fillet!
Fresh fish fillets ready for food bank distribution

To process the fish for donation, we cut fish into fillets, wrap the fillets in butcher paper, and freeze them onboard the ship.

When we reached land, Warren
contacted the regional food bank, who came out to the dock with a refrigerated truck to pick up fish.  Within a few days the fish was distributed through charitable organizations in the region to people who were most in need.

These scientists are not just natural scientists but social scientists too! (just as I fancy myself!)

Personal Log

Captain Raymond Sweatte and First Mate Michael Richter

Interview with Raymond Sweatte, captain of R/V Savannah

Marian: What  makes a good crew?

Raymond: A crew that sees things that need to be done and does them because they know it all goes smoother when they do.

 

M: Have you ever run into or had a close call running into another ship?

Raymond: No, but the closest I came was when I was passing under the bridge at the Skidaway when a barge was coming through at the same time. Because it was easier for me to maneuver, I pulled over to side to let the barge use the majority of the channel. But the barge stayed on my side of the channel and was coming right at me. My boat was leaning upon the bank so there was no where for me to go.  I got him on the horn and asked, “What’s going on?”  He pulled over right away. He was new and very apologetic. 

M: Have you ever been in a terrible storm before?

Raymond: A few times we’ve had 15-16 foot seas coming back from the Gulf. When you have a north wind at 35 knots [strong wind coming from the North] and north-going current opposing the wind, the seas get very rough. Waves were coming up over the ship. [picture Marian’s eyes VERY wide at this point in the conversation] When seas are really rough, you get lifted up out of bed and down again. I remember trying to sleep one night in rough seas when my head kept hitting against the wall, so I turned around so my feet were up hitting against the wall.

M: What were things like before radar, satellite, and so many electronic navigation tools
you use today?

Raymond: Things were not as accurate. Communication was on a single sideband, navigation was with Loran-C, though VHF radio was somewhat the same as now.  To follow ships and determine their speed we had radar on dash but we had to use an eye cup we looked into to correlate with the radar, and then go over to the chart to plot them.  Then, we did it again six minutes later and multiplied by 10 to find their speed.  Now we have an automatic identification system [we can click on a ship on the radar] that tells us where they are, who they are, where they came from, where they are going, and what they are doing.  

M: What are the right-of-ways when vessels are crossing paths; who moves when two vessels are in course to collide?

Raymond: [On ships, aircraft and piloted spacecraft] a red light is on the left or port side of the craft and a green is on the right or starboard side. When two vessels have crossing paths, each will see a red or green light. If you’re looking at another vessel’s port side you see red, and it’s his right-of-way. If you are on their starboard side, you see the green light, and the right is yours.

Also, right-of-way rules give priority to vessels with the most difficulty maneuvering. The ranks in right-of-way, starting with the highest are:

1)Not under command

2)Restricted in ability to maneuver

3)Constrained by draft (stay away from shallower water to avoid running aground)

4)Fishing

5)Sail

6)Power

7)Sea Plane

Remember this mnemonic: New Reels Catch Fish So Purchase Some.

M: Who’s easier to talk to, a Navy Sub Captain or a Coast Guard Helicopter Pilot?

Raymond: I don’t have a problem talking with any of them. Coast Guard generally would call you first. Navy sub pilots I’ve found to be very cordial. They have changed their course when we had traps out.

M: What message would you say to students interested in being a captain?

Raymond: All kids have to follow their own heart. If they like water and this environment, they should follow their heart and become a captain.

Thank you Captain Raymond! It was a genuine pleasure to talk to you and experience life at sea under your command and with such a stellar crew. It is no wonder you are revered by everyone you work with.  Read more about Captain Raymond Sweatte in the Savannah Morning News!

The powerful significance of this trip for me was that I did not just study a science lesson from a book or lab, but I was essentially given a chance to live a different life, that of a fisheries field biologist.  I did not dabble in the work; it was a full explosion into the curiosities, reasonings, and daily routines of working with live fish and fish guts while sharing friendship, humor and stories with scientists and crew aboard a boat that was a small bounded island of rich human culture within a vast ocean of life and scientific questions waiting to be answered.  I loved it.  If only I didn’t love teaching more…I could definitely live that life.  Thanks NOAA, thanks NC SEFIS folks, thanks SC DNR folks, and thanks Skidaway Institute of Oceanography folks.  You are all in my heart and in my classroom!

FASCINATING EXTRAS!

Flying fish!

At night especially, when looking out at the seascape, I noticed flying, bug-looking specimens scurrying out of and into the ocean’s surface.  WHAT WERE THEY?! I wondered. So I asked and learned they were FLYING FISH! A few of them flew right up on the vessel’s work deck.  Their wings are modifications of the pectoral fins.  They are so fascinating and their coloring was greenish/blue iridescence, a stunningly beautiful color!

RED SNAPPER: PROTECTED STATUS

“The Gulf and South Atlantic red snapper populations are currently at very low levels (overfished), and both red snapper populations are being harvested at too high a rate (overfishing).” See more where this quote came from at Fish Watch: US Seafood Facts.

It was clear to me how significant the concern for the red snapper population was when I learned that funding for this fisheries survey was drastically increased following the recent determination that red snapper were overfished and overfishing was occurring.  Fisheries managers, field biologists and members of the general public all want to see the red snapper population improve.  This cruise provided scientific data that will be useful when the status of the U.S. South Atlantic red snapper population is assessed again.

The lionfish's spines are so poisonous the only way to hold them is placing fingers in their mouths.

History of measuring speed in NAUTICAL MILES:

Wonder how a vessel’s speed was measured hundreds of years ago? Log Lines, knotted ropes with a log tied to one end and knots every nautical mile and one-tenth of a nautical mile, were tossed off the end of the ship while the knotted rope unraveled behind it. When the sand on a minute sand glass ran out, the rope was reeled back in and the knots counted to determine ship’s speed in knots-per-minute.

 LIONFISH: INVASIVE SPECIES

In its native waters of the Indian and Pacific Oceans, the lionfish population is not a problem. There it has natural predators and natural parasites to keep it from overpopulating, yet it can survive well enough to maintain a healthy sustainable population. However, in the Caribbean waters and along the Eastern Coast of the United States, the lionfish has recently been introduced, and the effects are alarming. “Lionfish have the potential to become the most disastrous marine invasion in history by drastically reducing the abundance of coral reef fishes and leaving behind a devastated ecosystem.”  See more where this quote came from at NOAA’s research on invasive lionfish here. In the U.S. south Atlantic, they consume large quantities of reef fish and have no natural predators or parasites. Their population is thriving in large numbers, and it is devastating other fish species.  Mark Hixon, Oregon State University zoology professor, co-authored a study in 2008 with Mark Albins that showed “a lionfish can kill three-quarters of a reef’s fish population in just five weeks.” Read NPR story here. This is a cool way to view an environmental problem: see this animated map of the lionfish invasion! Red Snapper

Kaci Heins: Shoreline Verification and Auroras, September 27-29, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Heading Back to the Rainier After Shoreline Verification

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Thursday, September 29, 2011


Weather Data from the Bridge

Clouds: Overcast/Drizzle/Rain
Visibility: 2 Nautical Miles
Wind: 15 knots
Temperature
Dry Bulb: 8.2 degrees Celsius
Barometer: 1001.1 millibars
Latitude: 55.42 degrees North
Longitude: -133.45 degrees West

Science and Technology

Waterfall on Shore

When we are out on a launch acquiring data there are so many beautiful shorelines to see.  From far away they look inviting, but in reality there are usually numerous boat hazards lurking below or on the shoreline.  I have written a lot about the hydrographic survey aspect of this mission and how it is important to ships so that they can navigate safely.

However, when we are out on a survey launch the first priority is safety of the crew, the boat, and the technology.  This means that we normally do not go anywhere that is shallower than about eight meters.   Consequently, this leaves areas near the shore that is not surveyed and leaves holes in the chart data.  This is where shoreline verification comes in using single beam sonar.  However, since the launch with the single beam is not operational at this time we have been using the multibeam instead.  The Marine Chart Division (MCD) gives the Rainier specific items that need to be identified because they are considered Dangers to Navigation,  or they need to be noted that they do not exist.  The MCD compiles a priority list of features that come from numerous sources such as cruise ships, aircraft pilots, and other boats that have noted that there may be a danger to navigation in a certain area.  Many of these charts have not been updated since they were created in the early 1900’s or never charted at all!

Before we leave the Sheet Manager and the Field Operations Officer (FOO) come up with a plan for what shoreline they want to verify for the day.  A plan must be made because there is a small window to acquire the information needed to satisfy the requests of the Marine Chart Division.  The shoreline verifications must be done at Mean Low or Low Water.  This means that it has to be done when the average low tide of each day comes around, which has been in the early morning and afternoon for us.

Shoreline 4 Meter Curve

Using the launches we head up to what is called the four meter curve.  This curve is the limit to where we can go during meal low or low water.  If we get any shallower or move closer to the shore then we will put everyone and everything in danger on the boat.  We bring with us  a camera to document the features, a clinometer, which allows us to document headings and angles, a laser range finder, charts that they can draw and note features on, and their computer software.   Once we get underway and arrive to our first rock that we have to document, the officers make sure they maintain good communication with the coxswain, or boat driver.  We make sure we circle everything in a counterclockwise motion so that he can see everything off to his starboard, or right side as we move.  We can see the rock become exposed as the waves move over it, but the tricky part is getting as close to it as possible without hitting it.  This is so we can get a precise location as possible for the chart.  Our coxswain was very experienced so we were able to get right next to it for photos, the heading, and to drop a target, or the location, in the software.

Notes Documenting Various Features

The rest of our shoreline verification was a lot less intense as we confirmed that there was a lot of kelp around the rocks, the shoreline, and specific rocks were in the correct place.  LT Gonsalves, the Hydrographer-in-Charge (HIC),  showed me how he draws some of the features on his chart and makes notes about whether the features are there or not.  I took photos and noted the photo numbers for the chart, as well as the range and height of various features.  Shoreline verification is very important for nautical charts so that ships and their passengers know exactly where dangers to navigation lie.  It takes 120 days from the final sounding for all the data to get submitted to the Hydrographic Survey Division.  From there the information gets looked over by numerous agencies until about 2 years later the updated chart is available.  This is quite a long time to wait for changes in dangers to navigation.  To be safe, the chart stays the same even if there is not a dangerous rock lurking around at mean low or low water.  It is best to just avoid the area and err on the side of caution.  There is still a lot of work to be done in Alaska that will take many, many years to complete.  However, it is thanks to hydrographic ships like the Rainier and its crew that get the job done.

Personal Log

NASA SOHO Image of Solar Wind and the Magnetic Field

Tonight was very special because we could actually see an aurora, or the northern lights,  in the night sky.  An aurora is a natural light display in the arctic and antarctic, which is caused by the collision of charged particles in the upper atmosphere.  Auroras start way back about 93 million miles (or 1 astronomical unit– AU) at the sun.  When the sun is active, usually due to coronal mass ejections, it releases energetic  particles into space with the very hot solar wind.  These particles travel very quickly over those 93 million miles until they reach the Earth’s magnetic field.   Most of these energetic particles are deflected around the Earth, but some get trapped in the magnetic field and are moved along towards the polar regions until they strike the atmosphere.  We knew there were possibilities to see an aurora while we were anchored, but usually it has been cloudy at night so we couldn’t see the stars.  However, on the 27th Officer Manda came through saying he had seen the lights.  Low and behold there was a green glow in the sky behind some clouds and a couple of times some of the energized particles made bands across the sky.  If there hadn’t been so many clouds I think it would have been even more spectacular, but I was so glad I did get to see them.  Very quickly, more clouds moved in and it was just a green glow on the horizon.  I also was able to see the milky way in all its glory and the brightest shooting star I have ever seen.  These amazing photos of the aurora were taken by Ensign Manda and I am very grateful he was willing to share.

Aurora and Shooting Star Courtesy of Ensign Manda
Aurora in Alaska Courtesy of Ensign Manda

Click HERE for a link to a neat animation of how an aurora is formed.

Student Questions Answered

Animals Spotted!

Seal On a Rock We Were Documenting

Seals – species unknown

 

 

 

 

 

 

 

 

Question of the Day

Kaci Heins: September 24-26, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mrs. Heins Acquiring Data For The Hydrographic Survey

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Tuesday, September 27, 2011


Weather Data from the Bridge

Clouds: Overcast
Visibility: 10 Nautical Miles
Wind: 10.40 knots
Temperature
Dry Bulb: 11.3 degrees Celsius
Barometer: 1000.1 millibars
Latitude: 55.28 degrees North
Longitude: -133.68 degrees West

Science and Technology

I have received many questions from students asking “What is hydrography?”.  According to the International Hydrographic Organization,  hydrography is “the branch of applied science which deals with the measurement and description of the physical features of the navigable portion of the earth’s surface [seas] and adjoining coastal areas, with special reference to their use for the purpose of navigation.” Lets break that word down to find the meanings of the prefixes and suffixes using dictionary.com.

hydro – means water,

graph – means to write or chart

graphy – means the science or process of recording

Another question I have received is what is a hydrographic survey?  Most of the surveys that you may have heard of are used on land.  For example, construction workers may survey a site before they start construction, or you may take a survey at school about what types of food you would like in the cafeteria.  Any kind of survey is the acquiring of information that is used for various purposes.  In the case of a hydrographic survey, the technicians acquire and chart information about the sea floor.  I was fortunate enough to go out on a survey launch to see that a hydrographic survey is conducted using sonar to look through the water to see what the sea floor actually looks like.

Launch Boat

The boat that NOAA uses to conduct the surveys is called a launch.  This means we use a large motorboat to get to where we need to go.  It costs tens of thousands of dollars a day to operate the Rainier, her launches, and the technology.  It is the technology that allows scientists to be able to “see” through the water to map what the ocean floor actually looks like.  The first, and most important, piece of technology on the launch that enables us to “see” the sea floor is the sonarSonar (SOund NAvigation and Ranging) is the process of using sound waves to bounce off objects we cannot see and then acquiring the return sound to create an image.  However, it does get a little more complicated than that.  There are two different types of sonar that the NOAA National Ocean Service (NOS) goes into detail about.

1) Active Sonar – Transmits a pulse or acoustic sound into the water. If the sound pulse hits an object in its path, such as the sea floor, then the sound bounces off  and returns an “echo” to the sonar receiver.  By determining the round-trip travel time between the emission of the sound pulse and its reception, the transducer can determine the range (how far away) and orientation (location) of the object.  The formula for this is

Distance = (two way travel time x speed of sound through water) / 2

2) Passive Sonar – Is a sonar system that does not emit its own signal, but listens to sound waves coming towards it.

Multibeam Sonar

Both the Rainier and the smaller launches have  both active sonar called multibeam sonar. Multibeam sonar sends out numerous sound waves from directly beneath the ship on the boat’s hull that fans out its coverage over the seafloor.  This coverage is called a “swath”.  Before we leave the ship to head out on the launches we have a briefing to go over the weather, safety, and any other important information for the coxswains, scientists, or crew.  We also get a plan for the day for what polygons, or areas we have to survey.  On our way we turn on some of the expensive (and top secret!) technology called the Position and Attitude System (POS).  This technology collects the vessels motion data (roll, pitch, and yaw), that later will be incorporated into the Caris software that produces the final chart. The multibeam transmits around 512

Polygon Coverage Area for the Day

beams each second.  The frequency of the sound waves depends on the depths that we are working in.  We worked in waters that were around 50 meters deep so we used the 400 kilohertz frequency.  However, if we would have been working in deeper water we would have gone to 200 kilohertz.  By lengthening the wavelength the beams can travel into deeper water with less error or scattering.

Before we start acquiring data we make sure to have good communication with the coxswain, or driver, of the boat.  It is extremely important that there is good communication and that the coxswain can maintain their heading and speed throughout the polygon so that the data can be collected without too many errors.

Conductivity, Temperature, and Depth Cast

We want to make sure we only go about 6-8 knots so that the sonar echo has time to make it back up to the receiver and we can collect good data.  The scientists also conduct a CTD cast before we start and every four hours while they collect data.  CTD stands for Conductivity (or salinity), Temperature, and Depth (pressure).  The data from the CTD can be used to calculate the speed of sound through water.  All of these factors can cause errors in the survey data so scientists need to collect this information so that the finished product has fewer errors and depths can be corrected from the sonar.  Other features that can cause errors in the data are bubbles, vegetation such as kelp, schools of fish, and the type of material that is on the sea floor.  For example, if the sea floor consists of a softer material it won’t reflect the sonar beams back as well.

To collect the survey data we basically drive the launch back and forth over our assigned polygons with the multibeam sonar.  This is sometimes called “mowing the lawn” or “painting the bottom”.  When we get to one edge of the polygon we stop logging data, turn around, and make a new swath as close as we can to the previous one and continue collecting data.  We cover around 50 nautical miles each day collecting data with the overall goal to collect the best data quality that we can during our acquisition.

As we head back to the Rainier all the computer data is downloaded from the day and is later transferred to the plot room.  This is where survey technicians add all the other information and make corrections to the data such as tides, vessel motion (POS), GPS, sound velocity from the CTD, and other programs so that the data is as accurate as possible.  Technicians still must go through and clean out “noise” which is scattering of some of the data.  The finished survey chart is sent to the Pacific Hydrographic Branch for post processing and quality assurance.

What We Surveyed Today!

Personal Log

In my last blog I wrote about how math skills are very important not only as a strong skill needed on a NOAA ship, but also as a life-long skill.  As I continue learning more about hydrography I have also found that computer skills are extremely valuable in this work environment.  Most people have basic computer skills to check email and run office programs, but out here it takes a little more.  There is quite a bit of training that the survey technicians and the NOAA Corps officers must go through to learn about all the different software that collects data and then using more software to combine them to make the finished hydro chart.  Numerous hours of collecting data, combining data, cleaning data and finishing projects all have a significant amount of work done by or at a computer.  Everyone from the captain to the junior officers must know how to use it and how to troubleshoot when things don’t work right.  It is not as easy as picking up the phone and calling customer service.  Minds among the ship must come together to solve problems when they arise.

Using the Computer to Collect Survey Data

While underway whether it is on the ship or on one of the launches the high seas are always around.  At first they made me nervous because I was afraid I would get sick.  However, it has turned out to be quite the opposite!  Whenever the seas get rough I actually start to get sleepy as we sway back and forth!  Usually, we are so busy that there isn’t time to take a nap so I’m learning to work through it.  Going along those lines of being busy, there are usually no breaks during the weekends.  In most people’s lives the weekend is time to take a break, hang out with family and friends, and sometimes do absolutely nothing at all.  Out here on a working ship this is not the case.  The NOAA ships have to meet certain deadlines and with some of their past major repairs, time has been ticking away with not much work being done.  This means when Saturdays and Sundays roll around at the end of the week we keep on working like a regular day.  I have the utmost respect for all of the crew, scientists, and officers that spend their time out here working for weeks straight.  It is not an easy lifestyle, but they are committed to it and I admire them and their strength.

Student Questions Answered

Wildlife Spotted!

Sea Otters

Humpback Whale

Sea Otter

Sea stars

Sea Urchins

Question of the day

Kaci Heins: September 21-23, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

NOAA Ship Rainier

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Friday, September 23, 2011


Weather Data from the Bridge

Clouds: Overcast
Visibility: 10 Nautical Miles
Wind: 25 kts
Waves: 1- 2 feet
Temperature
Dry Bulb: 10.3 degrees Celsius
Barometer: 1002.6 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology

Rainier Skiff Boat

Now that there is a small window of clear weather I am able to go out on one of the small boats called a skiff.  This boat holds about 8 people max and is mainly being used to move people and equipment around to the different stations.  The night before I was scheduled to leave I learned that my task on this outing was going to be reading the tide staff every six minutes for 3 hours.  I know the initial reaction might be, “Why would you want to do that?”  Well, it is actually really important for the data that we are collecting.  When the equipment (primary benchmark, tide gauge, tide staff, orifice, etc.) was placed on Block Island this allowed the scientists to be able to know what the actual water levels would be for the launches when they head out. This in turn, is important because the height of the water levels will affect the data that is being collected on the launches (survey boats).  The first few hours started giving us pretty good data, but then we stopped getting anything at all.  We had been hit by a storm so numerous scenarios were being brainstormed so we could be prepared for anything that we might find when we got there to fix the problem.

Garmin Route to Block Island Courtesy of Todd Walsh

We traveled from the Rainier to Block Island, which was about 19 miles away.  When we got there the tide staff was in good shape and even the antennas and GPS looked good.  However, upon further inspection they found that there were glitches in the software files that had made it stop collecting data.  Once they got it going again, my partner Starla, and I went straight to work collecting the high and low wave of the tide.  We then used this data to calculate the mean (average) of the two.  We had to collect this data every six minutes for three hours because that is the same data that the tide gauge is collecting.

Tide staff at Block Island

We had to use GPS time–which was the same as the tide gauge–and not our own watches. This is because we needed the same time stamp for the data, which allows the scientists to see that the data was collected at exactly the same time.  Scientists can then look to see if the data we collected and the data the tide gauge collected are the same or if there are errors.  Then, they can see if it was human error or if something is still wrong with the tide gauge.  These first three hours were very important for the data collection, but the scientists will continue to monitor the station every three to four days for one hour throughout the month to make sure it is collecting data properly.

Mrs. Heins Taking Tide Staff Measurements

As we collected the data, one of us would watch the clock while the other would very intently watch the tide staff.  Once it would come to the time we would have to collect the data she would say “Mark!” and that would be my cue to note the high and low of the wave against the tide staff.  I would tell her my observations up to four digits, such as 1.967 meters.  However, because we would use quick observations to collect our data, our precision would probably be only to three significant figures. Significant figures are digits of a number that carry meaning and factor  into its precision. Starla would record the data and then we would wait six minutes until the next time to make our observations. When we were done, we downloaded the data from the tide gauge, packed up the skiff, and head back to the Rainier. Overall, it was a really great day being able to collect this important data and contribute to the mission of the ship.

Heading Back to the Rainier

Personal Log

Calculating Radar Ranges on a Nautical Chart

Math, math everywhere!!  Since the first day I have been on the Rainier I have seen math being used all day, every day.  Even though I don’t specifically teach math I do integrate it within science and social studies.  However, I have heard from students, “Why do I have to learn this?” in regards to their math homework.  There isn’t always enough time in the day to give a thorough explanation of how different math skills are used in the real world.  However, from my past NASA experiences and now with NOAA on the Rainier, I am here to tell you that once you enter the real world, especially if you enter a science, math or engineering field, then you will be immersed in math.  It will become a part of your daily routine without you really realizing it.  One place where math is used constantly, and is also one of my favorite places on the ship, is the bridge.

Math is used in navigation, such as setting a course, calculating distances, speeds, and times.  I also got some practice with calculating radar ranges, which can give the officers their location based off of 3-4 points of land nearby.  GPS is being used all day, every day and there are multiple GPS systems in case one fails.  Again, the officers use this information in their calculations throughout the day while we are at sea.  When I have been collecting weather data on the bridge math is being used to calculate the wind speed and direction.

Finding an Azimuth

Then there are conversions being calculated because some of the charts are in meters, some are in feet, and some are in fathoms.  A fathom is used more for deeper water because 1 fathom equals 6 feet.  Because these are dealing with depths it is very important to make sure the conversions are correct so that the ship stays safe.  Then of course there is math used in other ways on the ship.  For example, the Executive Officer (XO) has to work with the ship’s budget, the cooks work with measurements in the galley, and the scientists work with math formulas as they process the data in their projects.

Overall, I highly encourage my students and any other young minds that are reading this to do your best in math and ask for help if you need it.  It can be an intimidating subject area at times, but if you want to work for NOAA, be a scientist, or engineer then it will be an important part of your job.  Once you have an idea of what kind of job you want to have when you get older, try to find out what kind of skills you need to have and start early.  See how the math is used in the real world, the job you are interested in, and learn how to have fun with it!

Student Questions Answered!

Animals Seen

Sea Lion

Whales (not sure of the species)

California Sea Lion

Moon Jellyfish

Question of the Day

Lindsay Knippenberg: Women are taking over the Dyson! September 15, 2011

NOAA Teacher at Sea
Lindsay Knippenberg
Aboard NOAA Ship Oscar Dyson
September 4 – 16, 2011

Mission: Bering-Aleutian Salmon International Survey (BASIS)
Geographical Area: Bering Sea
Date: September 15, 2011

Weather Data from the Bridge

Latitude: 55.41 N
Longitude: -167.98
Wind Speed: 25.86 kts
Wave Height: 10 – 13ft with some larger wind-blown waves
Surface Water Temperature: 8.7 C
Air Temperature: 8.7 C

Science and Technology Log

Real women aren't afraid of piles of jellyfish.
Real women aren't afraid of piles of jellyfish.

I will admit that before I met the scientists and crew onboard the Dyson I had imagined that the majority of the people on the boat would be men. I had wrongly gone along with the stereotypical view that scientists, engineers, fishermen, and the crew onboard ships were mostly men. Therefore when I finally met the people who I would be sailing with for the next two weeks, I was surprised and very happy to see that women had taken over the Dyson. For example, of the 12 scientists onboard the Dyson for this cruise, 9 are women including the Chief Scientist who is in charge of us all.

The seabird observers looking for birds.
The seabird observers looking for birds.

On the ship there are also NOAA Corps officers. The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States. Officers can be found operating one of NOAA’s 18 ships or 12 aircraft to provide support to meet NOAA’s missions. Their duties and areas of operations can range from launching a weather balloon at the South Pole, conducting fishery surveys in Alaska, maintaining buoys in the tropical Pacific, to flying P-3 Hurricane Hunter airplanes into hurricanes. I have met several NOAA Corps officers while I have been at NOAA and they have mostly been men. I was excited to see that of the six officers onboard the Dyson three are women.

NOAA Corps Officers - Rene, Sarah, and Amber taking a break from their duties to pose for a picture.
NOAA Corps Officers - Rene, Sarah, and Amber taking a break from their duties to pose for a picture.

There are also several other women onboard the Dyson and my mission today was to meet some of these amazing women and interview them to see what they do onboard the Dyson and what motivated them to choose this as their career. Let’s meet them:

Name: Ellen Martinson

Hometown: Juneau, AK

Position: Research Fisheries Biologist and Chief Scientist for Leg 2 of BASIS

Ellen showing off a tiny squid that she was measuring on the scale.
Ellen showing off a tiny squid that she was measuring on the scale.

Ellen has always loved solving puzzles and has had a curiosity for nature and how it works. That love of nature and problem solving led her to become a fisheries biologist. She has worked at NOAA since 1995 and she does research to support the management of federally-controlled commercial fisheries. She is currently a Ph.D. candidate and is doing her research and dissertation on developing indexes of ecosystem health in the Bering Sea that includes climate and fish growth factors. Pollock is her species of choice and she is looking at the success rate of Age 0 (zero) pollock surviving their first year to become Age 1 pollock as a prediction of the future health of the commercial pollock fishery.

What does she like the best about her job? She gets to work with a variety of people ranging from scientists and fisheries managers to fishermen and even teachers like me. She listens to their problems and ideas and then looks for the important questions to address all of those viewpoints. She also gets to travel to a lot of cool places, learn new things from a variety of topics, and her job is often an adventure. How did she get such a cool job? Going to college is the first step. Ellen has a bachelor’s degree in Marine Biology and a master’s degree in Fisheries Resources. She is currently finishing up her Ph.D. at the University of Alaska Fairbanks and then she will be Dr. Martinson.

Name: Kerri Curtin

Hometown: Chicago, IL

Position: Able-Bodied Seawoman

Kerri tying up the trawl net after pulling in a big haul of salmon.
Kerri tying up the trawl net after pulling in a big haul of salmon.

Kerri is one tough cookie. All week I have been amazed by her as she shuffled around the back deck pulling in fishing nets, lifting heavy science equipment, and tying all different types of knots. She is the only able-bodied seawoman onboard and her responsibilities include various deck maintenance jobs, setting up the nets for fishing and bringing in the catch, tying and untying the boat when we are at port, serving time on the bridge as an observer, and helping to launch the small boats. Her favorite part about her job is that she gets to go to work at sea and be outside in the fresh air. She also gets to travel to unique places and see the world. So far her favorite place that she has been to are the Greek Isles. How do you get a job like this? Kerri went to school in Maryland at Seafarers International and did an apprenticeship program. Through that program she gained the basic training necessary to get an entry-level position on a boat. Since then, she has continued her training and has taken several other Coast Guard certification tests. All her time at sea and trainings have paid off because she just received her 3rd Mates license.

Name: Amber Payne

Hometown: Fenton, MI

Position: Navigation Officer

Amber is in control of the Oscar Dyson as the trawl net is being brought in.
Amber is in control of the Oscar Dyson as the trawl net is being brought in.

Amber is a NOAA Corps officer onboard the Dyson. Her job as the Navigation Officer is to plot all the routes that the ship takes on paper and electronically. She also updates all the charting publications and she gets to stand watch on the bridge every day for eight hours. When she is on watch she is responsible for driving the ship and is in charge of all the operations. Amber has been onboard the Dyson for a year and a half and has several favorite things about her job. She likes that being on a ship in the Bering Sea is an adventure that many people may not get experience. She also likes the authority and trust that she is given to correctly navigate and drive the ship when she is all alone on the bridge. How did Amber get from Michigan to navigating a ship through the Bering Sea? Amber went to a four-year college in St. Petersburg, FL and studied Marine Biology. While in college she joined the search and rescue team and learned a lot about driving small boats. She knew that she wanted to go into a career that included both boats and science and her college advisor told her about the NOAA Corps. She applied to the NOAA Corps after graduation, was accepted, spent 4 months in basic trainings with the NOAA Corps, and then was placed on a ship. She loves that she gets to be a part of scientific research going on in the Bering Sea and she gets to drive boats all as a part of her job.

Name: Wendy Fellows

Hometown: Liberty Lake, WA

Position: Junior Engineer

Wendy has a lot of screens and buttons to monitor when she is on watch.
Wendy has a lot of screens and buttons to monitor when she is on watch.

When I first met Wendy she was sitting in the galley with the other engineers wearing her cover-ups from working in the engine room and I thought to myself, this girl is pretty cool. There aren’t too many female marine engineers and Wendy has a great story. When she graduated from high school she didn’t know what to do. She wanted to see the world so she took a job working in the kitchen of an oil tanker. She traveled all over the world and learned a lot about the different jobs on the ship throughout her journey. Her dad had been a marine engineer and she liked the work that the engineers did, so she went to school at the Seattle Maritime Academy to learn the trade. As a part of a year-long program she became a qualified member of the engineering department and did an internship onboard the Oscar Dyson. She liked it so much that she decided to stay on the Dyson as a Junior Engineer. Her job on board the Dyson is to basically make sure the ship is working properly. She tests emergency batteries, monitors the generators and pumps, services the small boats, fuels the ship when it is in port, fixes random things that break around the ship, and tests the drinking water. Her favorite part about her job is when she gets to use the welding skills she learned onboard the Dyson to fabricate things for the ship or scientists.

Name: Kathy Hough

Hometown: Kodiak, AK

Position: Senior Survey Technician

Kathy is busy on the hero deck connecting plankton nets to be lowered over the side.
Kathy is busy on the hero deck connecting plankton nets to be lowered over the side.

As the senior survey technician onboard the Dyson, Kathy has the responsibility of working with the scientists to insure that the collection of their data goes smoothly. She helps the scientists to collect their data by lowering and monitoring the CTD, helping with the various nets, and making sure that all of the equipment in the labs are functioning properly. She also collects data of her own. As the Dyson cruises around the Bering Sea, Kathy is in charge of collecting the weather and oceanographic data that is sent to scientists and posted on the NOAA Ship Tracker website. What does she like best about her job? Kathy likes the diversity of operations that she gets to be a part of. The science teams that are doing research onboard the Dyson only stay for 2 – 4 weeks and then another team gets on and might be doing a completely different project. As the science teams constantly rotate, Kathy stays on and helps with a variety of projects and different types of scientists. Does this job sound cool to you? To get an entry-level position as a survey technician you need a bachelor’s degree in science or mathematics. Kathy’s background is in ecology/biology, but a background in engineering, mathematics, or chemistry can be helpful too. If you want to move up to be a senior survey technician like Kathy, you need time and experience working on boats and with the instruments the scientists use for their research.

Name: Rachelle Sloss

Hometown: Juneau, AK

Position: Lab/Research Technician

Rachelle with a huge king salmon from one of our hauls.

Rachelle and I have gotten to know each other pretty well these last couple of weeks as we sorted through piles of fish and did a lot of counting to fifty. Rachelle just graduated from college in May and for the past two summers she has worked in the NOAA labs in Juneau as a lab/research technician. She works in a lab that is studying bioenergetics. While onboard the Dyson, she has been collecting and sorting zooplankton and looking for specific species of krill that will be used for bioenergetic experiments back in Juneau. She has also been collecting juvenile fish species like pollock and herring for similar experiments. While at the lab back in Juneau, Rachelle does lipid class analyses of fish to look at the energy content of their lipids by season. Does this sound like a cool summer job? Rachelle thinks that it is because she gets to work with some really cool people, she is gaining great experience for the future, and she got to spend two weeks on the Bering Sea seeing tons of species of fish. What lies ahead for Rachelle? She got a degree in Biochemistry, Biophysics, and Molecular Biology from Whitman College and is thinking about becoming a high school science teacher. For now she is headed to a much warmer South America and will be traveling around for the next couple of months on her next adventure.

Personal Log

We finally made it back to land and now we are all heading off in opposite directions towards home.
We finally made it back to land and now we are all heading off in opposite directions towards home.

By now I am safely back to my warm living room and I owe all of the women above and the men of the Oscar Dyson my deepest gratitude. I had an incredible adventure on the Bering Sea and I learned so much. Even though we had some rough seas, I still loved seeing all the different fish that we caught in our nets and I loved being a part of a research project that has so much importance to our fisheries. The NOAA Corps officers, crew, and scientists were all incredible teachers and had a lot of patience as they took time out of their day to answer all of my questions. I can’t wait to share my experiences with my students and other teachers and I couldn’t be more thankful for the experiences that I gained as a NOAA Teacher at Sea.

Kaci Heins: September 19-21, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Wednesday, September 21, 2011

Mrs. Heins at the Helm

Weather Data From The Bridge

Clouds: Overcast
Visibility: 4 miles
Wind: 20 kts
Waves: 0-1 feet
Temperature
Dry Bulb: 11.7 degrees Celsius
Barometer: 1000.1 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology Log

Launch Lowered Into The Water

Today was the first day that the survey launches left the Rainier to install and recover benchmarks and a tidal gauge.  The weather was not great and the crew had a lot of work to do so I was not able to go with them this time.  A benchmark is a small brass disk with information inscribed on it that relates to the station it represents. The benchmark holds the height of the datum.  The purpose of setting a tide gauge is to measure the water level. The water level information is used to reduce the bathymetric data acquired to the chart datum (mean lower-low water, MLLW).   Finding benchmarks has become quite popular through the hobby of geocaching.  This is where participants use latitude and longitude within Global Positioning Systems (GPS) as a way to hunt down “treasures” hidden by other participants.  This also includes finding benchmarks.


I’ve been trying to head up to the bridge as much as I can to learn as much as I can during this Teacher at Sea experience.  The first time I went up at night I had no idea about the environment that the officers work in on the bridge.  At night the officers on the bridge actually work in complete darkness.  All of the computer screens have dimmers or red filters so that the least amount of light affects their eyes in the darkness.  The reason it is so dark is because the officers need to be able to see the lighted navigation buoys to stay on course and to spot the lights of other ships that are heading in our direction.  There are also one or two deck personnel that are lookouts either on the flying bridge or bow to keep watch for ships, lights, and other objects that could potentially be a hazard to the Rainier.  A flying bridge is usually an open area above an enclosed bridge where the ship’s officers have a good view of everything around the front and sides of the ship.  We are traveling through the Inside Passage off the Southeastern coast of Alaska, which is extremely narrow in some places along the way.  This means that it is very important that the officers know exactly where they are and what is around them.

Personal Log

Anchor's Away!

I have been able to do some other neat tasks on the ship while the majority of the crew were out on their launches.  We finally were able to find a place to anchor at Ulloa Channel because we had a good “bite” with the anchor–it is protected somewhat from the weather we are dealing with, and it is close to our tide station.  They also let me run out some chain for the anchor and I was able to practice using the crane on the ship.  However, the best part so far has been being at the helm, or the steering gear of the ship.  I will admit I was pretty nervous the first time I grabbed the wheel because it was at night so I couldn’t see hardly anything.  Today, the officer of the deck (OOD) let me at the helm again because we were in open water.  When I am at the helm I have to watch my gyro-heading, which shows me true North, and my magnetic compass, which is more of a back up if the electronic gyro-heading fails.  If I have a heading of 150 then I have to make tiny adjustments or corrections to try and stay on or close to that number as possible.  Even when I make the tiniest adjustment I can see how much the ship moves.  I did start getting the hang of it and one officer even said he had never seen a visitor do so well!

One other item that I will mention in this blog is that the weather in Alaska during this time of year is overcast, rainy, and cold.

Beautiful Scenery Along the Inside Passage

However, going into this I had an idea of what to expect and I enjoy the fact that I get to see the non-glamorous side of this type of work.  It does not matter if it is rainy, cold, what you are wearing, or what you look like because there is a job to do.  It has been overcast every day, but the pine trees are amazing shades of green and the pictures do not do them justice.  We have also had 15 foot waves and 115 knot wind (this is the same as a category 3 hurricane!).  The wind didn’t bother me as much as the waves did.  I thought it was fun for the first 30 minutes, but then I had to lie down for a while because I wasn’t feeling too well.  I never threw up, but it did become uncomfortable.  Now that we are anchored and have stopped moving I feel funny because my body has been used to moving around so much for the past three days.  I sure hope I don’t get land sickness when I am done with this cruise!

Student Questions Answered: Here are student questions answered about feeding so many people on a boat over 3 weeks time.

Animals Seen

Puffins

Questions of the Day

We experienced 115 knot winds Monday night.  What category hurricane would that be the equivalent to?  Use the website if you need help.

http://www.nhc.noaa.gov/sshws.shtml


Kaci Heins: September 16-18, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Sunday, September 18, 2011

Me in front of the Rainier.

Weather Data From The Bridge

Clouds: Overcast
Visibility: 9 miles
Wind: North North West 11 knots (One knot = 1.15 miles)
Waves: Wind waves 1-2 feet
Temperature Wet Bulb: 11.9 degrees Celsius
Dry Bulb: 12.1 degrees Celsius
Barometer: 1017.2 millibars
Latitude – 50 degrees North
Longitude – 125 degrees West

Science and Technology Log

We will not be to our hydrographic survey destination until Tuesday so I thought I would write about the science of keeping this large research vessel heading in the right direction.   My second day on the Rainier I was able to head up to the bridge today to see how the ship is run.  The bridge is where NOAA Commissioned Officers command the ship, or make and execute decisions to keep the ship safe and on course.  There is at least one officer of the deck (OOD) and one helmsman on the bridge, but they don’t want too many more than that because it starts to get too crowded.  Since I was one more body in the room I tried to stay towards the back to make observations and ask questions when the officers were not busy.

This was a neat experience for me because I am able to see science, social studies, math, and language arts all being used at the same time.  Many of the officers carry notebooks with them to write down important information almost like sc