Nicolle von der Heyde, June 21, 2010

NOAA Teacher at Sea
Nicolle Vonderheyde
Onboard NOAA Ship Pisces
June 14 – July 2, 2010

Nicolle von der Heyde
NOAA Ship Pisces
Mission: SEAMAP Reef Fish Survey
Geographical Area of Cruise: Gulf of Mexico
Dates: Monday, June 21

Weather Data from the Bridge

Time: 0800 hours (8 am)
Position: Latitude: 28º 09.6 minutes N
Longitude: 094º 18.2 min. W
Visibility: 10 nautical miles
Wind Direction: variable
Water Temperature: 30.6 degrees Celsius
Air Temperature: 27.5 degrees Celsius
Ship’s Speed: 5 knots

Science Technology Log

Atlantic Spotted dolphins are the graceful ballerinas of the sea. They are just incredible! The Gulf of Mexico is one of the habitats of the dolphin because they live in warm tropical waters. The body of a spotted dolphin is covered with spots and as they get older their spots become greater in number.

Atlantic Spotted Dolphins
Atlantic Spotted Dolphins
Atlantic Spotted Dolphins
Atlantic Spotted Dolphins
Atlantic Spotted Dolphin
Atlantic Spotted Dolphin

Here you can see the spots on an older Atlantic Spotted Dolphin. To read more about dolphins go to http://www.dolphindreamteam.com/dolphins/dolphins.html

Because Dolphins are mammals they breathe air through a single blowhole much like whales. Dolphins live together in pods and can grow to be 8 feet long and weigh 200-255 pounds. Like whales, dolphins swim by moving their tails (flukes) up and down. The dolphin’s beak is long and slim and its lips and the tip of its beak are white. They eat a variety of fish and squid found at the surface of the water. Since dolphins like to swim with yellow fin tuna, some dolphins die by getting tangled in the nets of tuna fishermen.

Newborn calves are grey with white bellies. They do not have spots. Calves mature around the age of 6-8 years or when the dolphin reaches a length of 6.5 feet. Calving takes place every two years. Gestation (or pregnancy) lasts for 11 1/2 months and babies are nursed for 11 months.

While watching the dolphins ride the bow wave, Nicolle and I wondered, “How do dolphins sleep and not drown?” Actually, we found that there are two basic methods of sleeping: they float and rest vertically or horizontally at the surface of the water. The other method is sleeping while swimming slowly next to another dolphin. Dolphins shut down half of their brains and close the opposite eye. That lets the other half of the brain stay “awake.” This way they can rest and also watch for predators. After two hours they reverse this process. This pattern of sleep is called “cat-napping.”

Dolphins maintain a deeper sleep at night and usually only sleep for two hours at a time. This method is called “logging” because in this state dolphins look like a log floating in the ocean.

The 1972 Marine Mammal Protection Act (MMPA) prohibits the hunting, capturing, killing or collecting of marine mammals without a proper permit. Permits are granted for the Spotted Dolphins to be taken if it is for scientific research, public display, conservation, or in the case of a dolphin stranding. The maximum ffor violating the MMPA is $20,000 and one year in jail.

Atlantic Spotted Dolphin
Atlantic Spotted Dolphin

Personal Log

The best part of this trip is all the marine life I see in the Gulf. In the past few days, dolphins have been swimming up to the boat and riding the bow wave of the ship. They are so graceful and playful in the water. In addition to the Tiger Shark seen feasting on the dead Sperm Whale, I have seen quite a few sharks swimming in the water near our ship. One, called a Silky Shark, took the bait as some of the crew was fishing from the stern of the boat (shown to the left). It was hauled up so the hook could be taken out and released back into the water. The second was a baby shark swimming near the bow of the ship as I watched the dolphins in the distance. I also saw a shark swimming near the starboard side of our ship while the deckhands were hauling up one of the camera arrays.

The fourth shark was the most exciting. As the crew was working at the stern of the ship to release a line that was caught in the rudder, I looked over the stern to see a large shark very near the surface swimming toward the starboard (right) side of the ship. I hurried to look and to my surprise it was a giant Hammerhead! I never expected to see one of these in its natural habitat. Unfortunately, by the time I got my camera out, the Hammerhead was too far away and too deep to get a clear shot, but what a sight to see!

Hammerhead shark
Hammerhead shark
The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==
The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

The photo on the right is from Monterey Bay Aquarium. For more information, go to http://www.montereybayaquarium.org/animals/AnimalDetails.aspx?enc=C53nR+hhcrXgfKW+bt/MWA==

I often mistake the fish shown on the left for sharks. Actually they are Cobia, also known as Lemonfish. Once in a while thefish approach the boat as we are hauling fishup on the bandit reel. I have also seen bojellyfish in the water as we are working on the starboard side of the ship and I spotted a brief glimpse of an Ocean Sunfish (Mola mola) from the bridge of the ship as I was talking to our Commanding Officer (CO). I wish I could have seen this fish up close. They are the largest bony fish in the oceans and as someone on the ship described, they resemble a giant Chiclet swimming in the water.

The smallest living things I have seen while at sea are the tiny creatures that live in the Sargassum, a type of seaweed that floats freely within and on the surface of the Gulf waters. The Sargassum provides a habitat for tiny creatures that are the foundation of the food web, even providing food for some of the largest animals in the sea like whales. The picture below on the left shows a giant patch of Sargassum, while the picture on the right shows some of the creatures that live within it including tiny shrimp, krill, and very small crabs.

Sargassum
Sargassum
Creatures that live within the sargassum including tiny shrimp, krill, and very small crabs
Creatures that live within the sargassum including tiny shrimp, krill, and very small crabs

Seeing all this life has been reassuring as the oil continues to gush into Gulf waters off the coast of Louisiana, however I can’t help but think what the overall impact of this spill will be for the future of the Gulf. Will we see the negative environmental impact spread to the Eastern Gulf? Are microscopic droplets of oil and chemical dispersants infecting the food chain beyond the area that we visibly see being impacted? These questions will be answered as NOAA scientists continue to collect and analyze the type of data that I am helping gather on this SEAMAP Reef Fish Survey. I feel so fortunate to be a part of this scientific endeavor.

Animals Seen

Silky Shark (Carcharhinus falciformis)

Hammerhead (Sphyrna mokarran)

Cobia (Rachycentron canadum)

Ocean Sunfish (Mola mola)

Krill, Shrimp, Crab (species unidentified)

Anne Byford, June 11, 2010

NOAA Teacher at Sea
Anne Byford
Aboard R/V Hugh R. Sharp
June 8 – 15, 2010

Mission: Sea Scallop Survey
Geographic Location:  off the coast of New England
June 11, 2010

Weather Data at 1:35pm
EDT: Clear, 14.4˚C
Location at 1:35pm
EDT: Lat: 40 30.07 N
Long: 69 08.66 W
Water Depth: 77.5 m
4th Day at Sea

Why Count Sea Scallops?

That had to be the most common question I got asked before coming on this trip. Much of the information below is from the NOAA FishWatch website (www.nmfs.noaa.gov/fishwatch/species/atl_sea_scallop.htm).

Economically, sea scallops are an important species; in 2008 the scallop harvest was about 53.5 million pounds and was worth about $370 million. The population is not currently considered to be overfished and has been above minimum sustainable levels since 2001. Formal management began in 1982 with the Atlantic Sea Scallop Fisheries Management Plan. The management plan includes limiting new permits, restrictions on gear and on the number of crew on a boat. Since about 2000, the biomass of scallops has been increasing. Biomass is estimated by using the weight of scallops per tow on cruises like this one. Combinations of biomass estimates and estimates of the commercial catch are used to update and adjust the management plan.

Sea Scallops (Placopecten magellanicus) are filter feeders. They can live up to 20 years and begin reproducing at about 2 years, with maximum fertility reached at 4 years. A single female scallop can produce up to 270 million eggs in her life. This high reproductive capacity has helped the scallop population recover relatively quickly. Gender can be determined by the color of the gonad; females are orange while the male gonad is white. Adult scallops average between 6 and 7 inches from hinge to tip (called height) but can be as big as 9 inches. Age can be estimated by counting the rings on the shell. Scallops can “swim” by opening and closing the two shells. This is a useful adaptation for escaping from predators, including flounder, cod, lobsters, crabs, and sea stars. Scallops are harvested for the adductor muscle (the one that opens and closes the shell). There is no commercial aquaculture of scallops in the US as of August 2009.

scallop dorsal and ventral

Personal Log

A storm moved through beginning on Wed. evening (day 2) and stayed with us most of Thursday. By the end of shift on Wednesday, we were working on deck in full foul weather gear and life jackets. Thursday we had an 8 hour steam between dredge sites and by the end of shift on Thursday, the seas had begun to smooth out. Friday was quite nice, weather-wise.

I am learning to shuck scallops, though I am about half the speed of many on the boat. I am also learning to tell the various types of flounder and other fish apart as well. It’s not always obvious which type of founder or hake is which.

New Species

Goose fish (aka monk fish), several more varieties of flounder, sea urchins, sea cucumbers, eel pout, some very large skates, 3 types of sea stars and 1 type of brittle star.

Richard Chewning, June 15th, 2010

NOAA Teacher at Sea
Richard Chewning
Onboard NOAA Ship Oscar Dyson
June 4 – 24, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska (Kodiak) to eastern Bering Sea (Dutch Harbor)
Date: June 15th, 2010

Weather Data from the Bridge

Position: eastern Bering Sea
Time: 1530
Latitude: N 55 47.020
Longitude: W 165 24.970
Cloud Cover: overcast
Wind: 14 knots
Temperature: 6.4 C
Barometric Pressure: 1003.7 mbar

Science and Technology Log

In addition to researchers on the lookout for seabirds, the Oscar Dyson is also hosting researchers hoping to catch a glimpse of some the world’s largest animals: marine mammals. Either ocean dwelling or relying on the ocean for food, marine mammals include cetaceans (whales, porpoises, and dolphins), manatees, sea lions, sea otters, walrus, and polar bears. Although marine mammals can be enormous in size (the largest blue whale ever recorded by National Marine Mammal Laboratory scientists was 98 feet long or almost the length of a ten story building laid on its side!), studying marine mammals at sea can be challenging as they spend only a short time at the surface. Joining the Dyson from the NMML on this cruise are Suzanne Yin, Paula Olson, and Ernesto Vazquez. As a full time observer, Yin spends most of the year on assignment on various vessels sailing on one body of water or another and only occasionally is to be found transitioning through her home of San Francisco, California. Paula calls San Diego, California home and spends most of her time when not observing at sea working on a photo identification database of blue and killer whales. Ernesto is a contract biologist from La Paz, Mexico and has been working on and off with NOAA for several years. Ernesto has worked with several projects for the Mexican government including ecological management of the Gulf of California Islands.

Yin keeping warm from the cold

Ernesto keeping sharp lookout for marine mammals

Paula keeping an eye on the horizon

Yin, Paula, and Ernesto undoubtedly have the best view on the Oscar Dyson. Working as a three member team, they search for their illusive quarry from the flying bridge. The flying bridge is the open air platform above the bridge where the ship’s radar, communication equipment, and weather sensors are located. One observer is positioned both on the front left and front right corners of the flying bridge. Each observer is responsible for scanning the water directly in front to a line perpendicular to the ship forming a right angle. Two powerful BIG EYE binoculars are used to scan this to scan this 90 degree arc. These binoculars are so powerful they can spot a ship on the horizon at over ten miles (even before the Dyson’s radar can detect the vessel!). The third person is stationed in the middle of the flying bridge and is responsible for surveying directly ahead of the ship and for scanning the blind spot just in front of the ship that is too close for the BIG EYES to see. This person is also responsible for entering sightings into a computer database via a lap top computer. The three observers rotate positions every thirty minutes and take a thirty minute break after one full rotation. One complete shift lasts two hours. Yin, Paula, and Ernesto start soon after breakfast and will continue observing until 9:30 at night if conditions allow.

Dall’s porpoise

Weather can produce many challenges for marine mammal observers as they are exposed to the elements for hours at a time. Fortunately, Yin, Paula, and Ernesto are well prepared. Covered from head to toe wearing insulated Mustang suits (the name come from the manufacturer), they are pretty well protected from light spray, wind, and cold. Although a certain amount of the face is always exposed, a shoulder high wind shield helps deflect most of the spray and wind. In addition to wind chill and wind burn, a strong wind can also produce large rolling waves called swells that make viewing through the BIG EYES next to impossible. Sometimes reducing visibility so much that the bow can barely be seen the bridge, fog is undoubtedly a marine mammal observer’s greatest adversary.

Humpback whales through the Big Eyes
Salmon fishing operation through the Big Eyes

So far during the cruise, Yin, Paula, and Ernesto have spotted many blows on the horizon and have identified several species of marine mammals. A common sighting is the Dall’s porpoise. Your eyes are easily drawn towards these fun marine mammals as they produce characteristic white splashes by repeatedly breaking the water’s surface exposing a white stripe on their side. Blows from fin whales have also been regularly observed. Other sightings include killer whales, humpback whales, Pacific white sided dolphins, and a rare sighting of a Baird’s beaked whale.

Personal Log

Life aboard a constantly moving platform can take a little getting used to! I imagine if a person doesn’t live in an area frequented by earthquakes, one will easily take for granted the fact that the ground usually remains stable and firm underfoot (I know I did!). Over the last view days, steady winds from the south have conspired to create conditions ideal for rolling seas. Large swells (waves created by winds far away) make the Dyson very animated as we push forward on our survey transects. In addition to making deployments of gear more difficult, routine personal tasks soon assume a challenging nature as well. Whether you are simply getting dressed in the morning, trying to make your way to your seat with lunch in hand, or taking a shower in the evening, a constantly pitching and rolling deck will make even a seasoned deckhand wobble and stumble from time to time.

Building seas

A piece of advice I have often heard during these conditions calls for “one hand for you and one for the ship”. Maintaining three points of contact with ship, especially when moving between decks, can save you from being tossed off balance. The crew is very considerate of these conditions and allows even more understanding than customary when you bump into shipmates. I have also learned the importance of securing any loose equipment and personal items after usage during rough seas as they might not be in the same place when you return. In addition to waking several times during the night and having a restless sleep, these conditions will also leave you feeling stiff and fatigued in the morning after a bumpy night of being tossed around in your rack. Once you muster the strength to get moving, your legs become surprisingly tired as you constantly try to keep your balance. Along with the rest of the crew, the Dyson also feels the effects of jogging through rough seas as you constantly hear the rhythmic sounds of the bow plowing though the next wave and of the ship’s superstructure groaning under the strain.

Measuring the Dyson’s roll
Passing through the fog

Did you know? Fog is essentially a cloud on the ground’s surface.

Barbara Koch, October 5, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, October 5, 2010

Weather from the Bridge
Latitude 40.63
Longitude -72.92
Speed 4.80 kts
Course 293.00
Wind Speed 19.13 kts
Wind Dir. 139.69 º
Surf. Water Temp. 18.76 ºC
Surf. Water Sal. 31.62 PSU
Air Temperature 16.20 ºC
Relative Humidity 89.00%
Barometric Pres. 101.44 mb
Water Depth 28.52 m
Cruise Start Date 10/2/2010

Science and Technology Log

In addition to collecting data about fish species in the Southern New England Atlantic Ocean, NOAA Ship Henry B. Bigelow is also collecting information about the ocean’s climate and plankton numbers. lankton refers to microscopic plants (phytoplankton), animals (zooplankton), decomposers (bacterioplankton), and the fish eggs and larvae of larger fish (ichthyoplankton). Plankton forms the base of the ocean food web. Phytoplankton is the food source for zooplankton, which in turn is the food source for larger fish. Water salinity and termperature (climate) are directly related to the production of plankton. A change in climate can cause a decrease in the production of plankton, therefore, less food for developing fish species. Low numbers of fish at the bottom of the food web means less food for fish at the top of the food web.

Reviewing Data
Reviewing Data

Plankton samples are taken at random trawl stations during the cruise. I had the opportunity to observe and assist the Senior Survey Technician, Jim Burkitt, during one sampling. Burkitt uses a Bongo Paired Zooplankton net system, which consists of two stainless steel cylinders with instruments that measure water flow, and two cone-shaped, fine mesh nets attached. The nets are lowered into the ocean and dragged alongside the ship for a specified amount of time, and at all levels of the ocean column. Burkitt monitors the location of the nets via computer during the sampling to ensure that the nets do not touch the ocean floor, thus gathering sediment instead of plankton.

Sampling
Sampling

Retrieving the nets
Retrieving the nets

The crew retrieves the nets at the end of the sampling period and places it on the deck of the ship. Once the nets are back on deck, we rinse the plankton from the top to the narrow, tied end of the nets byspraying the nets from the top towards the bottom.

Rinsing the plankton
Rinsing the plankton

Plankton
Plankton
Finished Sample
Finished Sample

When the catch is located at the bottom of the nets, we untiethe bottom and continue rinsing the sample into metal strainers. The top strainer has a large mesh screen to trap jelly fish and other organisms trapped in the net and to allow the smaller plankton to fall through to the lower strainer, which has a very small mesh screen used to collect the plankton sample. Here is what the sample looked like.

Finally, we carry the samples into the lab where we rinse the plankton into jars, add formaldehyde as a preservative, and seal the jars. The jars will be taken to the lab in Woods Hole for further analysis.

Personal Log

Northern Stargazer
Northern Stargazer
Armored Searobin
Armored Searobin

Even though many of our towing days were lost to gale force winds, we did end the cruise by catching some interesting species. First, was the Northern Stargazer (Astroscopus guttatus). The Northern Stargazer is found in shallow waters along the eastern seaboard from North Carolina to New York. It has a large head, small eyes on top of its head, and a large upward turned mouth. The Northern Stargazer buries itself in the sand on the ocean floor and waits for prey to swim by. Northern Stargazers also have an electrical organ around the eyes that can give us a jolt if we touch it.

Another interesting catch was the Armored Searobin (Peristedion miniatum). This species is bright crimson and is totally covered with bony plates. It can grow to be 13-14 inches long. It is found in the warm waters along the outer edge of the continental shelf in waters from Georges Bank off of Cape Cod, Massachusetts all the way down the Atlantic to Charleston, South Carolina.

Monkfish
Monkfish

We also caught Monkfish or Goosefish (Lophius americanus). This fish is found along the eastern seaboard of the United States from Grand Bank down to Cape Hatteras, North Carolina. Monkfish live on the bottom of the ocean in sand, mud and shell habitats, and feed on whatever prey is abundant. The meat is said to taste a lot like lobster tail, and therefore is often referred to as “poor man’s lobster.”

striped sea bass
striped sea bass
More striped sea bass
More striped sea bass

Our most exciting catch came when we hauled in 212 striped sea bass! Striped bass occur along the Atlantic coast from the St. Lawrence River in Canada all the way down to Florida. They live near the coast, in bays and tidal rivers. Striped bass have been very important to the United States fishing industry for centuries. The largest one we caught was 103 cm long and weighed 11.26 kg!

I thoroughly enjoyed my time working and learning during the second leg of the Autumn Bottom Trawl Survey cruise. It was a great opportunity to see research at work in a real world setting, and I’m sure my students will benefit from everything I’ve experienced. I want to thank the scientists from the Northeast Fisheries Science Center (NEFSC), the NOAA Teacher at Sea Program, and the crew aboard NOAA Ship Henry B. Bigelow for allowing me to be a part of your lives for twelve days. If any of you teachers out there are interested in applying to the Teacher at Sea Program, I highly recommend it. Check out their website at http://teacheratsea.noaa.gov/.

Barbara Koch, October 4, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, October 4, 2010

Weather from the Bridge

Latitude 39.94
Longitude -73.47
Speed 1.10 kts
Course 22.00
Wind Speed 34.25 kts
Wind Dir. 69.54 º
Surf. Water Temp. 19.70 ºC
Surf. Water Sal. 31.85 PSU
Air Temperature 15.80 ºC
Relative Humidity 88.00%
Barometric Pres. 1015.72 mb
Water Depth 45.00 m
Cruise Start Date 10/02/2010

Science and Technology Log

The Bridge
The Bridge

I visited the bridge of NOAA Ship Henry B. Bigelow to see how the ship is run. Thebridge sits atop the ship and is the command center for all navigation andcommunications operations during the cruises. Windows surround the entire bridge, giving NOAA Corps officers a 360 degree view of the surrounding ocean. Here, Commanding Officer, Anne Lynch, and Junior Officer, ENS Kyle Sanders stand at the main bridge console of the ship. NOAA Corps officers chart the ship’s course, control the speed, steer the ship, detect other objects in the ocean via sonar, monitor weather conditions, and communicate with others at sea, on the ship, and on shore from this console.

Console for steering the ship
Console for steering the ship
Aft Control Station
Aft Control Station

The Aft Control Station (ACS) is located at the rear of the bridge and overlooks the working deck. The ACS provides control ofthe Auto Trawl System to pull the research net at a constant andstraight trawl. A closed circuit television improves the crew’s visibility while operating the gear from the bridge. Here is a picture of the ACS control panel on the bridge and the research net on the rear deck.

Henry B. Bigelow is also equipped with two scientific SONAR systems used for gathering data on fish and plankton and for collecting oceanographic data, such as water salinity and water temperature. Transducers are mounted at the center of the hull and extend below the ship to take acoustic readings of water depth or the location of schools of fish. One of the SONAR transducers on this ship can work at depths as deep as 5000 meters and can detect objects under water as close as one meter or as far away as 800 meters. It also detects objects on the sea floor, as well as in the water column. This system is controlled from the bridge, as well.

SONAR controls
SONAR controls

A separate control panel is used to monitor and control power and water usage on board the ship. Two generators provide electricity for the ship. There are also tanks in the hull designated for different purposes, such as holding water, fuel, and potable water. This control board monitors all of the tank and power usage levels for the entire ship.

Personal Log

The lounge
The lounge

Today is my birthday! Spending my birthday aboard a NOAA research vessel is a great gift! Today is also the second day spent waiting for the seas to calm down so we can take more samples. Wind speeds are 34.25 kts. and the waves are about 11-16 feet high. The boat is rocking and rolling, and makes it very difficult to move around. The night watch is sleeping, so we cannot go in our staterooms, and we must be quiet everywhere we go. It is too windy to go outside on the deck, as well. The only thing we can do is wait in the lounge. The lounge is equipped with a television, two computers, couches, a conference table, games, movies, and reading material. Since it is my birthday, I have the honor of selecting one of the movies we will watch. That’s a hard thing to do when you are with a group of people with so many different tastes and personalities. . . the “A Team” it is! It’s great that the crew and scientists have a place to go for entertainment, because waiting for so many hours on end can start to get on everyone’s nerves.

Gym
Gym

Luckily, the ship also has a workout room, which I visited briefly. It’s very difficult to lift weights when the ship is rocking, and the elliptical machine seemed to run by itself. The stationary bicycle was a little easier to manage, and it felt good to move my legs after sitting for so long in the lounge.

Galley
Galley

However, I think the biggest morale booster for me, the crew and the scientists is thewonderful food that Dennis and Randy make in the galley. Their menus rival those of some finer restaurants I’ve visited, and we are treated to their artistry every day way out here in the ocean. I’ve truly been spoiled!

Barbara Koch, October 3, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, October 3, 2010

Weather from the Bridge
Latitude 39.72
Longitude -72.16
Speed 11.30 kts
Course 289.00
Wind Speed 25.11 kts
Wind Dir. 69.68 º
Surf. Water Temp. 19.78 ºC
Surf. Water Sal. 33.94 PSU
Air Temperature 16.40 ºC
Relative Humidity 71.00 %
Barometric Pres. 1016.80 mb
Water Depth 121.67 m
Cruise Start Date 10/02/2010

Science and Technology Log

Safety is very important on NOAA Ship Henry B. Bigelow. We participated in a Fire Drill and an Abandon Ship drill today. Each person on board is assigned a location to “muster” (gather) in case of emergencies. For a fire drill, all scientists are to carry their life vest and survival suit and muster in the lounge directly across from my stateroom. Life vests and survival suits are kept in the staterooms, so we are to grab those and get to the lounge as quickly as possible.

Fire drill
Fire drill

The fire drill began while the day watch was in the wet lab, one level below my stateroom. The scenario was that there was a “fire” on the 01 deck beside the lounge. That was right where my stateroom and the lounge were! Since we couldn’t get to our staterooms to gather our survival suits and life vests or muster in the lounge, due to the “fire,” we grabbed extra life vests and suits from the wet lab and mustered in the mess hall, which is near the wet lab.

Once everyone was accounted for during the fire drill, we moved out to the back deck of the ship for our Abandon Ship drill. Each person on board was assigned a life boat, and that is where we mustered for the Abandon Ship drill. First, we put on our life vests and made sure they were secured tightly. Next, we took off the life vests and put on our survival suits, which are often called “Gumby Suits” because they are large and look a lot like the animated Gumby character from the 1960’s. The survival suit is bright orange and is made out of neoprene. This makes the suit waterproof and very warm. The zipper and face flap are designed to keep water out, as well. Other features of the suits include reflective tape for greater visibility in the ocean, a whi8stle, a water-activated strobe light, a buddy line to attach to others, and an inflatable bladder behind the head to lift one’s head out of the water.

In my 'Gumby' suit
In my ‘Gumby’ suit

Boots and mittens are attached so that all one has to do is jump into the suit and zip it up. It’s not that easy, however. The arm cuffs are very tight, so it takes some strength to push your hands through. It also takes strength to pull the zipper all the way up to the center of your face. All personnel aboard the ship must be able to put this suit on and abandon ship in one minute. I was able to put my suit on in the allotted time, but we didn’t have to abandon the ship during the drill.

My stateroom
My stateroom

Personal Log

Living on a ship is an interesting experience. Space is at a premium, but the Henry B. Bigelow is actually quite comfortable. The scientists told me that this ship has a lot more amenities than some of the other research ships. My stateroom is small and narrow, but roommates are normally working on separate watches, so no one feels cramped or without personal space. You can see in this photo that the room has two bunk beds. Mine is on top, and it has been a fun challenge trying to get in and out of bed when the ship is rocking! I haven’t fallen yet! Each bunk has a curtain that can be pulled closed to darken your sleeping area, if you are sleeping during daylight hours. There is also a desk with latched drawers, so they don’t fly open when the ship is in rough waters. Bungee cords are attached to the walls and desks to hold chairs and large items in place, too. It’s important to keep everything tied down and in the locker so it doesn’t role around and get damaged, or make noise. I learned the importance of that my first night on rough seas when hangers were banging in my locker.

The Head
The Head

My stateroom also has its own “head” (bathroom). The term “head” comes from long ago when boats were powered by the wind. Sailors had a grated area at the front or “bow” of the boat where they could use the bathroom. It was at the front of the boat so bad odors would blow away from the rest of the ship. The figurehead was also attached at the front, so it became common practice to refer to that area as the “head.” The head in my room has a toilet that flushes, and is much nicer than the heads of days gone by, thank goodness!

These are all great amenities, but the best part of my stateroom is the view! First thing every morning, I pull back the curtain to see what’s going on outside. One morning I saw several dolphins jumping out of the water as they moved swiftly toward our ship. Most days, I’ve seen fog, rain, and roiling waves, but I still enjoy looking out and seeing nothing but water as far as the eye can see, and sometimes, a beautiful sunset.

Sunset
Sunset

Barbara Koch, October 2, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, October 2, 2010

Weather Data from the Bridge
Latitude 41.31
Longitude -71.40
Speed 6.50 kts
Course 192.00
Wind Speed 11.29 kts
Wind Dir. 246.00 º
Surf. Water Temp. 18.81 ºC
Surf. Water Sal. 31.87 PSU
Air Temperature 15.90 ºC
Relative Humidity 57.00 %
Barometric Pres. 1014.52 mb
Water Depth 35.81 m
Cruise Start Date 10/2/2010

Stacy Rowe, of the Northeast Fisheries Science Center
Stacy Rowe, of the Northeast Fisheries Science Center

Science and Technology Log

Stacy Rowe, of the Northeast Fisheries Science Center, in Woods Hole, Massachusetts is the Chief Scientist for our cruise. I had a chance to talk with her about her background, experiences, and job while we were waiting to leave port today.

When working onshore, Rowe is responsible for pre-cruise preparations, such as ordering supplies for the trip and coordinating the collection of special samples for in-house and out-of-house scientists. She also works on testing a new version of FSCS (Fisheries Scientific Computer System), which is the system we are using to collect data about the fish populations.

During the cruise, when serving as Chief Scientist, Rowe shoulders a lot of responsibility. She schedules the watch teams, works with both watch teams, and acts as a liaison between the scientists and the ship’s personnel on the bridge (the room from which the boat is commanded). Although the sampling stations are randomly selected via computer before the cruise, Rowe works with the bridge to determine in which order stations will be sampled. On this cruise she has consulted with the bridge often because the weather has impacted our travel so much. Rowe relates that the job of chief scientist is mentally tiring because she is really on call the entire cruise. After the cruise, Rowe works with post-cruise management. She makes sure the samples collected are distributed to the scientists, and she audits data to make sure there were no errors in data collection.

Rowe grew up in Florida and attended the University of Florida where she earned a BS in Natural Resource Conservation with a minor in Wildlife Ecology. During her undergraduate program, she studied sampling, and uses this information extensively in her job now. After she graduated from college, Rowe joined the Peace Corps. She spent over one year working in Congo, Africa on a fresh water project. Then, she spent two years on Palau in Micronesia working in marine resource management. Rowe has been with NOAA for eight years, now. She goes on five to six research cruises a year, which adds up to about sixty days for the entire year. She serves as Chief Scientist on the majority of her cruises, but still enjoys the rare cruise when she works as a scientist processing catches.

Rowe has some advice for young people thinking they might like a career like hers. First, get a degree in any science area. A marine science degree isn’t really necessary. Work experience is the really important key. Second, volunteer as much as you can. Volunteering to work on research cruises not only builds a resume, but it allows students to try it out early on in their school career to see if they like it.

Stacy Rowe has strong interpersonal and organizational skills that are important for her leadership position, and I’ve enjoyed working as a volunteer scientist under her direction.

Personal Log

Newport, Rhode Island is a great place to visit. It was a center for shipbuilding and trade during colonial times, and is the birthplace of the U.S. Navy. Some of the United States’ wealthiest families built summer homes overlooking the bay, and these homes are open for tours today. I spent a nice afternoon on the “Cliff Walk” which is a trail that skirts around the edge of the estates just above the water. I had been there twenty five years ago, so it was fun to revisit the area.

Narragansett Bay
Narragansett Bay.

After two days in port, we are heading back out to sea. It’s a beautiful day. The sun is shining, and the waters are pretty calm. It’s hard to believe that we will be in rough waters once we leave Narragansett Bay. I’m riding up on the weather deck as we leave the bay, and I see many sailboats, two commercial cruise liners, Fort Adams (which has guarded Narragansett Bay since Colonial Times), Clingstone (a famous house built on a rock in the water), and the Newport (Pell) Bridge. I’m definitely putting Newport on my list of places to revisit.

In the Wet Lab

Processing an Atlantic Spicy Dogfish
Processing an Atlantic Spicy Dogfish
Processing an Atlantic Spicy Dogfish
Processing an Atlantic Spicy Dogfish

We have processed Atlantic Spiny Dogfish in the lab this week. This fish isn’t very popular for food in the United States, but it is exported to Europe for “fish and chips.” In 1998, this species was overfished, therefore, there were limits placed on the numbers fisheries could catch. Since that time, catch levels have been rebuilt.

The Atlantic Spiny Dogfish lives a long time: females up to 40 years and males up to 35 years. Females are larger than males and give birth to between two and fifteen live pups. During gestation (18-24 months) the pups have a yellow sack at their necks called a “yolk.” The Spiny Dogfish, processed here by TK, was a female with six pups. You can see the yolk on the two pups in the picture at right.

Barbara Koch, September 30, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, September 30, 2010

Weather Data from the Bridge

Latitude 41.53
Longitude -71.32
Speed 0.00 kts
Course 58.00
Wind Speed 16.00 kts
Wind Dir. 143.26 º Surf.
Water Temp. 18.79 ºC
Surf. Water Sal. 31.45
PSU Air Temperature 21.50 ºC
Relative Humidity 91.00 %
Barometric Pres. 1014.67 mb
Water Depth 12.53 m
Cruise Start Date 9/27/2010

Science and Technology Log

NOAA Ship Henry B. Bigelow is now docked in Newport, Rhode Island due to a deep trough of moisture from the East Pacific and Tropical Storm Nicole in the Atlantic moving up the Atlantic coast towards New England. The National Weather Service has issued a gale warning, because winds associated with this weather system are causing rougher seas, and it is too dangerous for the ship to continue trawling the ocean floor. When ships are at sea conducting research, it is vitally important that NOAA monitors current weather and wave conditions to insure the safety of the crew and scientists aboard their vessels. Actually, NOAA provides current weather information for everyone in America, including commercial fishermen and all of us on land. Visit NOAA’s National Weather Service website at http://www.nws.noaa.gov/ to see what’s happening today.

Our ship is equipped with instruments that collect weather and water data.Data is collected for wind speed, wind direction, water temperature, surface water salinity, air temperature, relative humidity, and barometric pressure. The information listed above under “Weather Data from the Bridge” is information gathered from the weather station located on top of the ship. Weather information is posted hourly. NOAA also has buoys placed in the waters around the United States, the Pacific and the Atlantic Oceans that collect data. Visit the National Data Buoy Center’s website at http://www.ndbc.noaa.gov/ to see where they are located and to read current data.

Henry B. Bigelow
Henry B. Bigelow

Wind movement in the atmosphere and water movement in the ocean are interrelated. When wind blows across the surface of the ocean, friction causes water molecules to move in a circular motion. Energy built up from friction transfers from one molecule of water to the next as each molecule rotates into the next. This action causes a wave to form. The size of the wave depends on three factors; the strength of the wind gust, the distance it blows (fetch), and the length of time it gusts (duration). NOAA’s buoys and ships collect wave measurements over a twenty minute sampling period for wave height (WHGT), wave period (APD), and the period with the strongest wave energy (DPD). A “gale warning” is issued when wind speeds are expected to measure 39-54 mph causing waves to reach between 18-25 feet in height. So, we are here until the seas calm down, which may be Saturday. While at dock, we’ll have time to explore Newport.

Personal Log

Foul weather gear
Foul weather gear

I’m really sad that we had to go in to port because I was just getting my sea legs and starting to feel comfortable with my work in the wet lab.But, I am glad to have a little time to wash my clothes.Everything I wear in the lab smells like fish! We wear our regular clothes, but put “foul weather gear” on over them before going into the wet lab. Foul weather gear consists of rubber boots, suspendered waterproof pants, and a waterproof rain jacket. Here is a picture of the gear hanging in the room where we get into our gear, and a picture of me in my pants holding a large skate. We store the pants over the boots so we can just step right in and pull the pants up, just like fire fighters. We always spray all the fish remnants off before we come back into this room to take off our gear.

Converyor belt in the wet lab
Converyor belt in the wet lab

We also wear rubber gloves during all of our work. The scientists have been using the blue gloves like the ones John is wearing at right, but scientists from past cruises commented they had a hard time holding onto the fish, so we are testing two other types of gloves on this cruise. The two gloves are rubber, but one is thick like the blue gloves and one is thinner.Both gloves have ridges on all of the fingers to allow for better gripping. I’ve been wearing the thicker orange gloves. So far, these gloves have worked well for me. I am able to easily pick up flat fish like flounder, but the sharp point of a scup’s dorsal fin poked through my glove once. That hurt! I’m just glad I didn’t have the thinner gloves on. A lot of fish slime also collects on the ridges throughout the watch. That’s easily remedied with a quick rinse from the nearby hose. Now, I think I’ll try out the blue gloves, so I can make a valid comparison.I’ll let you know my results at the end of the cruise.

Gloves
Gloves

Donna Knutson, September 29, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 29, 2010

The last night on the Sette.

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sightings will also be documented.
Jay the second steward during a drill.
Science and Technology:
Latitude: 19○ 53.8’ N
Longitude: 156○ 20.8’ W  
Clouds:  2/8 Cu, VOG (volcanic ash fog)
Visibility:  10 N.M.
Wind:  8 Knots
Wave height:  2 ft.
Water Temperature:  26.3○ C
Air Temperature:  26.0○ C
Sea Level Pressure:  1015.5 mb
The first leg of the Sette’s HICEAS cruise is almost over.  By tomorrow noon we will come into port at Pearl Harbor.  The mission has been highly successful!  The scientists and birders have had an action filled thirty days.
The HICEAS cruise birders, Dawn Breese and Scott Mills have documented thirty-nine species of seabirds.
 In the “tubenosed” or Procellariformes order, there are the Petrels and Shearwaters.  The Petrels include the Kermadec, Herald, Hawaiian, Juan Fernandez, White-necked, Back-winged, Bonin, Wilson’s Storm, Band-rumped Storm, Cook’s, and Bulwer’s.  The Shearwaters include the Christmas, Wedge-tailed, Buller’s, Sooty, Short-tailed, and Newell’s.
Clementine, the chief steward, in the galley. Her and Jay made a banquet for every meal! I surprised her!

From the order Pelicaniformes the Red-tailed and White-tailed Tropicbird have been recognized and also the Brown, Red-Footed Booby, Masked Booby, and Great Frigatebirds.

Harry, the chief engineer, during a drill.
The shore birds seen so far are the Bristle-thighed Curlew, Pacific Golden-Plover, Red Phalarope, Ruddy Turnstone, Bar-tailed Godwit, Sanderling and Wandering Tattler. Terns include the Brown and Black Noddies, the White, Sooty, and Grey-backed Terns; Jaegers include Pomarine, Parasitic, and Long-tailed plus the South Polar Skua.
The HICEAS mammal observers, Andrea Bendlin, Abby Sloan, Adam U, Allan Ligon, Ernesto Vazquez and Juan Carlos Salinas, have had ninety-seven sightings!  The whales observed have been the sperm whale, Bryde’s whale, and Cuvier’s and Blainville’s beaked whales.
The CO,commanding officer, Anita Lopez.
The dolphins that were documented were the bottlenose dolphin, striped dolphin, Pantropical spotted dolphin, spinner dolphin, Risso’s dolphin, rough-toothed dolphin, killer whale, false killer whale, pygmy killer whale, and pilot whale.
The scientists were able to obtain nearly 50 biopsy samples from live cetaceans, 1 necropsied Kogia, 3 tracking tags, and hundreds of pictures!
Personal Log:
If someone asked me what qualities and or skills are needed to work on a ship, I would use the Sette crew as my model.
You must have dedicated, respected and competent officers.  The engineers need to be resourceful and good problem solvers.  The deck hands must be hard working and possess a good sense of humor.  The doctor should be a model for good physical health and have a inspiring positive attitude.   The stewards need to make creative delicious dishes, and be friendly and caring. The computer technician must be a great troubleshooter in order to work on anything that requires electricity.
Dr. Tran and the XO, executive officer, Stephanie Koes went to Midway with me.
The science crew must be focused, persistent and knowledgeable.  I have observed that scientists, regardless of their role, whether they are mammal observers, accousticians, oceanographers or chief scientists, need to collect data, organize the information into the correct format, and then report it.  All variables need to be accounted for.
 I am very impressed with the kind and helpful crew!  They truly made me feel at home.  That is exactly how it feels like on the Sette – like a home.  They have welcomed me with open arms.
Kinji, the boatswain, cut up the yellow fin tuna into shashimi.
I have learned much, much more than anticipated on this cruise.  I was included in activities in all divisions. I was encouraged to help out the scientists by being an independent mammal observer, run security on the CTD, and help package and label biopsy samples.
In the kitchen I learned how to sanitize the dishes and where to put them away, plus I got some helpful cooking hints to take back home and a lot of good conversation.
I helped the deck crew when working with the CTD and learned how to tie a bowline knot.
I went up to the bridge and helped look –out during an emergency situation, was invited to the officer’s book review, and drove the ship.  Wow! Do I have respect for people who can do that accurately!
 I received a thorough and informative engineering tour, and I am still impressed by all the systems that need to work together to keep the ship (which is like a mini city) afloat.
The “girls” of the science crew displaying their cups before sending them down 3000 ft. with the CTD. They came back up less than half the original size.
I wanted to be involved where ever I went. Learning by observing is great, but I wanted to be an active member of the crew and learn through experience.  It is impossible to write down everything I learned from this experience, but I want to ensure everyone who was over-run with my many questions, that I appreciate all your time and patience with me.
It feels as though I have a whole different world to show my students!  Our Earth really is an amazing place of adventure!  You never know who you will have a chance to meet or what you can learn from them!
Thank you to everyone who shared their life with me.  It allowed me to have a wonderful “soul filling” experience!

Barbara Koch, September 28, 2010

NOAA Teacher at Sea Barbara Koch
NOAA Ship Henry B. Bigelow
September 20-October 5, 2010

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Southern New England
Date: Tuesday, September 28, 2010

Me in Front of the Henry Bigelow
Me in Front of the Henry Bigelow

Weather Data from the Bridge
Latitude 41.36
Longitude -70.95
Speed 10.00 kts
Course 72.00
Wind Speed 19.19 kts
Wind Dir. 152.91 º
Surf. Water Temp. 18.06 ºC
Surf. Water Sal. 31.91
PSU Air Temperature 19.80 ºC
Relative Humidity 91.00 %
Barometric Pres. 1012.45 mb
Water Depth 31.48 m
Cruise Start Date: 9/27/2010

Science and Technology Log

I have the privilege of working with the science team on Leg II of the Autumn Bottom Trawl Survey aboard the NOAA Ship Henry B. Bigelow from September 27 – October 7, 2010. We left port on Monday, September 27 and have been conducting the survey in the waters of Southern New England.

Processing Fish
Processing Fish

Fisheries surveys are conducted every spring and autumn in order to determine the numbers, ages, genders and locations of species that are commonly caught by the commercial fishing industry. The surveys are also carried out to monitor changes in the ecosystem and to collect data for other research. The scientists working on this leg of the survey are from Alaska, Korea, and New England. This ship works around the clock, therefore, we are divided into a day watch and a night watch, and we are all under the direction of the Chief Scientist, Stacy Rowe. I’m on the day watch, so my team processes fish from 12:00 noon until 12:00 midnight.

In order to collect a sample of fish, our ship drags a net for twenty minutes in areas that have been randomly selected before the cruise began. After the “tow,” the net is lifted onto the boat, and the fish are put in a large area to await sorting. The fish move down a conveyor belt, and we sort the fish by putting the different types into buckets and baskets. Once, the catch has been sorted, we move the buckets onto a conveyor belt, which moves them to stations for data collection.

Measuring fish
Measuring fish

Two people work at a station. One is a “Cutter” and the other is a “Recorder.” The cutter measures the length and weight of the selected species of fish on a “fishboard.” This data is automatically entered into the computer system. Depending on the species, the cutter might also be required to take an age sample or a stomach sample. Age is determined by collecting scales or an otolith (sometimes called an ear bone), depending on the species. The cutter removes these and the recorder puts them in a bar-coded envelope to send back to the lab for later study. The cutter also removes the stomach, cuts it open, and identifies what the fish has eaten, how much, and how digested it is. All of this information is entered into the computer for later analysis.

The information gathered during this cruise will give NOAA and other organizations valuable information about the health of the fish species and their ecosystem.

Personal Log

I arrived the night before we left port, and I was able to spend the night on the boat. My stateroom sleeps two people in bunk beds, and each person has a locker in which to stow our belongings. The stateroom also has a bathroom with a shower. Right across the hall is the scientist’s lounge. It has two computers, a television, many books, and games. This is where we sometimes spend our time while we are waiting for a tow to come in.

We spent much of the first day waiting to leave port. Once underway, some tests were conducted on the nets, and my Watch Chief showed me pictures of some of the common species we would see, explaining how to identify them. We began processing fish today. The first time the fish came down the conveyor belt, I was nervous that I wouldn’t know what to do with them. It worked out fine because I was at the end of the conveyor belt, so I only had to separate the two smallest fish, Scup and Butterfish, and Loligo Squid. After my first try at processing, I felt much more confident, and I even was able to tell the difference between Summer and Winter Flounders. One faces to the right and the other faces to the left!

Donna Knutson, September 27, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission:  Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 27, 2010

The Elusive Pseudorca

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sightings will also be documented.
This is me “looking” like I am driving the ship.

Science and Technology:

Pseudorca “spy hopping”.
Latitude: 22○ 09.1’ N
Longitude: 160○ 12.3’ W  
Clouds:  1/8 Cu
Visibility:  10 N.M.
Wind:  9 Knots
Wave height:  1-2 ft.
Water Temperature:  26.6○ C
Air Temperature:  25.2○ C
Sea Level Pressure:  1015.9 mb
Compared to its cousin the Killer Whale, little is known about the False Killer Whales.  They do not have many similar traits other than their coloring.  They both have black upper bodies with patches of white below.  On the pseudorca the lighter color is on the chin and tapers along the stomach backward to the tail.
False Killer Whales traveling side by side.
They are a much smaller animal, with a male maximum length of nineteen feet six inches and a weight of around three thousand pounds.  The female is smaller with similar coloring.  They have an erect dorsal fin that may be up to fifteen inches high.
The false killer whales may not sound so impressive but as cited in the Honolulu , September 2010 magazine, the pseudorca are not the typical marine mammals. They are actually a type of dolphin (as is the “true” killer whales), they swim extremely fast and have a unique community/friendship relationships.  Pseudorca may stay with a group for more than twenty years.
This is how biopsy samples are acquired.
To show a sense of community spirit, when a pseudorca catches a fish it may pass it around to all the other members before it comes back to the original thrower, (kind of like “throwing around the horn” in baseball).  They are typically found in groups of ten to twenty members but can be found in broad bands several miles wide.
One population of pseudorca in the Main Hawaiian Islands has been dwindling from several hundred in the late 1980s to about one hundred fifty members today.  These animals live primarily within seventy miles of the islands.
Fishing is one reason for the decline in numbers.  The whales may see a free meal in yellow fin tuna or mahi mahi on a fisher’s line and become hooked and drown.  This has caused an average of eight false killer whales to be drowned or seriously injured in each of the last five years.
Pseudorca between the small boat and Sette.
Pseudorcas have a low reproduction rate.  Their calving interval is very long, up to seven years, so not many whales are being born into the pod to replace those lost accidentally by humans. In July a team of scientists, fishermen and conservationalists turned in a plan on how to reduce the number of false killer whales injured on longlines.  One of the recommendations is to close off an area abut 50-75 miles from the Hawaiian longline fishery.  There is already a non-fishing mandate that protects the National Monument.
The National Marine Fisheries Service will decide if these regulations should be enacted and then determine if the pseudorcas should be protected under the Federal Endangered Species Act.
Personal Log:
Pseudorcas have a gregarious personality.
One of the prime objectives of the HICEAS cruise is to find, tag, take a biopsy samples of, and pictures  of pseudorcas. Because of the interest in protecting these animals, it is very important to get as much information on these animals as possible.
So now here we are into day 26 of our 29 day cruise, and guess who shows up!  The pseudorcas!  And when they come, get ready!  The animals seen yesterday were traveling by themselves or in groups up to ten, and they were spread out over twelve miles!
Erin had established a protocol for monitoring all the different subgroups which would allow the scientists to get a count on the number of individuals present. Once a scientist spotted a group, they had to follow that group until it passed the ship.  That was very challenging especially for the groups that were a long distance from the ship and took several minutes to pass.
Then you have the group that wants to merge with that group or one leaves this group and wants to go with that other group.  It is not like they have brightly colored clothing to tell them apart!  It was quite an exercise in patience and determination.
Pseudorcas feed mainly on fish and squid.

I did not have a group, but I did have white board markers, which I acquired from running down to the exercise room to snatch them from the maker board below deck.  Erin had mentioned someone should be a recorder of groups.  I definitely know my way around a marker board, so I started writing the names of the observers, their group’s location and assigned them a letter.  At one time we had five different groups being monitored.  By the end we had groups A through S!

The scientists could not look away from their group for the entire time it was being counted until it left the area.  Wow, they did a great job!  As soon as their group left they picked up on another.  Some scientists where watching two groups at the same time if they were close to each other.  It took a lot of concentration.
Erin copied the data from the board to make sure all was accounted for and then the board was erased to start all over again.  We did this for over two hours!  The animals were spread over twelve miles!  Now that may sound like a lot of pseudorcas, but there typically were not that many animals in a subgroup.  They just needed to be monitored for a long time until all data was recorded properly.
When the last pseudorca was past the ship, Erin sent out the small boat.  Allan was there to shoot the satellite tag into a fin for tracking the whale.  Ernesto was in charge of getting biopsy samples and Corey was in the boat to get pictures with the laser camera.  Of course the small boat driver, Mills was there along with Ray to help with lines and such.
A pod of four pseudorca.
They looked like they had a fun time!  The whales, who are very curious in nature, would pop up beside the small boat and often swim in small groups beside them.  I read that these animals have been seen to act like the bottlenose and spinner dolphins and ride the bow wakes.  They never did that on our ship, but were never far away.
The small boat was out for about two and a half hours.  They did an amazing job of getting three animals tagged with tracking devices, eight biopsy samples and many great pictures.   They were a lot of fun to watch!  Their community structure in amazing.   I can see why they are not “your typical dolphin”!

Donna Knutson, September 25, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: e Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 25, 2010

Oceanography
Me with the CTD.
Mission and Geographical Area: 
The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.
Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sightings will also be documented.
Getting the CTD ready for the water.
Science and Technology:
Latitude: 24○ 28.8’ N
Longitude: 165○ 50.5’ W  
Clouds:  3/8 Cu,Ac
Visibility:  10 N.M.
Wind:  12 Knots
 Wave height:  1-2ft.
Water Temperature:  26.6○ C
Air Temperature:  25.2○ C
Sea Level Pressure:  1021.1 mb
Ray uses the crane to lift the CTD into the water.

Oceans cover 71% of the Earth.  They contain 97% of the water on the planet, and amazingly 95% of the world under the ocean is unexplored!

Oceanography or marine science is a branch of earth science that covers many topics.  The studies can include marine organisms, ecosystems, ocean currents, waves, plate tectonics, and changes in the chemistry or physical properties within the ocean.  Physical properties are properties which can be measured from the water such as temperature, salinity, mixing of waves, tides and acoustics.
There are many reasons to study the ocean, but one reason is to understand global changes.   The atmosphere and oceans are linked through processes of evaporation and precipitation.  Weather worldwide is determined by the oceans physical and chemical properties, and its influence on air currents.
The National Oceanic and Atmospheric Administration (NOAA) collects data from oceans throughout the world, evaluates it, then distributes weather forecasts to various weather reporting agencies.  NOAA has the largest archives of oceanographic data in the world, and is using the information in long term monitoring of ocean climates and ocean research.
Corey is processing her chlorophyll.
The Oscar Elton Sette is obtaining such data.  The bridge of the Sette is transmitting data (as seen at the top of this blog) such as latitude, longitude, temperatures, pressure etc. to NOAA recording sites in order to plan weather forecasts.   The scientists are also acquiring data, but this data is more specific to the ocean water’s chemistry. They are measuring temperature, conductivity, salinity, and chlorophyll abundance.
Temperature and salinity differences within the ocean lead to increased circulation.  Water has a similar circulation pattern to air.  They are both fluids and behave accordingly.  When heated, fluids will absorb the heat causing the molecules to move faster.  Now that the molecules are colliding more often, they become farther apart.  The spread out molecules, in air or water, do not have the same density as before.  Because they are less dense, they are pushed up and away from the more dense portion of the fluid.
Corey is dropping in the XBT to measure temperature.

Due to the differences in density, either caused by changes in temperature or salinity, a small current will form.  This circulation causes a turn-over effect, and increases the amount of nutrients in the water. These nutrients will feed the phytoplankton (measured as chlorophyll) and microbes.  These “animals” are on the bottom of the food chain, will become food for larger animals and so on.  Changes in density and salinity are only a small but important means to move nutrients within the water column.

Most of the mixing of water is due to large currents.  The Hawaiian Archipelago, because of its location, does not have a lot of mixing water.  It is in the middle of the North Pacific Gyre.  A gyre is a large system of rotating currents.  The North Pacific Gyre is a system of four ocean currents converging in the same area causing a circular motion.  At the “edges” of the gyre, a lot of mixing is taking place due to the motion of the incoming currents, while at the center of the gyre, there is the least amount of movement and therefore the least mixing up of nutrients.
The North Pacific Gyre is located between the equator and 50 latitude.  It makes up the largest ecosystem on Earth measuring twenty million square kilometers.  If the nutrients are more plentiful at the edges of the gyre, then the ecosystem has an uneven distribution of animal life.
These are used for the bucket sample.

Testing for nutrients is part of the research being done on the Sette.  They are trying to match up animal populations in a location to the ocean water’s chemistry.  By understanding the variables that a particular species need in order to have a healthy community, will aid in population studies, and also in the tracking of more animals of that species in order to study them in a different context.

Personal Log:
I have been assisting Corey, the oceanographer on the Sette.  My “job” is not in analyzing her data, but rather to help make sure the main instrument that is used to take data is not at risk of hitting the boat when it is in the water.  It sounds as though I’m in charge of security.  Yeah that’s right I am part of the CDT security team!
The CTD (conductivity, depth, temperature) device consists of twelve bottles attached to a large rack.  The entire mechanism weighs several hundred pounds, and is lowered into the water by a crane.  When in the water, it is important that the device goes all the way down to one thousand meters without being pulled side to side or under the ship where the cable may become wrapped around a propeller.  That would be tragic!  So in the scheme of things, my meager “security” position is very important. The CTD is lowered into the ocean one hour before sunrise and one hour after sunset.  (I only do the morning “security”).
Because this is a very sophisticated piece of electronic equipment, there is also a person in charge of maintaining the CTD to make sure the instrument is working correctly.  This position is called a survey tech. Scott is the survey tech who supports Corey.  As the CTD is lowered into the water, Scott checks to make sure everything is working properly, and once it reaches one thousand meters, he starts taking readings.
Scott is the “survey tech” that works of the CTD.
Scott takes a reading every one hundred meters until it reaches the surface once again.  From his work station, the data of conductivity (which is a measurement caused by salinity), depth, temperature, and oxygen is plotted on a graph.  From the data collected, Corey organizes it and reports it along with latitude and longitude.
The bottles on the CTD “fire” or rather trap water at various depths.  When brought back to the surface Corey tests the water for chlorophyll which is her nutrient indicator.  The more nutrients suggest that the water is more productive and can maintain larger animal populations.
Corey has other tests to check chlorophyll and temperature just to make sure the instrumentation on the CTD is working properly.  Three times a day along the route, (the boat stays in one place for the CTD), she does another temperature test down to 760 m, it is called the XBT (expendable bathometric temperature). The XBT is a small black sensor which is weighted and connected by a copper wire to the ships computer back in the lab.  As the XBT is dropped behind the ship it records temperature data all the way down.  The ship’s computer graphs the temperature changes from 0 – 760m for two minutes.
Only two more days left of my “security” position. I enjoyed talking to Ray, and watching the squid that kept us company. Not a bad view to start off your day!
Another back-up test is the bucket test, it will recheck the chlorophyll.  The bucket test is as it says, a narrow bucket lowered over the side.  It too is dropped into the moving water, but is brought to the surface with a water sample.  Corey pours it into a sample bottle which she will test in the lab 24 hours later.  Temperature is also recorded at the same time.
All of this testing and retesting is what is needed to provide reliable data that can be stored and evaluated at a later date.  The data may seem inconsequential at the time, but it is truly the glue that holds the clues to why animals are in some areas and not in others.
Oceanography is a very exciting science because there is so much left to learn. The more information we have, the more clearly we can understand our global environment.

Donna Knutson, September 24, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 24, 2010

I Hear Them!

I am in the stateroom writing.
I Hear Them!
September 24, 2010
Teacher at Sea:  Donna Knutson
Ship Name:  Oscar Elton Sette

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and  sea bird sightings will also be documented.
Erin, Sussanah, and Kim working on the array.
Science and Technology:
Latitude: 25○ 13.6’ N
Longitude: 168○ 23.7’ W  
Clouds:  4/8 Cu, Ci
Visibility:  10 N.M.
Wind:  8 Knots
Wave height:  2-3 ft.
Water Temperature: 28.2○ C
Air Temperature:  25.6○ C
Sea Level Pressure:  1021.6 mb
Of the five senses, hearing is the most important sense to cetaceans.  Sea animals depend on hearing to feed and communicate.  In water it is impossible for whales see long distance, their sense of smell is not as developed as in sharks, their sense of taste and touch will not help in traveling through the water seeking food, so therefore the sense of sound has become the most developed.
“Guts” of the array.
Cetaceans whether odontocetes, the “toothed whales” such as the sperm whales and dolphins, or Mysticetes, the baleen whales such as the Bryde’s or humpback whales, have different ways of producing sound.  Because their methods and mouths are different, different kinds of whales produce different kinds sounds with varying frequencies.
Frequency is the number of waves or vibrations that pass a certain point in one second.  People have a hearing range of approximately 150 – 20,000 Hz.  Hertz or Hz is the unit for frequency meaning how many waves are reaching a destination in one second.   People talk within this frequency range and can hear slightly above and below this range.
Cetaceans have a much broader frequency range.  The “toothed whales” produce rapid bursts of high frequency clicks and whistles.  Their hearing range is 250 – 150,000 Hz.  Single clicks are used for echolocation and a collection of clicks for are used for communication.
Erin, Sussanah, Yvonne, Nicky and Kim checking the connections.
The baleen whales have a lower frequency range of about 10 – 31,000 Hz.  They too use sound for echolocation and communication, but the “whale song” often associated with humpback whales is primarily for sexual selection.
When comparing whales to other land animals, they even have a higher frequency range than dogs or bats.  The bat has a hearing range of 10,000 – 100,000 Hz and the dog’s range in 15,000 – 50,000 Hz.  In whales and bats the higher frequencies are used for echolocation.
 Another difference between the land and aquatic animals, is where their sound is transmitted.  Land animals send and receive sound through the air and cetaceans do both through water.  Sound travels almost four times faster through the water. That is the reason whale noises can travel thousands of kilometers.
Listening in.
Whale noise is not the only noise in the ocean. People are making a lot of noise themselves.  With increased noise from ships, sonar, and seismic surveys the ocean is becoming a noisy place. Environmentalists and cetalogists are concerned with the added noise.
Noise may be one of the factors in animal strandings.  The strandings may due to stress from noise, but in some cases cetaceans have had damaged ears.  It is unknown if increased noise levels have caused the ear damage or it is only old age.  This is definitely an area which could use more study.
Personal Log:
A group of sperm whales sound like the patter of rain.
It has been through my observations aboard the Sette, the acousticians have a challenging job! They of course have a love of cetaceans like all marine biologists, and want to locate and study these animals, but they need to work with very sophisticated electronic equipment rather than be out on the flying bridge looking through the “big eyes”. If the equipment is not designed properly, whale and dolphin sounds cannot be detected.
Yvonne, Sussanah and Nicky are the acousticians on the ship.  These young women have had additional adventures over and above others on the cruise, and adventures that they would probably wish they didn’t have to experience.  I am very impressed with their trouble-shooting abilities, their patience and their tenacity!
Each dot is a click, every color is a different animal.

At the beginning of the cruise the acousticians were gifted with a brand new array!  An array is a long clear soft plastic tube containing all the electronic equipment needed to absorb and transmit sound to the sound equipment back in the ships lab.  The array had (notice I said had – past tense) hydrophones and transmitting boards throughout its 50 foot length.  In order for the sound to travel through the water and be received by the array, the entire electronic circuitry inside the array needed to be immersed in a liquid similar to salt water’s density.  If the electronics were exposed to sea water there would be too much corrosion for the system to work properly. So, they chose a colorless oil to fill the array. The array is laid out on the fantail (back deck) bridge and is connected to a spool of power and relay cords (ok, you realize by now I know virtually nothing about electronics) and then the cords are slipped into the lab and connected to the sound equipment.  I know that last part for certain, because I helped Nicky wire tie them together at the beginning of the cruise.

Dawn listening to the sperm whales.

When the array was (yes, still past tense) lowered into the water behind the ship, it was 300 m back and 6 m deep.  It needed to get a long way past the boat, so the boatnoise wasn’t the only thing heard.  Unfortunately the acousticians could not pick up the normal ocean sounds and animal clicks that they have become accostumed to on past cruises.They looked at the inside equipment, took out boards, tested solders, and electrical power strips.  They checked out the transmitters, connections and screws.  (They reminded me of the Grinch not overlooking one last detail!)  Still the blasted thing did not work.  I hate to admit that I shyed away from them for a time, because all the help I could provide would be in giving inspirational clichés, and I know they had enough of those already. Eventually, enough was enough and even though, and yes remarkably so, they were in good spirits, time had come to take the array apart.  Erin was there to assist, and Kim the Sette’s electronic technician was working side by side with Sussanah, Nicky and Yvonne.  They gutted the whole thing, oil and all.  Then they checked the mini-microphones and relay boards.  I was very impressed!

You could hear the sperm whales loud blows.

All was done that could be so it was decided to put it back together, and try it again.  It worked!  I wasn’t surprised but rather amazed!  Unfortunately two of the four hydrophones stopped working.  Each hydrophone picks up different frequencies so if they don’t all work.  The array doesn’t work. Drat! Not to be overcome with minor setbacks.  (Minor to them, I’m thinking definitely Major if I had to work on it!) The acousticians set to work making an entirely new array!  One day I decided to stop down in the lab to check things out and see what new adventures they were presented with.  As Sussanah sat and stripped wires, I asked Yvonne and Sussanah how much electronic background they had to have for this job because I was clearly impressed.  Neither of them has had any classes, only the experience of working on similar equipment in the past.

Sperm whales use echolocation to find food. This is what you see before they make their vertical dive.

None of them had an electronic background, but they decided to make a new array themselves with the left-over parts. They were determined to become an active part of the survey team!   And they did it!  They built their own array!  It was (yes drat, past tense again!) working great until one day it was getting progressively worse. When the girls pulled it in, they noticed it had been bitten!  Some fish came up behind it and bit the newly fabricated array!  What kind of luck was that!   Salt water was leaking in.  “How can you fix that?” I asked Sussanah at dinner.  She said, with her British accent, (which is so much fun to listen to, and one of the reasons I like to ask her questions) the kevalar material inside the device, which is giving the new array strength and structure, is acting like a wick and soaking up the salt water.  So they split the kevalar and it is being held together with a metal s-connector to try and stop the wicking.

Ernesto, Adam and Juan Carlos gave a valiant effort. Unfortunately no biopsy samples were collected.

It will hold for the next six days until we can get back to port.  Wow, for all the adventures/troubles they are picking up some good information!  The array will receive the sounds from the “toothed whales” but to pick-up the lower frequencies from the baleen whales, the acousticians send out a sonobuoy.  A sonobuoy  is an independent device that is dropped over board, and floats on the surface while sending the signals back to the ship. As I am writing this I am told the acousticians are hearing pilot whales!  They can not only hear them, but can also tell where the whales are at!  I need to go check it out!  They are truly an amazing group of young women.  Even though I have known them for only for a short time, I am truly proud.  Their hard work has definitely paid off.  Their determination is to be admired

Donna Knutson, September 19, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 29, 2010

Visitors of the Monument

Back in the boat trying to get a biopsy from pilotwhales.
Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sittings will also be documented.
Science and Technology:
Latitude: 26○ 33.6’ N
Longitude: 177○ 05.5’ W  
Clouds:  3/8 Cu,Ac, Ci
Visibility:  10 N.M.
Wind:  12 Knots
Wave height:  4-6 ft.
Water Temperature: 27.8○ C
Air Temperature:  26.8○ C
Level Pressure:  1024.0 mb
Female Great Frigatebird is a large bird with a wingspan up to 86 in.
They do not walk or swim and are the most aerial of the seabirds.

The Northwest Hawaiian Islands became a Marine National Monument called Papahanaumokuakea Marine National Monument.  Papahanaumoku is a mother figure represented by the earth.  Wakea is a father figure represented by the sky. They are the honored and  highly recognized ancestors of Native Hawaiian people.  Together they resulted in the creation of the entire Hawaiian archipelageo and naming the Northwestern Hawaiian Islands after these names to strengthen Hawaii’s cultural foundation.

Layson ducks are only found on Laysan and Midway.
They were near extinction from hunting and invasive species, now they are protected and their numbers have increased to over 500.

Papahanaumokuakea is considered a sacred area. Native Hawaiians believe that life springs from this area and spirits come to rest there after death.  That means they also believe that they are descended from the same gods who birthed the Hawaiian Archipelago and it is therefore their responsibility to become stewards to care for the natural and cultural resources in Papahanaumokuakea.

Short-tailed Shearwaters often fly in flocks. These birds were on their migratory route.

The HICEAS cruise has track lines that cross into the National Monument, so while in the Monument, we must abide by the rules set forth to protect the natural and cultural resources within.

 This area is indeed rich in life as well as tradition.  Over ninety percent of the Monument’s area is deep sea.  Some depths are greater than three thousand feet. Hawaiian monk seals may travel more than one thousand feet down into the ocean to feed on gold and bamboo corals.  Some of the corals are over four thousand years old.  Scientists are just beginning to understand deep sea habitats such as that of sleeper sharks, hagfish and crabs.
Even though there is not much land within the monument, many animals make it their home.  Over fourteen million seabirds of twenty-two different species breed and nest in less than six square miles.  The reason these islands are so populated is because of the island’s isolation and conservation measures.
White tern on Midway. The oldest White terns on the island are 50years old!
The greatest threat of the Monument is climate change.  An increase in sea surface temperature is linked to disease and coral bleaching.   Rising sea levels cause less land for green sea turtles, monk seals and seabirds.
The HICEAS cruise has documented thirty-seven species of seabirds.  Not all of these birds live on the islands, many are migrating.  Within the “tubenosed” , Procellariformes  order, there are the Petrels and Shearwaters.  The Petrels include the Kermadec, Herald, Hawaiian, Juan Fernandez, White-necked, Back-winged, Bonin, Wilson’s Storm, Band-rumped Storm, Cook’s, and Bulwer’s.  The Shearwaters include the Christmas, Wedge-tailed, Buller’s, Sooty, Short-tailed, and Newell’s.
Bonin petrels are coming back to their burrows on Midway.
The burrows may be 9ft. long and 3 ft. underground.

From the order Pelicaniformes the Red-tailed and White-tailed Tropicbird have been recognized and also the Brown, Red-Footed, and Masked Bobby.   Great Frigatebirds, the largest of all within this order, have also been seen soaring high above the ocean.

A third order is the Charadriiformes, the shorebirds, terns and jaegers. The HICEAS track line is bringing us close (within three miles) to the shores of atolls and islands so therefore shore birds are seen as well.  The shore birds seen so far are the Bristle-thighed Curlew, Pacific Golden-Plover, Red Phalarope, Ruddy Turnstone, Bar-tailed Godwit, the Brown and Black Noddies, the White, Sooty, and Grey-backed Terns, the Pomarine, Parasitic, and Long-tailed Jaegers, and the South Polar Skua.
The HICEAS cruise will agree with the National Monument in proclaiming this area has an abundance of seabirds!
Personal Log:
The bottom view of a Wedge-tailed Shearwater.
Like most seabirds, they mate for life.

My roommate or “statemate” (on ships there are no bedrooms rather staterooms) is Dawn Breese, she is an avid Birder.  Scott Mills, also a Birder mentioned in Log #2, have been noticing a trend in their daily bird population densities.

As we headed northwest, they noted on September 17, 2010 when the Sette was at 28 24.7’ N and 178○ 21.1’ W, they saw their last Short-tailed Shearwater.  They did not see any Short-tailed Shearwaters after those coordinates and felt that it was odd considering the large amounts they had seen previously.  Near the International Dateline past Kure we headed back southeast once again and the Short-tailed Shearwaters reappeared at 27○ 6.28’ N and 178○ 27.9’W.  They concluded that they had passed twice through the Shearwater’s migratory route and seemed to find its NW edge.  On a single day alone, they estimated that there were over fourty thousand birds in that area!
White-tailed tropicbird likes to plunge dive for fish and squid.

When they mentioned the huge numbers of Short-tailed Shearwaters they saw, I decided to do some checking on them. I discovered the Short-tails are about forty centimeters long and have a wing span of 100 centimeters.  It is chocolate brown with a darker brown cap and collar.  It is often observed in large flocks and will dive fifty meters into the ocean for fish and squid.

Juan Carlos brought the Wedge-tail Shearwater down for Dawn to see.

The Short-tails breed on islands off southeastern Australia and migrate north to feed in the Bering Sea.  The Sette crossed their route flying back to the South Pacific!  It is a good thing they are “tubenosed” because they will not land until they have reached their destination.  The “tubenose”, (mentioned blog #2), will help the birds eliminate salt from their bodies.  Some short-tails on the breeding grounds will actually commute to the Antarctic to feed on fish along the ice.

The Wedge-tails tubenose is on the top of the beak.

On September 20, 2010 Juan Carlos knocks on our door after sunset to show Dawn a Wedge-tailed Shearwater, cousin of the Short-tailed Shearwater. The nocturnal animal got distracted by the ships’ light, and ended up on deck.  According to the Hawaii Audubon Society, Wedge-tail Shearwaters on O’ahu are often hit by cars because of the car’s lights at night.  O’ahu and Kaua’I both have rescue shelters for hurt birds from car accidents.

The Wedge-tail posing with Dawn and I.

Juan Carlos rescued the stunned bird, making sure it could not bite him with its sharp beak, and brought it down to show the bird observers.  I took close-ups of the bird because I wanted a picture of its tubenose.  Dawn showed me the unique features of the Wedge-tail.  It smelled fresh like a sea breeze.  We looked for the small ears behind the eyes but it’s feathers were so dense we couldn’t get a good look at it.

The bird had light brown feathers with a white belly, it was very soft and dainty looking.  It didn’t seem to mind people staring at it within a ship, but it probably just seemed content because Dawn knew the correct way to hold a bird.  After the Wedge-tail was checked out, Dawn took it up to the fantail (back) deck and released it.   The bird flew away unhurt into the night.

Thomas Ward, September 19, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 19, 2010

Coming to a close

My adventure aboard the Miller Freeman is coming to a close and we are heading back to port.  The collecting of samples is over and the journey back to port is underway, about 24 hours.  This opportunity has been a once in a life time experience.  Many people told me that before I left and now I truly understand what they were trying to convey.  To be on one of our government’s research vessels has truly been a privilege and an honor.  To work along scientists who talk, live and breath science has been invigorating

Scientists
Scientists

This experience will leave a life long impression upon me.  The vastness and enormity of the ocean’s life hit home for me.  We did 7-10 minute trawls with a trawl net that had a square opening of 3 meters.  The variety of organisms that we pulled up was huge.  You can see a picture of it in a previous blog and the picture does not do it justice.  When one considers the path we fished compared to the size of the Bering Sea and then the size of other oceans it becomes quite overwhelming.  This does not mean that the human can do whatever it wants to it though because of this vastness.  I believe we are the stewards, protectors of this planet and after this trip even more so.  It is nice to know that we have a government agency (NOAA of course) and groups of scientists that have a sense of stewardship towards the planet and all biotic and abiotic factors here on our blue marble.

Looking through a trawl
Looking through a trawl

Another aspect that made an impression on me is how the members on board had a genuine curiosity of what we were pulling out of the ocean.  It was not unusual to have someone looking over our shoulders to see what we brought up in the trawl.  Questions were often asked, and as stated earlier, happily answered by the scientists.  Everyone seems to have a care for life and the creatures that come from the ocean.

I think I have an understanding of the fondness that someone may have for a ship.  I truly understand why they have names too.  This may sound corny but the ship almost becomes an organic entity.  I do not know if it is because we are land dwelling creatures and the ship gives us a comfort and feeling of security or what.  I know the ship is only a piece of equipment and it is truly the crew who keeps it alive and able to protect the people on board.

Ha, the food.  I would be remiss if I did not mention the food (again).  From the fresh made donuts, to the great selection of meals, I will miss the galley.  There is every opportunity on board the Miller Freeman to eat healthy and well.

Seeing that we are coming to a close I would like to give you my email address because I may not always check the comments on this blog and would like to answer any questions you might have regarding my experience in the Eastern Bering Sea aboard The Miller Freeman.
tward@twcny.rr.com
What an adventure, go NOAA.

Thomas Ward, September 18, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 18, 2010

More Questions, Cool

NOAA Ship Miller Freeman
NOAA Ship Miller Freeman

In this blog I will make an attempt to answer more of the questions I have been receiving.

The Ship, The Miller Freeman.  She was commissioned in 1967, is 215 feet long and was built to be a scientific research vessel. http://www.moc.noaa.gov/mf/

Once we catch the fish, which is only done using the beam trawl, the winch pulls them on board.  Because of the size of the net and the limited time that we are pulling it, the catch is not too large.  The catch can then be lifted by hand into the  kiddie pool and sorted.  If the catch happens to be a little heavy, one of the cranes picks it up and dumps it onto the sorting table for all of us to gather around and do our thing.  The juveniles that are of importance to this study are bagged and labeled, then frozen.  They will be studied back at the lab in Seattle, at the Alaska Fisheries Science Center, AFSC.

Each of the three methods used have a different purpose and the only method that actually catches fish is the beam trawl.

The different species are sorted, measured and weighed.  The juveniles are kept and the larger ones are weighed, counted, and returned to the sea.  Last night we caught over 100 yellowfin sole in one haul.

The gantry, used to haul the trawl and the sled onto the stern.

The research study that I am part of, the FOCI study, is a very active group.  There is currently a group in the Arctic and another cruise just ended before we started.

There are 24 crew members on board and 10 scientists.

For me the down time has been mainly in front of the computer, doing this blog and other school work.  There is a lounge with a TV. movies and TV series box sets available for people to watch.  The catalog of movies that they have is extensive.  There is also a small exercise room and a small library.  Of course there are computers around the ship which have access to the internet.

We have not found any “new or different kind of species”  There is occasion though when sorting through the beam trawl haul an usual critter gets spotted, the scientist get very excited.  For that matter, everyone else does too. It is similar to saying that laughter is contagious, so is the excitement of finding something that is rare.

Thomas Ward, September 17, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date:  September 17, 2010

Getting into the Swing of Things

Deploying the grab

A routine has finally set in here for me and the cruise is almost over.  I have never been on a “cruise” before, Carnival, Princess, Disney, nothing like that for me.  Now I can proudly say that I went on a cruise with NOAA.  The day starts out for me with getting out of my bunk around 8am.  That is when breakfast formally ends but the galley always has cereal set out, bread for toast, and almost all the amenities you might find in your own kitchen.  So, if I do not get something from the cooks I throw something together myself.  I then go into an office like room that is called the data plot room.  It has a couple of computers for our use and a ton of equipment.  There are a few monitors that keep track of some of the ships vital statistics that are interesting to look at.  I work on my blog for usually around 3-4 hours here and by that time I am pretty close to my shift which starts at noon.  I eat lunch and go to the science lab to start my shift.  If we are moving to our next sampling station we prepare sample jars and such to get ready.  There is sometimes down time between stations to get other things done.  If I do step out of the lab for something it is kind of cool because I know when to report because you can feel the ship slowing down for the next sampling station.  We then assemble, put on our rain gear, float coats and hard hats and perform the three sampling stations that I mentioned in earlier blogs.  The bridge and the deck crew work together communicating over walkie talkies.  The bridge positions the ship directly over the sampling station and notifies the deck crew.  Then the deck crew deploys the gear while the bridge maintains the correct speed and bearing for the specific type of gear that is being used.  It is truly a coordinated effort between everyone.  Two stations are at the stern of the ship and the other is on the port side.

The benthic sled samples get washed down through a sieve and put into a jar and preserved.  The jars are the size of peanut butter jars and we have approximately  200, we are at station number 53. So that means we have stopped and sampled 53 times thus far.  Remember the sled is designed to capture plankton (he was reported to be stealing the secret formula) which are very small organisms.  The benthic grab collects substrate which is also sieved and one part frozen in gallon freezer bags and the other part in jars with preservative.  The beam trawl is your classic fishing net that gets dragged behind the boat.   This catch is dumped into a small kiddie pool and sorted.  This activity draws other people besides the scientists, everyone pitches in and asks a ton of question which are happily answered.  Remember this is a juvenile flat fish survey so we are mainly interested in fish that 1-3 inches long.

How many different organisms can you spot?

This process goes on and off for the duration of the shift, it is like clockwork.  Everyone on board knows the general mission and each individual has a task to complete that helps meet the mission.  As far as this on looker can tell, the mission is being very successfully accomplished.

Stay tuned, even though it is the weekend, I have been accumulating questions and will answer them soon.

sunset
Sunset

Thomas Ward, September 16, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 16, 2010

Question and Answer for the Teacher at Sea (NOAA)

Let’s jump right in, and not into the Bering Sea, it is too cold.

We have not seen any NOAA buoys, or at least I have not.  NOAA does maintain numerous buoys but our mission aboard the Miller Freeman is strictly biological, juvenile flat fish to be specific.  The types of little fish that we have caught and persevered for further study (remember the freezer) are; Yellowfin Sole, Pacific Halibut, Northern Rock Sole, Flathead Sole, Alaska Plaice, Arrowtooth Flounder, Kamchatka Flounder Greenland Turbot, and larvae of Long Head Dab.  These fish that are being saved are relatively small, about 1-3 inches long, they are juveniles. The scientists are trying to determine the mechanism that controls the development of these juveniles into adults. I was also happy to learn that the scientists that are doing the sampling are also the same scientists that are going to be doing the work back in the lab. The identification of these youngsters seems to be effortless by the group of scientists I am working with, they really know their stuff.  I have not seen too many ships here while we are out to sea.  Last night I did see a light in the distance and assumed it was another ship but did not confirm it with the bridge. We do not fish to catch food for us on board.  In fact there are so many regulations regarding fishing that we just focus on the mission and let the cooks in the galley do what they do, and let me tell you it is good.  We often do get a glimpse of land, the pictures of the volcanoes on previous blogs are taken from our ship.

This video shows me measuring flat fish on the magnetic measuring board that I mentioned in an earlier blog.  After imputing the species and other pertinent data, on a touch screen monitor, the fish is laid on the board and a device is touched to the board where the tail is.  The length of the fish is recorded electronically.  The fish that you see in the video are adults of the juveniles related to this FOCI Research Project and we still gather quantitative data on them.  After we catalog them they are returned to the ocean where they have a very good chance of surviving.  Keep those questions coming.

Sunset
Sunset

Donna Knutson, September 16, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission:  Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 16, 2010

Midway

It is hard to smile wearing a mask!
September 16, 2010 
Teacher at Sea:  Donna Knutson
Ship Name:  Oscar Elton Sette

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Data such as conductivity, temperature, depth, and chlorophyll abundance will be collected and sea bird sittings will also be documented.

Science and Technology:
Latitude: 28○  22.6’ N
Longitude: 177○ 28.5’ W  
Clouds:  6/8 Cu, Ci
Visibility:  10 N.M.
Wind:  8 Knots
Wave height:  3-4 ft.
Water Temperature:  28.0○ C
Air Temperature:  26.8○ C
Sea Level Pressure:  1020.2 mb
History:
Memorial surrounded by Bonin petrel underground nests.
Midway is the second to the last island in the line of islands/atolls extending northwest of Hawaii.  Midway has a lot of history dating back to 1859 when it was first discovered by Captain N. C. Brooks.  The island, called Sand Island, at that time was nothing but sand and an occasional tuft of grass with birds everywhere.

In 1870 after the Civil War it was felt necessary to have access to Midway for political reasons and a company was hired to cut a path through the coral for steam engine ships to come and refuel.  It became too costly and never was finished.
On 1903 the Pacific Commercial Cable Company set to work to provide communication between Guam, Waikiki, Midway and San Francisco.  At this time President Theodore Roosevelt put Midway under the protection of the Navy because of Japanese poachers.  The workers for the cable company became the first planned settlement on Midway.
 In 1935 Pan American Airlines built a runway and refueling station for their Flying Clipper seaplane operation. They also helped the little community prosper as they transferred goods between Manila and Wake and Guam.
An inside corridor to the Naval facility.
The pictures were still on the wall.
Midway was made famous in 1942 during World War II.  The island had been named Midway as it is “midway” between the continental United States and Japan.  The United States had naval control over the island for approximately thirty years, but it wasn’t until 1938 that the Navy made it into a full naval base.
They hauled in over a hundred tons of soil in order to plant gardens and trees,  to make it appear more like home, and also to build roads and piers.   The navy base at one time housed ten thousand people, and was a very important strategic base.  Hawaii was at risk from an invasion from Japan and Midway was added defensive support.
The Japanese recognized Midway as a threat and attacked it on June 4-6, 1942.  It was a fierce battle with many fatalities.  It was reported that the Japanese lost 2,500 soldiers while the United States lost 320.  The victory of the Battle at Midway was a major turning point in WWII.
The airstrip has not been used since the ’60’s.
After the war ended there was less need for the Midway Naval Base.  Most of the people left Midway 1950, leaving behind buildings with the holdings intact.  In 1988 the military released the island to the United States Fish and Wildlife Service and Midway became a national park and refuge to protect the shorebirds, seabirds, and threatened and endangered species.
The upkeep of the naval base has fallen on the shoulders of the U.S. Fish and Wildlife Service.  They have torn down some of the buildings constructed before 1950 that are not repairable.  The fish and wildlife service is making room for more birds by clearing out some of the ironwood trees which have overgrown the island.  There are sixty-three places on Midway that are considered eligible for National Historic Landmarks.
Dr. Tran and Stephanie riding ahead of me on the old runway.
The trees were filled with common myna birds.
In addition to the historical significance of Midway, many animals find a sanctuary within the atoll.  Nineteen species of birds, approximately two million birds, nest on Midway.  In the water there are about two-hundred fifty spinner dolphins, the threatened green sea turtles, about sixty endangered Hawaiian monk seals, more than two-hundred sixty-five species of fishes, and forty plus species of stony corals that make Midway atoll home.
Resources:
Isles of Refuge, Wildlife and History of the Northwestern Hawaiian Islands, by Mark J. Rauzon, copyright 2001.
A white tern chick.
White terns lay an egg without a nest.
The chick must have strong feet to hold on to it’s
precarious perch.
Personal Log:
Today I am lucky enough to go to Midway!  I have read up on it and expect not only to see a beautiful destination with an abundance of wildlife, I will be seeing first hand a historical site few people have had the pleasure to explore.
My swimming suit is under my clothes so I’m also ready to try out the beaches! Mills and Chris are escorting me, Dr. Tran and the XO, Stephanie, on the small boat to the island. Mills has to weave in and out because of all the coral.  Mills is one of the few who have had the opportunity to see Midway and he is giving us last minute advice.
We are met at a small dock by John, a warden for the U.S. Wildlife Service, he is going to be our tour guide. As I watch the small boat head back to the Sette, I can’t help thinking that it feels like the beginning of one of those “stranded” movies. This is not what I pictured.  There is trash everywhere.  To the right I see the rocky shore littered with garbage. Plastics everywhere, all shapes and sizes right next to the sparkling clean water.  Ugh!  Piles of twisted metal are heaped in piles twenty feet high.  Then there are the piles of uprooted trees and old lumber.  I guess it is organized waiting to be hauled out, but I didn’t see any of that in the literature I read.
I am standing on the deck at”Captain Brooks”.
It was named after the man who claimed the island for the United States.
This was my first view of North Beach!
Unfortunately the garbage people throw out to sea is being collected on the atolls and banks of the Northwestern Hawaiian Islands.  Crates, buckets, balls, anything and everything imaginable that is made from plastic is showing up on these unpopulated, remote islands.  It is the currents that carry the debris to the islands and the corals and beaches trap and collect the material.  Very sad.  People are so uncaring and oblivious to what they do daily to the environment.
John is very friendly and laid back, ok, I don’t feel like the star in one of those silly sci-fi movies I love to watch, any longer.  We three hop on a Kawasaki “mule” and head away from the dock.  Most of the buildings we pass are left-overs from the war, rusty, broken windows and even bullet holes.  John drives up to the Visitor Center/Office.  He gives us a general briefing on how things work there and mentions some of the sites we should see, and off we go again.  Now our mode of transportation is a golf cart.  He shows us where we can go on our own and tells us where not to go – the air strip.  Now I’m thinking “bad movie plot” again.
John described how the cannons were bolted to the center.
At that time there were no trees and the guns were aimed at the Japanese ships in the ocean.
He gives us bikes and we start our own tour.  We need to stay on paths or roads because the land is covered with holes for Bonin petrels.  They are nocturnal birds and burrow underground to nest and lay their eggs.  At one time Midway had a rat problem and they ate the chicks and eggs, so now that they have been eliminated, this is a true bird paradise.  It is fun to ride around and look leisurely at the island.
Doc had been there before so he was in the lead.  As we look around at the wonderful wildlife the ground is also littered with small plastic objects.  I see a toothbrush, a lighter, and bottle tops all over!  Other plastic objects with strange shapes seem to catch my eye. What is going on?
Doc explains to me that the albatross that go to feed in the ocean will see something resembling a fish, swoop down to get it and bring it back to shore for its offspring.  Once regurgitated, the fledgling may also eat it and then die with a stomach full of plastic.  Great!  Where is this plastic coming from?  Why hasn’t it stopped?  I am told later that tons of trash washes up every year.  Ugh!  Back to our tour.
A monk seal basking in the sun at “Rusty Bucket”.
Little white terns are above us following us on our paths. There are so many trees! From once an island with only a few tufts of grass, and now seventy years later, Midway has a forest.  It smells musty, old and slightly sweet, if you didn’t look too close, you would think you had fallen back in time.
We head for the beach!  Nothing eerie about the beach!  Absolutely spectacular! Soft white sand bordered by lush, thick leaved tropical plants.  The water was so clear, not a rock, not a piece of garbage, if it hadn’t been for the four beach chairs you could have imagined discovering an untouched pristine utopia.  I could not help but stand and stare at the soft pale turquoise water.  It felt as good as it looked.  We all loved our limited time playing in the water as though we were kids in the biggest swimming pool imaginable.
One of the machine shops.
All the tools were left behind.
Unfortunately we had to get back to the Visitor Center so we trodded up the incline back to the bikes.  With John on the golf cart, we resumed out guided tour.  One of the first places we go is the “rusty bucket”.  It is a site along the shore where ships and other vehicles have been left.  We see a basking Monk seal.  Monk seals are nearly extinct, they only live on the shores of the Hawaiian Archipelago.
John shows us where the large cannons were bolted to shoot into the bay, a graveyard of the early inhabitants, and in town many old buildings.  Some of the shops have all the tools still in them.  It is as if it is being left just so, waiting for the people to return and continue their projects.
One of the buildings that is still in pretty good shape is the theater.  It has all the old felt covered seats, the wood floors and the dull yellow colored walls you see in old movies. The stage is still intact and you can almost picture the place full of people watching Bob Hope perform.  He stayed at Midway entertaining the troops off and on throughout the war.  John gives us a great tour, but has other jobs to do, so we are alone once again to fend for ourselves.  Where do we go…the beach!

It is called North Beach.  A Coast Guard ship has docked on the other side of the beach around a corner.  I just lay and float trying to appreciate every second I have been given!  A green sea turtle swims up to check out the strange humans and off he goes.  They are threatened and this is a refuge for him.  Mills has lent me his snorkel and fins so off to explore I go.  We are within the atoll and can see waves crash on the corals miles away.  No risk of anything catching you off guard with such great visibility.

The movie theatre still decorated with the original pictures.
It was truly spectacular! The Sette is coming back to the area and the small boat will be coming to get us soon.  We head back to the dock.  On the radio Stephanie hears we have one more hour to be tourists.  John suggests snorkeling by the cargo pier and that sounds wonderful to me!
Stephanie and I jump off the pier to the water fifteen feet below.  The water is thirty feet deep and looks and feels wonderful!  There are fish of all shapes and sizes!  I feel as though I am swimming in a giant aquarium.
 I even saw a sleeping green sea turtle on a broken pier support.  Incredible!  We were weaving in and out of the pier supports looking all the way down thirty feet and seeing everything crystal clear.
All good things come to an end and our little vacation at Midway was over.  Doc, Stephanie and I had a “fabulous” time!  The small boat was back.  It was time to go back home to the Sette.
Midway is definitely a place of contrasting sites and interests.
I leave with mixed emotions, which are the seeds for memories, of a place I will never forget.

Thomas Ward, September 15, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 15, 2010

At Sea

King Crab

The science is going forward with rigor here on the Miller Freeman.  If you get a chance you should go back to this link http://shiptracker.noaa.gov/default.aspx   so that you can see the area that we have covered. I also made an error in reporting that the seas that made me sick were 9 foot seas when they were actually 12 foot seas.  The forecast calls for flat seas, 2 feet, through Friday. I have received a few questions through the blog and I will try to address them here.

The first one is about the marine mammals  http://en.wikipedia.org/wiki/Marine_mammal that we have encountered while out at sea.  On board with us is a bird observer and his secondary function is to identify and count any marine mammals.  He reported to me the following list; Killer Whale, Humpback Whale, Harbor Porpoise, Dall’s Porpoise, Fin Whale, Minke Whale, Northern Fur Seal and Steller Sea Lion.  I was lucky enough to see the Humpbacks and even saw one breech, jump out of the water and land on its side. An interesting fact about the fur seal is that they will stay at sea for up to 8 months and only come to land to breed.

Another question that I received is regarding a picture that I have posted on my blog.  It was a picture of a volcanic mountain, Mount Shishaldin. http://en.wikipedia.org/wiki/Mount_Shishaldin   A description of this volcano is sufficient in understanding the characteristics of it but its majesty is truly appreciated viewing it in person.

Someone asked if the jellyfish could be petted?  We do handle them with gloves on.  They are not significant in our study at all.  We pull them out of our catch and throw them overboard.  They are relatively difficult to pick up and their tentacles are very stringy.  They are surprisingly heavy and of course jelly like.  While we have gear down and we are moving very slowly, 1-3 knots, at certain locations you can look down and see them swim by, pretty cool. E

We have been blessed here with good weather.  The website for the agency that operated my program can be found by going to this linkhttp://www.noaa.gov/  If you were to look around this site you may notice a function of NOAA is to forecast the weather.  I believe it is one of the most important factors in people’s lives.  When you have a dependable agency predicting weather people can make better plans for what they may want to do.  The site that I personally frequent is with in this link http://radar.weather.gov/ridge/Conus/index_lite.php

To find Central New York’s radar, which shows precipitation, click on the link and mouse over Central New York and click.  The Montague radar should come up.  Montague New York, the town that received 8 feet of snow in one storm a few years ago.  It is no surprise though seeing that it is in the Tug Hill Plateau and orographic lifting http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/dvlp/org.rxml happens to air masses coming off Lake Ontario here.  We call it lake effect snow. When on this site in the upper left corner is a grid with adjacent radars.  Most weather moves across our country with the southwest prevailing winds.  So if you click on the grid to the left, Buffalo radar for example you can see what is coming your way.

Donna Knutson, September 15, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission:  Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 15, 2010

KILLER WHALES!

I am holding a tuna that Mills caught.
 

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone, called the “EEZ”,aound Hawaii.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.
Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Aquatic bird sightings will also be documented.

Science and Technology:

Killer Whales coming up for air.
Latitude: 27○ 40.6’ N
Longitude: 175○ 48.7’ W  
Clouds:  3/8 Cu, Ci
Visibility:  10 N.M.
Wind:  12 Knots
Wave height:  1-2 ft.
Water Temperature: 27.5○ C
Air Temperature:  27.0○ C
Sea Level Pressure:  1021.2 mb
Orca is another name for Killer Whale.  They are some of the best known cetaceans.  Killer whales are the largest members of dolphin family.
Killer Whales are easily recognized by their huge dorsal fin that is located in the middle of their backs.  The male’s dorsal fin is usually between three and six feet high.  Orcas have unique flippers that are large broad and rounded.  Their bodies have a black and white color pattern.
The male Killer Whale can reach thirty feet long and weigh at least twelve thousand pounds.  The females are smaller in size reaching only twenty-six feet long and weigh eight thousand four hundred pounds.  The females may outlive the males by twenty to thirty years, living between eighty to ninety years.
 Killer Whales are not limited to any particular region.  Depending on the prey they prefer, Killer Whales can be found in cold or warm climates.  Orcas have a varied diet which may consist of fish, squid, large baleen whales, sperm whales, sea turtles, seals, sharks, rays, deer and moose.  Pods tend to specialize in a particular food and follow it.  Killer Whales tend to use cooperative hunting groups for large prey.
Orcas form matrilineal groups sometimes containing four generations.  All females help with calf rearing.  The females are more social and may be associated with more than one pod, but males are usually by themselves.  One group near British Columbia contained approximately sixty whales.
Killer Whales are not endangered, but numbers are declining in Washington and British Columbia.  The reasons for the decrease in whale numbers is not known, but possible factors may include chemical or noise pollution or a decrease in the food supply.
Personal Log:
In the middle is a mother with her calf.
I was just leaving the bridge after the XO (executive officer) asked me if I would like to join her and Doctor Tran to Midway tomorrow.  I knew we were stopping to pick up Jason, a Monk Seal Biologist who needed a boat ride from Midway to Kure Island, but I heard no one was going ashore.  So when she asked, I was totally thrilled and extremely excited to get my feet wet and of course said yes!
As I was leaving the bridge I decided to check out what was doing on the flying bridge.  When I got up there, everyone was on goggles or the big eyes, so I asked Aly what was going on.  She said someone saw a “black fish”, meaning something was seen, but not identified, and she offered me the big eyes she was looking through.  I looked maybe for five seconds and said, “I see it”!  This is very rare for me to see something so quickly!  I’m thinking, “I just saw a KILLER WHALE!!” but no one was excited or talking about it.  So now I begin to doubt myself, “That was a Killer Whale right?”
Three adults and a calf.
In the middle of my self -doubt, Adam comes running up the ladder screaming, “KILLER WHALE!!”  Drat why didn’t I say anything!  There wasn’t only one, but five killer whales!  One was a mother with her small calf! Wow what amazing animals! I couldn’t stop staring, and I wasn’t the only one.  There was a “full house” on deck again with everyone oooing and ahing.
Orcas aren’t typically seen in this area, but then again this is a survey ship, and this area hasn’t been surveyed in a very long time.
When the small boat was launched to try and tag one of the adult whales with a tracking device, they dove never to be seen again.  These animals are just too smart.  What an extraordinary experience!
Tomorrow I will have another adventure!  An adventure few people have taken.  I am going to Midway.  Midway Atoll is now a National Wildlife Refuge and also holds the Battle of Midway National Memorial.  I’m off to see a glimpse of our nation’s past and a birding and seal paradise!
Orca by itseft.

Thomas Ward, September 14, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 14, 2010

After the Catch

This segment is devoted to what happens to the organic material we acquire once we get it on board.  The benthic sled has a very fine mesh net, plankton net, attached to it and has a container at the end of it, a cod end.  This is where the epibenthic invertebrates end up.  Once the gear is on board the crew washes down the net with sea water to get any invertebrates to wash down into the cod end.  It took getting used to that the garden hoses around deck have salt water in them.  Growing up all your life using hoses outside with fresh water in them and then being on board here and getting an occasional spray to the face and it is salt water is a reminder of where I am really at.  Any how, the sample in the cod end is put into a jar and preserved in a buffered Formaldehyde solution.

The beam trawl is used to study settlement and nursery areas for age-0 flatfishes.  This is probably what most people would associate with net fishing.  When the haul comes up there is an assortment of organisms in it.  The catch is dumped in to a kiddie pool and we gather around it and start to sort, flopping flat fish and all.
Sorting

These pictures are a good example of what we are doing.  Remember that we are primarily studying juvenile species and what is the primary mechanism in nature that helps these little ones become adults.
The fascinating thing is the differences in the catches per location.  Once the fish that are the focus of this study have been sorted, they are measured, weighted, bagged and frozen.  They are carefully labeled and frozen at a temperature of -80 degrees Celsius in the rough lab.  After 24 hours they can be moved to a “warmer” freezer, -20 degrees Fahrenheit, which is in the slime lab.

Keepers

The catch comes on board at the stern of the ship, which is the open rear of the ship where the majority of the heavy equipment is, like cranes and such.  After the catch is sorted it is brought into the wet lab for measuring, weighing and bagging.  The measuring board that we have in this lab is very cool.  There are touch screen monitors that are set up where the species that we are concerned with is selected.  The correct species is chosen and the fish are individually placed on this electronic board.  The scientist then puts the individual fish nose at one end and takes a hand held device and places it near the tail.  The machine makes a funky sound and the length of the fish is recorded electronically.  Very cool, quick and convenient.  With a good team working this station, a fish can be measured about one every second, pretty efficient.

The benthic grab is specifically used to sample subtidal soft-bottom benthic macroinvertebrates.  This is done to determine what is in the substrate.  This is the layer just below the surface.  This is what the juvenile flat fish feed on.  When determining what causes a population’s numbers to fluctuate it is important to study what it eats

Jellyfish

The jellyfish above are very cool but not of much interest to this study.  The sole above is one of the larger flat fish that we have caught.  We do catalog them but we do not save them for future study.  The interesting thing that I want to point out about the picture of the sole is the location of their eyes.  Both eyes are on the same side of their body.  These fish lay on the bottom and wait for prey to swim by.  It is and was a huge evolutionary advantage for them to have both  eyes on one side of their body.

Yellowfin Sole

Life on board ship is a very different experience.  Yesterday was proof of that for me when the seas turned to 7-9 feet and my body could not handle it.  The crew amazed me because word of my illness spread around and many pepole have been asking me how I have been feeling today.  It is what I would call a concerened, caring, working family.  At first coming aboard, getting around the ship was very confusing.  There are numerous stairways that lead to different decks and there is a very similar look to things on the ship.  I am getting used to it and to stepping through a bulkhead to walk through the ship.  These bulkhead doors are water tight doors that are closed to protect parts of the ship in case of an accident.  The sleeping quarters are sufficent.  I am in a 4 man room with 3 other guys, with a bathroom attached to it.  I have my own personal locker which contains my personal effects and my life jacket and survival suit.  On the door the crew placed a billet which is a document that is specifally designed for the individual.  Among other things it gives my lifeboat station which we would have to muster to if an emergency occurred.  We have practiced this drill and hope that it does not become real any time soon.  I am in a lower bunk.  The noise and the motion of the ship is the hardest thing to get used to.  I occasionally sleep with ear plugs but that does not seem to help much.  A solid, uninterupted 8 hours of sleep will be very much appreciated when I return.  But, as any one that knows me knows that I can definately catch up on sleep by napping, and just about anywhere.

Remember that if you have any questions you can ask through this blog.  I believe you have to sign up for a Google account but it seems to do anything on the web these days you either have to register or sign on in some manner.  Just click the commnets icon towards the bottom of the blog and follow the prompts, it is not too cumbersome.  I hope you have enjoyed reading this and I am almost done describing the science so I hope the questions start rolling in.  Hope for flat seas for me.

Thomas Ward, September 13, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 13, 2010

The Procedure

The way that we collect data is done by three methods. They are the beam trawl, the benthic sled and the benthic grab. The beam trawl is a metal beam supported by a cable on the ship. Hanging from the beam is a net that when dragged behind the ship opens up. The trawl is pulled behind the ship for a specific amount of time.

The benthic sled is a piece of equipment that looks like it would be right at home on the snowy slopes of Central New York. It is a sled that gets dragged on the bottom and collects plankton (look out Eugene). The net is a finer mesh than the one used on the beam trawl. At the end of the net is a container that collects the plankton, we call it a cod end.  At the opening of the net is a device called the flow meter which looks like a little hand held fan. This performs the function of measuring the amount of water or flow that is going through the net. The meter has a counter on it and needs to be read and reset at each sampling station. This instrument gives the scientists a sense of the volume of water flowing into the net.

Flow Meter
Benthic Sled

The last device we are using is the benthic grab.  This device and the wet bulb on the bridge are instruments closest to my curriculum, Earth Science.  In fact, while on the bridge one officer asked another for the wet bulb temperature, very cool, I almost pulled out my sling psychrometer and compared data.  Any how, the grab is opened up and set and then lowered into the water.  When the grab hits the bottom, the weight and the downward force of the grab forces it shut, and into the bottom, scooping up sediment as it closes.  Of course because of the nature of this scientific expedition we are more concerned with organic matter than sediment.  I will have to say the scientist that I am working with have a natural curiosity toward all of Earth’s wonders.

These devices are deployed one at a time.  After each piece returns to the surface the crew maneuvers the ship so that subsequent samplings are performed at the same area.

I was going to write about life on board but the seas have gotten rougher and I am sea sick.

Donna Knutson, September 12, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission:  Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 12, 2010

Pearl and Hermes

Me on the “Big Eyes”.

 

Mission and Geographical Area:  

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey.  This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters.  The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.
Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Seabirds sittings will also be documented.

Jay, a steward, checking out the action!
Science and Technology:
Latitude: 27○ 40.6’ N
Longitude: 175○ 48.7’ W  
Clouds:  3/8 Cu, Ci
Visibility:  10 N.M.
Wind:  12 Knots
Wave height:  1-2 ft.
Water Temperature:  27.5○ C
Air Temperature:  27.0○ C
Sea Level Pressure:  1021.2 mb
A busy flying bridge.

Pearl and Hermes is the name of an atoll named after two English whaling ships, the Pearl and Hermes, which ran into the surrounding reef in 1822.  The twenty by twelve mile atoll is under water most of the time.  It has a rich history including shipwrecks, over harvesting of oysters, a military site for war practice, and finally conservation.

Atolls are the remnants of ancient volcanoes.  Over millions of years, volcanic eruptions spill magma onto the sea floor.  The lava eventually becomes higher than sea level creating an island.  With the surface exposed, the now dead volcanoes began to shrink and erode.  Over time the island becomes very flat and barely above the water.  Corals grow in shallow water around the boundaries of the island.  Eventually the island erodes away only leaving the coral reefs around them and a large lagoon in the middle.  Through the actions of wind and waves, sand and coral debris come together to make up small islands called islets in a few places where the original large island used to be.
Ernesto and Allan ready to shoot for biopsy samples.
In 2003 the Pearl and Hermes reef measured 300,000 acres.  This area is home to thirty three species of stony coral.  The islets provide a needed stopping and resting area for seals, turtles and birds.  About 160,000 seabirds of seventeen different species nest at Pearl and Hermes.
The ocean surrounding Pearl and Hermes had never been properly surveyed for cetaceans.  The HICEAS cruise discovered the water is also rich in wildlife, particularly cetaceans.  The beaked whale is one of these cetaceans.  There are twenty different species of beaked whales, but the two found in these waters were the Curvier’s and Blainville’s Beaked Whales.
One way to tell them all apart from each other is their teeth.  The males all have different sizes, shapes and positions of their teeth in their bottom jaw.  The females and juveniles do not have teeth and need to be identified by other means such as the shape of their beak (rostrum).  Curvier’s Beaked whale has virtually no beak, the melon of the head slopes smoothly onto a short thick beak. It has a sort of “fish face”.  The Blainville’s Beaked Whale has a moderately long beak.  The melon for the head is small and flat.
Yvonne and Sussanah listening in.
Blainville’s and Curvier’s Beaked Whales seem to have opposite coloring.  The Curvier’s Beaked Whale has a white face and the white coloring continues on to the top of back.  The Blainville’s Beaked Whale has the dark gray color on the back and the lighter grey on the underside.
Size is another difference between the whales.  The Blainville’s Beaked Whale is smaller with adult males measuring up to fourteen feet six inches and the Curvier’s whale at twenty three feet.  All male beaked whales are smaller than the females, but not by much and that is unusual compared to the other species mentioned in previous logs.
Personal Log:
Eddie looking at whales.

The past two days we have been circumnavigating the Pearl and Hermes Atoll.  There are only two other “land masses” before we reach the top of the Northwestern Hawaiian Islands.  This region has more animals than anticipated.  The science crew of the Sette had 16 sittings and 17 biopsy samples to report.  It was a very exciting couple of days.  The little boat was launched both mornings and was traveling around the atoll also, but at a closer distance to the coral on its own mission.

In addition to the sightings, Yvonne Barkley, Sussanah Calderan and Niky where listening attentively to the sounds picked up by the array.  The array has four mini-mircophones housed in a long rubber cable that picks up various sound frequencies.  The acousticians are inside the ship recording and  analyzing the sounds they hear.  Working together really paid off!  A lot of ocean was covered and many animals were discovered.
Beaked Whales
I brought a plastic lawn chair up on the flying bridge because even though I want to write, I don’t want to miss out on any of the action.  I wasn’t the only one who wanted a look at the animals, the second steward Jay came up to also take a look through the “big eyes”.   I can’t imagine a boat that has a friendlier, more supporting crew!
Bottlenose Dolphin
Some of the sightings included Bottlenose Dolphins, the Curvier’s Beaked Whale, the Blainsville’s Beaked Whale and Sperm Whales (mentioned in log #3), Spinner Dolphins, and Rough Toothed Dolphins (mentioned in log#2).
To me the most exciting part of the two day survey was when the Bottlenose Dolphins were swimming in front of the bow.  At one time there were sixteen abreast.  All sizes of dolphins playing and “singing” right in front of us!  Their whistles were much louder than I ever imagined!
The dolphins were jumping over each other and swimming on their sides and on their backs belly up.  It almost seemed to be a contest on silliness.  It makes your heart warm when they look you in the eye and seem to want your attention.  They had my attention the whole time they swam there!  I had to get up on tip toe just to look over the edge as they were so close to the rush of water caused by the ship.  The group was traveling and frolicking effortlessly in front of a ship going ten knots! I stayed on tiptoe until the last dolphin drifted away to join the rest of the pack.
The Bottlenose Dolphin is definitely the friendliest, playful cetacean I have seen for far!

Thomas Ward, September 12, 2010

NOAA Teacher At Sea: Thomas Ward
Aboard NOAA Ship Miller Freeman

Mission: Fisheries Surveys
Geographical Area of Cruise: Eastern Bering Sea
Date: September 12, 2010

Getting Started

The cruise and scientific research seems to be finally going forward.  We are currently in the Eastern Bering Sea.  You can find the exact location of the ship by clicking on the following link http://shiptracker.noaa.gov/default.aspx  then going to the drop down menu “Pick a Ship” and clicking on the “Miller Freeman”  That long list that you see are ships in the NOAA Fleet. While looking at the map you will see data about the ship’s location, speed and other interesting things.  One bit of data that is given is the current water depth.  The water depth here is relatively shallow because we are on the continental shelf. Currently, we are in 44 meters of water, about half a football field. If you look at the map and notice just below, or south of the islands that we are near, the blue shading becomes a little darker. This is called shaded relief bethymetry and indicates that the water gets deeper.  This is where the continental slope is.  The cartographer, map designers, could have used isolines to show this change.  Another bit of data at this site is water and air temperature.  I want to remind you that if you come upon a unit of measurement that you do not understand or can not relate to, such as air temperature given in degrees Celsius, you can use Google to convert it.  For example, the current air temperature is 9.15 degrees Celsius.  That is difficult for me to relate to, do I need a hoodie or not, so if you type “convert 9.15 c to f” Google will tell you that it is 48.47 degrees Fahrenheit.  A little chilly but not too bad.  In fact check out how close the air temperature is to the water temperature. Also, putting “define” before a word in Google will define a word that you may not understand. While reading this or looking at any of the other data you can always ask me a question through this blog.

The scientific research is primarily based around conducting an ichthyoplankton (remember Google) and juvenile fish survey in the waters around the Alaskan Peninsula, and the Bering Sea middle shelf.  The locations of the 113 sampling stations are predetermined and the ship’s crew is responsible for getting the scientific crew to these locations.  The sampling stations are found using latitude and longitude.  We are currently at 5510.825N, 16343.513W.  We are at 55 degrees north, 163 degrees west.  The numbers that follow are minutes measured to an accuracy of thousandths.  If you noticed the data on the ship tracker web site is a little different and not as precise as the on board data.  The negative in front of the longitude indicates west.  Degrees and minutes are used and not seconds.

NOAA Ship Miller Freeman
NOAA Ship Miller Freeman

This adventure for me has started out pretty rough but now that we are collecting data and doing science it is getting very exciting. The phrase “getting your sea legs” which refers to your body becoming accustomed to the movement of the ship is very true.  On the other hand I had never heard of “land sickness” before.  When we first went out the seas were relatively flat, 3-4 feet, and I felt just a little off (my students would say I am alot off, but that is OK) and it took me a few days to adjust.  Then we had to go back to port and while back on land I felt ill.  The Earth would appear to move and I would have to hold on to something to help reality take hold.  After talking to a few people they said this is common.  Everyone on board is really nice and the food is plentiful and delicious.  I really want to get this posted so I can have something for everyone to read so I will end it here.  I will post again soon so stay tuned, pictures of our catches and a description of how we perform the sampling soon to come.

Donna Knutson, September 10, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 29, 2010

Kogia!

September 10, 2010

Me and Kogia!


Mission and Geographical Area: 

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey. This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters. The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Aquatic bird sittings will also be documented.

Science and Technology:

Kogia with sharks.

Latitude: 25○ 35.5’ N
Longitude: 166○ 20.4’ W
Clouds: 3/8 Cu, Ci
Visibility: 10 N.M.
Wind: 12 Knots
Wave height: 2-3 ft.
Water Temperature: 26.5○ C
Air Temperature: 25.8○ C
Sea Level Pressure: 1021.6 mb

There are two types of Kogia. Kogia is a genus name and the two types (species) are the breviceps and the sima. The common name of breviceps is pygmy and the common name for sima is dwarf. These animals are called sperm whales even though they are much smaller because they too have the spermaceti organ located in their heads just like their much larger relative.

One unique feature they do not share with the large sperm whale is a sac in their lower intestine that can hold approximately three gallons of syrupy, re-brown liquid. The dwarf and pygmy sperm whales will expel the liquid when they feel threatened as a defense mechanism. The liquid will cloud the water temporarily allowing time for the whale to escape.

Notice Kogis’s small mouth.

These are not very large whales. The pygmy sperm whale has a maximum length of eleven feet six inches and a maximum weight of nine hundred pounds. The smaller dwarf sperm whale has a maximum of eight feet ten inches and a weight of at least four hundred and sixty pounds.

It is very hard to tell these whales apart, especially in the water. Their dorsal fins are different in that the dwarf has a higher more pointed fin which is set farther back toward the tail than the pygmy which has a more curved dorsal fin in the middle of its body. Their heads have a slightly different shape also. The pygmy sperm whales head is blunt and is more square.

Mills eating in front of the scientists taking measurements.
“If there was ever a “Zissou”esque moment that is it!” from Team Zissou, Life Aquatic
They are both a bluish steel gray color and have a pinkish line where a gill slit would be on a fish. Because of this marking, the pygmy and dwarf sperm whales have often been falsely identified as sharks.
Both species of Kogia can be found at great depths in the tropical and temperate latitudes. They are relatively widespread but they are not abundant. Despite their large range relatively is known about these species. It is hard to find these whales in the wild because they do not “show off”. They do not jump or move in groups together. Even their blow is faint if not invisible.
Left side of Kogia.
Like the large sperm whales the dwarf and the pygmy sperm whales feed mostly on jellyfish, but also on shrimp, crab and fish.
A number of these whales have been stranded and the necropsy showed a gut blockage caused by plastic bags. People usually do not hunt pygmy and dwarf sperm whales for food, but because of their size they are occasionally trapped in fishing nets.
Personal Log:
After lunch on the flying deck Allan Ligon, mammal observer, was viewing through the “big eyes”. He said he saw something green in the water and said it was probably the shadow of an underwater net. As the ship got closer to the object he thought he was seeing a dead shark. A few minutes later he realized it was a dead whale with sharks feeding on it. The green color was caused by the whale’s blood dripping from bite marks.
A close up the head and pectoral fin.
All scientists were on deck to watching viscous sharks. Sure we had all seen similar scenes on television but to see it happen in real life right before your eyes was amazing! There were at least two sharks and they would circle the whale and then attack it. Sometimes a sharks head would come out of the water for a huge powerful bite. Occasionally a shark would push the whale under and swim over it. It definitely reminded me of an animal claiming its kill as the ship approached closer.
The whale was identified as a Kogia because the small mouth narrowed down the possibilities. It was either a breviceps, pygmy sperm whale, or a sima, dwarf sperm whale. Both species of whales are very elusive and are seldom seen on mammal survey cruises. Because there is a lot to learn about these whales, it was decided to bring the whale on board.
Kogia’s teeth in it’s small lower jaw.
Not only was the science crew excited at the extraordinary find, but every member of the ship was in attendance for the whale “capture”. All the officers, the stewards, the engineers, everyone was watching as the deck crew got prepared to lift the whale on the deck.
The boatswain, pronounced bosun (which is a story in itself), had his crew gaff the whale to the side on the ship. (a gaff is a pole with a hook on the end) Once the whale was close enough a rope was tied around its tail and attached to a crane. The Kogia was lifted easily out of the water. By this time the sharks had given up to the much larger ship and were lurking nearby. With all the blood in the water everyone was being extra careful not to fall in!
Once on deck the damage the sharks had inflicted became evident. Large chunks were missing from the whale’s back, head and tail. Everyone was speculating what kind of whale it was, either the dwarf or the pygmy. Nicky, from the acoustics team, approached Erin the chief scientist and asked her if she could perform a necropsy on the animal. Performing necropsies is part of Nicky’s job description at Southwest Fisheries in California and she has worked on dozens of stranded whales, so Erin was happy to have her handle the sampling.
The biginning of the necropsy.
Nicky got together a kit for dissection and also the containers for the samples and off she went. She had help from Aly Fleming, a grad student and visiting scientist, Corey Sheredy an oceanographer, Andrea Bendlin, mammal observer, and myself. We were all decked out in fishing boots and gloves. My chief job was to bag and label samples and to record data about the size and appearance of the whale “parts”, but I ended up using the scalpel and saw as well.
This was a long process and eventually the working scientists had to go back to their jobs, but Nicky, Aly and I kept working until finished. It took over five hours to look at all the major organs and tissues. We took two samples of every organ. One sample will be sent to Hawaii and the other sample to Southwest Fisheries where Nicky works. In the case of the lungs and testes, (yes we discovered it was a male) we had to take a sample from both the left and the right.
Aly and Nicky showing Kogia’s enormous liver.
Nicky did not think the small intestine felt right. It was extremely hard and compact and felt there might be some kind of blockage as the colon was empty. She made sure to get a feces sample for the lab also. Wow what a highlight! Yes, I am being sarcastic. It is a good thing hands are washable. I couldn’t keep gloves on while writing and sealing bags. It sure looks he was a very sick whale in the digestive system!
Nicky showed me some of the parasites she found in the tissue and also in the blubber. That was something I was surprised by but in hind-site all animals have some kind of parasite, even humans. There was foam in the left lung, much more than in the right. This could mean that the real death was drowning. Whether it was from a blockage or a drowning, it seems likely the sharks came across a dead carcass rather than attacked and killed the whale. The actual results will come when the samples are processed in the lab.
Aly holding the extraordinary liver.
The Kogia’s organs are all very similar to ours, comparing mammal to mammal, with a few exceptions. Their stomach has three distinctive sections and the kidney has many bulbous sections forming one large kidney. I did not do any research of kidneys but Aly believes the old shape in the kidney is due to the complex filtration system needed to remove salts from the whale’s body.
I asked the girls about the ears and they were almost impossible to find, but Andrea discovered one on the left side. It was a tiny pin hole behind the eye. Without specifically looking for it, we would not have seen it. We counted the teeth and there were twenty four (bottom only) which is normal.
Feeding the sharks the remains. Nicky, Aly and I eventually needed to use a pulley, it was too heavy.
Many people from all crew came to check on us, some even brought water. It was extremely hot and no breeze was felt the whole time. It sure was fun dissecting again and doing some comparative anatomy! The girls did a great job, at least from my point of view, they were very knowledgeable and taught me a great deal! Everyone seems proud to be on the Sette and be involved in the unusual tasks that this mission has undertaken.
The remainder of the Kogia was returned back to the sharks and the huge clean-up began. That did not even feel like a chore as we were chatting about the findings the whole time.
Cleaning up. Thanks Kogia for helping us learn more about you!
The type of Kogia (species) will not be known for certain until the test results are in, but most scientists feel 60/40 it is a breviceps or the pygmy sperm whale.

Peggy Deichstetter, September 10, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 10, 2010

Well, the reason Aaron didn’t pick us up last night is that he took the Engineer to the hospital with an ear infection, apparently, it is serious. The ship will stay in port until a decision is made on whether or not we can run with only 2 engineers (12 hour shifts instead of 8). It is decided that the last day of this part of the cruise (Leg 2) is canceled. I spend the rest of the morning changing my travel plans and packing. Claudia is the first off the ship, she has friends and family here. I say good bye to everyone then start my journey home.

Donna Knutson, September 9, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 9, 2010

Green Sea Turtle Rescue

 

 
Mission and Geographical Area:
The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey. This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters. The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.
Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Aquatic bird sittings will also be documented.
The tangled mass including the turtle.
Science and Technology:
Latitude: 24○ 45.4′ N
Longitude: 163○ 04.2′ W
Clouds: 6/8 Ci, Cu,
Visibility: 10 N.M.
Wind: 12 Knots
Wave height: 2-3 ft.
Water Temperature: 26.2○ C
Air Temperature: 25.8○ C
Sea Level Pressure: 1022.0 mb
Green Sea Turtles are very ancient animals. These reptiles were around when the dinosaurs still walked the Earth. Their top and bottom shell is actually much harder than other turtles. Another difference between the Green Sea Turtle and its “cousins” is that the Green Sea Turtle cannot pull its head into its shell.
 
Even though the streamlined shell is extremely tough, it is very lightweight. They do not have feet, but rather flippers which allow them to be graceful swimmers without much effort. They usually swim one mile per hour but can reach thirty-five miles per hour when need be.
Sea animals all need a system to dispose of the increased salt content in their bodies, and the Green Sea Turtle is no exception. It has a salt gland behind each eye. The turtle will shed extra salty tears when it needs to remove the excess salt. So when the turtles seem to “cry” they are only keeping their bodies chemistry in check.
Four of the seven species of sea turtles live in the water surrounding Hawaii. The four types are the Green Sea Turtle, the Hawksbill, the Leatherback and the Olive Ridley. The most common is the Green Sea Turtle.
Adult Green Sea Turtles are herbivores and eat mainly sea grass. The young turtles are carnivorous and eat mainly jellyfish and other invertebrates. The adults can weigh up to five hundred pounds and are usually found around coral reefs. The young turtles wander the sea until they are old enough to mate.
In the wild Green Sea Turtles grow slowly and can take ten to fifty years to reach their sexual maturity. This is one reason the popuation, once depleted, can take many years to recover. Their life span is unknown.
Abbie and Ray after cutting the turtle loose.
The Sette is in the background.
Adult females and males look similar with one exception. The male’s tail is much longer and thicker than the female’s short stubby tail. All the juveniles look the same, so determining sex by outside appearance is not possible.

Females return to nest on the same beach they left as a small turtle out of their eggl. It is unknown how they find their way back much like other animals that seem to have similar senses.

Hawaii’s Green Sea Turtle migrates as far as eight hundred miles from their feeding sites along the coast. The males and females migrate together, mate and return. The females do not mate every year. Ninety percent of the Hawaiian Green Sea Turtles lay their eggs on French Frigate Shoals which is area North of Kauai and in the southern part of the Northwestern Hawaiian Islands. It is estimated that only one percent of hatchling turtles survive to mating age.
Scientists watching and waiting.
Green Sea Turtles have only two predators, man and sharks. People hunt the turtles for their meat, particularly for soup, their shells for souvenirs, and also for their eggs. Depending on their location, Green Sea Turtles are either threatened or endangered. They are threatened in Hawaii and endangered in Florida.

Thousands of Green Sea Turtles die every year by other sources as well. Thousands die in nets and other discarded gear. Plastics are harmful to turtles because once ingested they may clog their digestive systems. Green Sea Turtles have also been suffering from a disease discovered in 1980 that causes tumors. These tumors although harmless may block the throat and cause starvation or grow inside around internal organs.

Ray returning the Green Sea Turtle into the sea.
Little is known what causes the tumors. It is speculated that they might be associated with changes in the ocean environment by pollution, or change in water temperature or increased ultraviolet rays.
Personal Log:
While on the flying deck Eddie Balistreri, an observer, noticed something floating about 300 m from the ship. Abbie Sloan, mammal observer, and Scott Mills, bird observer, spotted a turtle in the floating debris. Juan Carlos Salinas, mammal observer, called to the bridge and asked the helmsman to turn the ship inorder to check out the turtle. While the ship was turning the scientists lost track of the tangled turtle.

I felt the ship turning and heard mention of a turtle on the ship’s radio and quickly got to the deck. Just as I looked down there it was, they had found it, a turtle struggling to keep its head up in the floating mass. You could tell it was alive because it was moving its neck back and forth and bubbles where seen when the turtle submerged.

By this time all sixteen people of the science crew were watching the trapped turtle. They were concerned with its fate because so many of these animals die in nets. It was decided that this was a worthwhile rescue mission and a small boat was launched. Abbie and Ernesto Vazquez, mammal observer, were assigned for this mission. Ray and Mills, both deck hands that have been on every small boat launch, were ready to help the turtle also. The scientists tell me it is very rare to do such a thing on these mammal cruises, and no one had done anything like it on previous cruises.  In other words, I was receiving a great bonus!  Everyone was eager to help out an animal in need.

The small boat did not have to go far before it came to the turtle. It was trying desperately to break free of the fishing net. There were crabs and barnacles also clinging to the net. It is possible the turtle thought it could get an easy meal and accidently got trapped. The turtle seemed healthy judging by the amount it was struggling when the small boat crew pulled the net into the boat.

Ray and Abbie cut the turtle lose and identified it as a Green Sea Turtle. Ray gently lowered the turtle back into the water. The size wasn’t measured but I was told it was the size of a large pizza.  I asked Juan Carlos to guess how old the turtle was, and he estimated it was less than five years old.

The science crew on the flying deck knew when the task was done and the turtle was free because we saw the “high fives” in the small boat. Then it was our turn to cheer! Saving this threatened animal was very rewarding!  Hopefully the little Green Sea Turtle will go on to help populate its species.

It was another great day at sea.

Peggy Deichstetter, September 9, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 9, 2010

Sunrise
Sunrise

Fishing as been suspended until first light. The day dawns and the water is no longerintimidating. The sun is back and it looks like a good day for fishing. We are on our way to the next fishing station.

Mike, an observer for Alaska, and I are sitting on the back deck talking when a rogue wave hits the side of the ship knocking Mike off his chair into the Ballards. (Ballards are used to tie the ship to the dock.) Mike is definitely hurt. I run for help. The crew clears everyone off the deck so they can assess Mike’s condition. Jason, one of the officers, interviews me for the accident report. It appears that Mike crack his ribs in the fall. We are now headed into port to take Mike to the hospital.It takes five hours to get into port. I check on Mike. He says he hurts but he’s okay. Word comes down that we’ll spend the night into port since there is no way to get back to a shark station today. Since we know Mike is going to be okay, we are getting excited about going into town.We think the boat will be docked at the cruise terminal which would be very easy to walk into town. However, we disembark at a pier that is at least 2 miles from town and it is HOT! Aaron, one of the officers, is taking Mike to the hospital. I ask if he could drop me off in town. After clearing it with the lead scientist and gathering a few others, we share Mike’s van and get into town.Cassidy, Ashley, Claudia and I spend the afternoon walking the Strand. We stopped for a drink and then and some Ice Cream. Cassidy and I want to get back to the ship, since we are on the night shift. Aaron told us that he would run a shuttle for anyone who wants to come back at 5:00pm. Cassidy and I meet Tim and Larry a little before five at the appointed spot. No Aaron, no van. Tim finally calls the ship to find out the van is in use. So we walk.We missed dinner but the cook warmed it up for us. Off to bed.

Peggy Deichstetter, September 8, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 5, 2010

 Remora
Remora

The day shift reported to me that they tried fishing. The seas were incredible rough. Besides that they had and incredible number of fish and different kinds of fish The deck was rocking and rolling and waves were crashing over the bow. Ashley was soaking wet because a wave hit her. Fishing was once again suspended.

Red Drum
Red Drum
Sting Ray
Sting Ray
Hammer Head
Hammer Head

Peggy Deichstetter, September 7, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 7, 2010

First, I must make a correction in yesterday’s blog. Hermine never made it to hurricane status. It was only a tropical storm when it hit Texas last night. We are waiting for the storm to clear because working outside is too dangerous. Finding something to do is very challenging. The internet wasn’t working last night. I guess I could have done some work on the computer but I forgot the discs in my room. As you may recall I can’t return to because my room mate who is on the day shift, is sleeping. Not good form to try to find something in the dark when someone else is sleeping.

We are currently sailing back and forth near our next shark station so when the weather clears we’ll be ready to go. So there really isn’t much to report for day ten.

Peggy Deichstetter, September 6, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 6, 2010

What an exciting beginning of my shift. First of all , the seas were rough, well rough for me anyway The line the other shift had set was ready to be brought in. You could feel the energy in the air. The day shift was still on deck with cameras ready. It took awhile for the ship to find the small blinking light in the rough seas. But they did eventually find it and the work began. First hook had a Sharp Nose, and it continued hit after hit. There was a total of 26 fish, most of them Sharp Nose but also a few Black Tip and Spinner sharks.
I must say I admire the scientists. Here we are in the middle of the night on rough seas and these guys are hanging over the side of the boat pulling in some large fish. The other scientists pulled the hooks out , measured, weighed, and tagged them, all on a rocking deck.
Removing the hook
Removing the hook

I’d like to thank the day shift for sticking around, they were invaluable in getting all of the fish processed in a timely manner.

Our next station is a plankton tow. Its two hours away. I started my blog and then started to proof read my published one because the internet was working. Sleepiness and/ or sickness came over me. The dry lab, where the computers are, is small and in the rear of the ship, which is really a great place to get seasick.
I went out and sat on deck and immediately fell asleep. I woke up as the rest of my team gathered on deck for the plankton tow. The seas are so rough that the decision was made only to do the bongos. Once again I have to admire these guys hanging over the edge to put in and take out the netting. Our next shark station is two hours away.
This free time gave me the opportunity to see that a hurricane, Hermine, is forming in the lower Gulf and predicted to move towards……………..us. Everyone needs a little excitement in their life. I think I will take out my panic attack and dust it off just in case I need it later.
The weather has gotten really bad. The rest of the stations for today were called off. The team leaders brought in or tied down everything on deck. I now understand the meaning of the phrase batten down the hatches.

Donna Knutson, September 4-5, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 4-5, 2010

The Whale Chase

Me on the water in the small boat.
Mission and Geographical Area:
The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey. This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters. The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Aquatic bird sittings will also be documented.

The dorsal fin of a sperm whale.

Science and Technology

Latitude: 13○ 22.3 N
Longitude: 167○ 17.8 W
Clouds: 6/8 Cu, Cb
Visibility: 10 N.M.
Wind: 12 Knots
Wave height: 2-4 ft.
Water Temperature: 27.1○ C
Air Temperature: 25.5○ C
Sea Level Pressure: 1021.2 mb
Spermaceti, which means “sperm of the whale”, is commonly called a sperm whale. These whales had great commercial value in the eighteenth and nineteenth centuries. The head of a sperm whale is filled with a semi-liquid oil which was used for making candles and later for cosmetics. This whale was the “villain” in the Herman Melville’s classic tale, Moby Dick.
Sperm whales are easy to identify at sea by their distinctive blow. They are seen almost anywhere around the world, but they especially like the areas around continental shelves.
Sperm whales are the largest of the toothed whales. The males can reach sixty feet long while the females are smaller at a maximum of thirty-six feet long. The males may weigh up to one hundred twenty thousand pounds while the females may reach fifty-five thousand pounds. The females are usually a third of the male’s size, which is the greatest size difference between all the whale species.
Medium to large sizes squid is the main food source for the sperm whale. One individual had a forty foot squid in its stomach.
Sperm whales may live between sixty to seventy years. Their population is growing steadily and with continued protection they should continue to recover.
A sperm whale blowing.
References for the past three logs:
Seabirds of Hawaii, Natural History and Conservation by Craig Harrison, copyright 1990.
A Field Guide to Sea Birds of the World by Peter Harrison, copyright 1987.
Guide to Marine Mammals of the World, National Audubon Society, copyright 2002.
Personal Log:
I had completed my” job” at 6:00 in the morning and then volunteered to be an independent observer for animals on the flying deck when Erin called me to the main deck for a “small craft safety meeting”. I started getting excited because I might have a chance to go out on the small 19 ft. boat.
Erin Oleson the chief scientist and the other acoustic girls, Suzanne, Yvonne and Nicole wanted to test their array. The array is a device that picks up sounds preferably whale and dolphin sound in the ocean. The small boat’s mission would be to go out ahead of the main ship with a “pinging” device that would be lowered into the water and then the array should be able to pick up the sound if the array is working properly. There had been some problems receiving data from the array so this outing seemed like a likely trip.
Not long after the meeting I was told I could go with Adam U, a mammal observer, and Nicole Beaulieu an acoustician. Woo Woo! I was one of the lucky ones for the adventure! Just being on the boat in the ocean with the rolling waves was a thrill. We needed to get two miles ahead of the ship then stop and lower the pinging device. It was hard to get that far ahead of the ship that was cruising at 10 knots with waves between three and five feet high.
Ray and Mills, both seamen, were with us. Mills drove the boat. He had obviously done it before because he had us soaring over the crests, catching air, and then slamming into the troughs.
The whale chase. My back is to the camera.
It was crazy /exhilarating for me because I hadn’t experienced anything like it. It was hard to hold on and I gave my weak left wrist a good workout! Especially when we slowed down a bit and I tried to take pictures with the right hand while trying to hold on with the left. My pride would have been hurt if I’d fallen out and so would my body considering we trying to outrun the ship, but the water was eighty degrees Fahrenheit and a beautiful royal blue.
When we had finished “pinging” the ship spotted some sperm whales and set out to chase them. We sat for about half an hour bobbing up and down on the waves and watching the ship and the water for whale blows. Listening to the radio we realized the whales were between us and the ship. They were blowing right in front of us! Now it was our turn to follow the whales and off we went!
When we discovered that we could get up close Adam brought out the crossbow. It was quite the frenzy! I was taking pictures, holding on and looking for whales at the same time! Adam was trying to get the crossbow ready and hold on while trying to watch for whales. Nicole was in the middle getting bounced around watching for whales.
Adam got a shot. The arrow hit the back of the whale and skidded off. He did not feel the arrow contained a good biopsy sample so we stopped got the arrow while he reloaded and off we went again. The arrows are hollow tipped for tissue to get trapped and once they strike they fall off and float until retrieved.
We continued our mad chase with Mills at the wheel. Eventually after chasing for approximately twenty minutes we came across a sperm whale” rafting” evidently they do this after being submerged up to forty minutes. Adam shot again and this time he was pleased with the biopsy sample as we could see the tissue dangling off the end of the arrow. Once hit the whale quickly put her head up. The action made me imagine her thinking “What was that?” and she submerged.
A sperm whale coming up for air.
Our whale chasing adventure was over and we returned to the Sette. I took over three hundred photos and five videos. My new little camera held up well in the salt water spray. I saw at least five sperm whales in the pod and one was a small one, a calf. Wow! Definitely a time I will never forget!
I need to tank Erin for letting me go! I’m heading back to the flying bridge with hope of finding more whales and dolphins.
Question: How do N.M. nautical miles compare to miles? How do Knots compare to miles/hour?

Peggy Deichstetter, September 5, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 5, 2010

Well, I think this coffee has done away with my caffeine habit. I’m down to a half cup diluted with water and that is only because I needed to wake up. I’ve noticed that most of the people on this ship are tea drinkers. Now, I know why.
our shark

Our watch began with sailing to the next plankton station. A squall began, so it was time to get my raingear on. During the squall birds seemed to be attracted to the ship. Toward the end of the storm a little warbler landed on deck. He kept trying to find a place to land away from people. Finally, he was so tired, he landed at my feet. After a few seconds he flew to the edge of the stern. He contently waited out the storm there.

I asked Laurie, one of the marine biologists if she had any ideas on why the birds were following us. Apparently, there was a birder on the last trip that explained because we are close to shore (one of my favorite spots, Corpus Christi) the insect were attracted to our lights and the birds are attracted to the insects.
Again we had problems with the plankton tow. After they got the equipment fixed another squall started and the deployment of the equipment was delayed, once again, until the end of the storm.
Taking Samples
Taking Samples

We finally got to the Shark Station. Not too exciting tonight. We only caught two dogfish sharks. I didn’t even take pictures because it paled to what we have all ready done.

We are at the last Shark Station for our watch. I guess we saved the best for last. Hook number 82 gave an 16 foot Sand Shark,. Too big to be brought on deck, she was measured and weighed in her basket. Tissue samples were taken and she was tagged before we let her go. Exciting!!!!
Shark in basket
Shark in basket

Peggy Deichstetter, September 4, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 4, 2010

As we started our watch we were on our way to the next Shark Station. The other shift had already baited the hooks, so all we could do was wait. Before lone we were deploying our hooks, but the real excitement began when we started pulling in fish. Our first two fish were Gaff Top Tailed Catfish. These very ugly fish are one of the only saltwater catfish species.
Rainbow
Rainbow

We started to pull in Black Tip Reef sharks, followed by a Stingray. The end was the most exciting. The crew pulled in the top half of a Black Tip shark following right behind was a very large Bull Shark. He was so large that he bent the hook and was able to free himself.
We are just off South Padre Island Texas because we can see the lights from the town. Hey, Spring Breakers that come here…this is where we pulled out Black Tip Reef Sharks, a Bull Shark and half of a Black Tip. Enjoy!

Sunrise
Sunrise

During wait time this evening I have been trying to edit my blog. The internet is very sporadic, it will go down in the middle of loading pictures, On some days I can only get text and on other just pictures. I think I have it fixed but I’ll check it again later.

God has really been putting on a show. First, the fireworks, the sky was just lit up with beautiful flashes of lightening. Just after a fabulous sunrise, He placed a rainbow over our stern.

Half of a Black Tip
Gaff Top Tailed Catfish

Our last run was fantastic, catching 25 sharks. Two of them were large Hammerheads as well as, numerous Black Nose and Black Tip. At times there were three sharks waiting on deck to be measured and weighed. The last thing we do before our shift ends is bait and drop the hooks for the next shift.

Ugly Fish
Gaff Top Tailed Catfish

Donna Knutson, September 2-3, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 2-3, 2010

Seabirds are Amazing

Me on the Sette in front of Kaui.

 

Mission and Geographical Area:

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey. This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters. The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands.

Also part of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, chlorophyll abundance. Seabird sightings will also be documented.

Science and Technology:

Thursday September 2, 2010 12:00 pm

Red footed Booby

Latitude: 21○ 47.4 N
Longitude: 160○ 35.7 W
Clouds: 6/8 Cumulus
Visibility: 10 N.M.
Wind: 12 knots
Wave Height: 1-2 ft
Water Temp: 27○ C or 80○ F
Air Temp: 26.5○ C or 80○ F
Sea Level Pressure: 1019.6 mb

Locating whales and dolphins is a science in itself! It takes great patience and experience to know and be able to recognize the signs of marine life. Birds play an integral part of this “game” of locating marine mammals.

Ed Bali, one of the observers with 31 years of experience tells me to look for the food. Where there is food, there are animals. Today they have not seen much of any life. So I remember what Ed said no food, no birds, no birds, no large animals.

Yesterday was a big bird day. Scott, a Bird Observer, showed me the difference between the types of seabirds we were seeing. Of the 9,000 different species of birds in the world, only 260 are seabirds. Those seabirds are categorized into four “groups” called orders. We saw birds from three of the four orders.

Scott Mills is an avid birder and lover of sea birds.
I have learned a lot from him.
Birds in the order Procellariiformes, commonly called the tubenosed, have a special desalinization system. They have a nasal gland with many blood vessels that filter out the salt from the blood. The reason the salt is in the blood is because they drink salt water while flying long distances over the ocean and also because the food they eat is salty. In most birds of this species the concentrated salt water from the nasal gland drips out of the tube which is located above the nose, and  drips down their beak. The birds that belong to this order are commonly called albatrosses, shearwaters, petrels, storm petrels and terns. We saw many tubenosed birds such as the shearwaters; Newell and Wedgetail, the petrels; Bulwers and storm.
Birds from the Pelecaniformes order are known for their four webbed toes. These birds include the boobies; red-footed the most common, brown and masked. The great frigatebird, also from this order was spotted, it is a very large bird related to the pelican.

Birds from the Charadriiformes order consist of the gulls and terns. They are special unto themselves for example the Sooty Tern can live above the water for up to five years from the time it leaves the nest until it finds a breeding territory. The terns that were spotted were the noddy, brown, black, white (which is also called faerie) and the sooty tern.

Overall seventeen different species of seabirds were identified on September 2, 2010.

Bulwers Petrel
The birds’ activity is a sign to look for larger animals especially where flocks are seen. The two marine mammals that were identified were the steno and the Bryde’s (pronounced brutus) whale.
Steno bredanesis is a species of dolphin.  They are commonly called stenos, meaning “rough toothed” dolphin, and are common in many tropical waters. Almost nothing is known about its reproduction because it is very hard to follow at sea. Stenos have a very smooth beak and head with no melon shape for the forehead. The maximum length is 8’8” (2.65 m) and weight 350 lb. (160 kg). Its life span is 32 years.
Brydes’s (pronounced Brutus) Whale is a baleen whale. It was named after John Bryde a Norwegian whaler in South Africa. Bryde’s Whale is large and sleek, dark grey above and grey white or pinkish below. They have modified teeth which form 250 – 370 baleen plates that are used to filter the water for small animals. The maximum length is 51 ft. (15.6 m) and weight 90,000 lb (40,000 kg). Its dorsal fin is tall and ragged on the trailing edge. No one knows what its life span is.
Personal Log:
My great “statemate” and avid birder, Dawn Breese.

I haven’t been seasick! So far. The waves right now are larger than before, and as I sit I need to keep my stomach tight for balance. If it weren’t for the wonderful food, I could get in better shape in this month at sea.

I did my job this morning at 5:00 am, it was beautiful out with bright stars and a calm sea. During the day I really enjoy sitting out on deck and just watching. I hope to spot an animal. It is very peaceful and the motion is comforting.
I have been practicing with my camera. If I zoom it in 12x and then put it up the “Big Eyes” I can get some great pictures. Hopefully I’ll get some good shots of whales and dolphins. Most of the day was spent doing research on the animals we have seen. It was another great day at sea!

Peggy Deichstetter, September 3, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 3, 2010

Groupers
Groupers

My biorhythm clock has been reset; I didn’t wake up until my alarm rang at 11:00pmWhat an exciting start to the shift. The day shift caught nothing all day. Within a few minutes of our arrival the fish just kept coming. There were so many that the day shift stayed on to help us measure, weigh, and tag the sharks before we returned them to the sea.. Besides the sharks we also caught a large red snapper.

measuring a shark
measuring a shark

Next Cassidy and I helped out with the bongos. These are twin plankton tows that stay at a certain angle based on controlling the angle of the line. The depth is determined by the amount of line that is let out. The first time we got the baskets a little too deep in the water. So we brought up two containers of mud. We rinsed out all the mud and tried again. This time we were successful. Cassidy and I rinsed the baskets into sieves and washed down the plankton before putting it in specimen jarsWe then proceeded to bait one hundred more hooks and once again began out quest for sharks. After dropping the line and waiting an hour we were ready to pull in more sharks. I .worked the computer for this catch The computer logs in the exact location of each fish caught We caught NO sharks this time. We did catch three huge Groupers.I intended to watch the sun rise but it was behind a cloud bank. We had an hour before our next station, so we had breakfast. I’d like to give a big thanks to our cooks. You can have pretty much what you want for breakfast made to order

We arrive at the next station at 8:00am. It is another plankton tow, but this time we caught a moon jelly. It takes up about an hour then on to our next station, sharks! Unfortunately, its going to take us two hours to get there. I don’t think our shift will have the opportunity to land the sharks.

Natalie Macke, September 2, 2010

NOAA Teacher at Sea: Natalie Macke
NOAA Ship: Oscar Dyson
Mission:  BASIS Survey
Geographical area of cruise: Bering Sea
Date: 9/2/2010

 

Salmon Vampires and Birds…..     
Weather Data from the Bridge :
Visibility :  10+ nautical miles (Wondering what a nautical mile is??)
Wind Direction: From the SE at 12 knots
Sea wave height: 2-3ft
Swell wave direction: 3-4 ft NW
Sea temp:9.9 oC    Sea level
pressure: 1014.4 mb    Air temp:  11.2oC
Science and Technology Log: 
NOAA Fish Biologist Brian Beckman collect blood samples from salmon
NOAA Fish Biologist Brian Beckman collect blood samples from salmon

NOAA Fish Biologist Brian Beckman is our resident salmon vampire aboard the Oscar Dyson. He’s been diligently collecting salmon blood samples anytime we catch them.  So I finally got a chance near the end of our journey to sit down and talk with Brian about why he want all those samples…

Insulin-like Growth Factor One (IGF1)
This is a ubiquitous protein that is made in the liver which causes calls to divide and grow.  So simply put, it causes growth.  Since the level of IGF1 in the blood is relatively stable, scientists can infer the growth rate of a fish by analyzing for this protein in the blood samples.  The growth rate is not an absolute value, but instead a relative comparison between fish populations.  Brian has been studying IGF1 levels in salmon off the coast of Oregon and is now trying to extrapolate or compare his findings with the salmon in the Bering Sea.  When averaging his finding over the region of coastal Oregon, he has been successful in correlating IGF1 levels in salmon with overall zooplankton abundance in the region.

More food –> healthier juvenile salmon –> higher levels of IGF1 –> greater abundance of adult salmon
Getting a Bit more technical..
IGF1

After the blood samples are collected, Brian first centrifuges them to separate out the plasma.  The IGF1 is contained in the plasma portion of the blood.  (Remember that blood is considered a heterogeneous mixture so the components can be separated by physical means)  The plasma is removed and frozen for analysis.  An immune assay is then completed on the samples back in the lab.

Brian also is concerned about the age of his salmon specimens.  Since bigger fish will be producing a steroid that stimulates the production of IGF1.  Therefore, bigger fish’s IGF1 levels are a consequence of both the effect of the steroid and the fish’s diet.  So, by collecting juvenile fish (no steroid production yet) a direct comparison can be made between the fish’s diet and it’s growth rate.

Birding on the Oscar Dyson

So on Thursday it was apparent to the crew and scientists that our fishing was done.  Troubles with the winch made balancing an open net in the water impossible.  Since our perfect 20 days of weather had us ahead of schedule, our sampling stations for this leg of the BASIS cruise were completed and our job was now done.  The scientists could now rest a bit and enjoy their cruise back to Dutch Harbor.  Except for two….. our colleagues from the Alaska Fish and Wildlife Service.  Tamara Zeller and Aaron Lang are aboard this cruise, not for fish or oceanographic samples; but instead they are here to perform an opportunistic survey about seabirds.  Armed only with a computer, binoculars and their savvy for visual details they collect data only when the ship is cruising so this last sprint to the harbor meant it was time for them to do some birding.

Tamara, Bruce, Aaron and Jeanette (left to right)

The computer pings and Tamara records what she sees from her window on the front starboard side of the bridge.  Indicators of ocean health, the Fish and Wildlife Service collects baseline data on seabird distribution and abundance in the Bering Sea.  Since most seabirds only come to land to breed, when ships like the Oscar Dyson has room aboard, a bird observer will take advantage of the opportunity to collect some data.

When I asked Aaron and Tamara what the most exciting bird this trip was, they had a hard time deciding between the two shown below.

Curlew There’s only about 5,000 left in the world
Horned Lark, Russian breeding flava subspecies Land bird from Russia
Personal Log

The ending to our cruise on the Oscar Dyson will be bitter sweet.  While I’m happy to be on land again, I will certainly miss the camaraderie of all aboard the ship.  I could not have wished for a better group of people and a more professional crew.  Everyone went to extraordinary measures to help me understand all they do AND how they do it.

Sorting Fish
Sorting Fish  
A special thanks to Ed Farley, our Chief Scientist and Jeanette Gann, my bunkmate and friend these past twenty days..   I wonder how many morning I’ll awake dreaming about collecting water samples from Niskin bottles??
Everyone on board and the NOAA crew was amazingly helpful and patient with the paparazzi teacher.  I’ll miss you all and thank you all once again…
Over and out..

Peggy Deichstetter, September 2, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date:  September 2, 2010

 

Me, tagging the shark
Me, tagging the shark
Finally, my first taste of shark.! My shift started at midnight. We baited 100 large hooks with mackerel. Then at a precise location the hooks were released one by one on a long line. The hooks were left in the water for one hour. Then the hooks were pulled out in the same order they were put in the water.

My first shark
My first shark

We cleaned up everything because it is really good to wash fish slime off before it smells too bad. After our shark adventure, we did another plankton tow. This time we collected pounds of sea grass. A piece of discarded plastic about the size of a Frisbee blocked the plankton shoot so that grass accumulated.
We arrived at our next site and once again baited 100 hooks, released them and waited an hour. Our luck was a little better this time. We got two large sharks, one of which I got to tag, a couple small ones and a remora.

Caroline Singler, September 1-2, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean

Date of Post: 2 September 2010

Pizza Operations – Saturday 28 August 2010

Crew of Cutter Healy
Crew of Cutter Healy
Location and Weather Data from the Bridge
Date: 1 September 2010
Time of Day: 20:15 (8:15 p.m. local time); 03:15 UTC
Latitude: 75º 12.98’ N
Longitude: 131º 29.0’ W
Ship Speed: 8.2 knots Heading: 6.9º (NNE)
Air Temperature: 1.36ºC / 34.45ºF
Barometric Pressure: 1010.0 mb Humidity: 86.5 %
Winds: 9.6 knots NNW
Wind Chill: -4.93ºC / 23.16ºF
Sea Temperature: -1.3ºC Salinity: 27.55 PSU
Water Depth:2503.9 m

Date:2 September 2010

Time of Day: 22:15 (10:15 p.m. local time); 05:15 UTC
Latitude: 76º 36.2’ N
Longitude: 129º 42.1’ W
Ship Speed: 3.9 knots Heading: 270 (W)
Air Temperature: -1.08ºC / 30.05ºF
Barometric Pressure: 1017.3 mb Humidity: 99.1 %
Winds: 9.3 knots N
Wind Chill: -6.53ºC / 20.15ºF
Sea Temperature: -1.4ºC Salinity: 27.52 PSU
Water Depth: 2492.8 m

When you are at sea for as long as the Coast Guard crew of the Healy, it’s important to build some things into the schedule that break up the monotony. Days pass without much sense of what day of the week it is, often with little difference between day and night. TheHealy Morale Committee is responsible for planning activities for the crew, and I have enjoyed attending their meetings as a science team point of contact (POC) during this cruise. Saturday nights are big nights on Healy. They start with the Morale Dinner, where the regular galley staff gets the night off and a different group prepares the meal. Then there is bingo in the mess, followed by a movie shown on the big screen in the helicopter hangar.

Last Saturday was the science team’s turn to try our hands at preparing dinner for the crew. We chose to make pizza, figuring it is usually a crowd pleaser and a complete break from the normal menu. Under the watchful eye of FS3 Melissa Gomes, we spent Saturday afternoon chopping and cooking toppings, pre-cooking the crusts, and baking a chocolate cake with chocolate frosting for dessert – that was my idea; this late in the trip, it seemed like everyone could use a good dose of chocolate. Note that in the galley, everyone must where a cover (hat), but hats are not permitted elsewhere in the Mess.

Canadian Coast Guard Ice Analyst Erin Clark, USCG FS3 Melissa Gomes, USGS Scientists Helen Gibbons and Brian Edwards (in the scullery)
Canadian Coast Guard Ice Analyst Erin Clark, USCG FS3 Melissa Gomes, USGS Scientists Helen Gibbons and Brian Edwards (in the scullery)
Jerry Hyman (National Geo-Spatial Intelligence Agency) and Canadian Coast Guard Captain Michel Bourdeau – yes, we used premade pizza crusts; we are in the Arctic Ocean not a New York pizza parlor!
Jerry Hyman (National Geo-Spatial Intelligence Agency) and Canadian Coast Guard Captain Michel Bourdeau – yes, we used premade pizza crusts; we are in the Arctic Ocean not a New York pizza parlor!
Me making a cake
Me making a cake. Photo courtesy of Sherwood Liu

Here I am trying to figure out how to use the mixer – for this cake, the mix came in a can and the frosting mix was in a box. My watch stander partner Peter Triezenberg helped me frost the cakes, but no one was around to take our photo! Photo courtesy of Sherwood Liu.
USGS geologist Andy Stevenson shows that he can cut a cake with the same precision that he uses to cut core samples. Photo courtesy of Sherwood Liu
USGS geologist Andy Stevenson shows that he can cut a cake with the same precision that he uses to cut core samples. Photo courtesy of Sherwood Liu
Erin Clark, USGS engineering technicians Jenny White and Pete dalFerro, and USGS geochemist Chris Dufore (pictured from right to left) put their skills to the test with an efficient assembly line, combining toppings for a diverse array of pizza choices. Photo courtesy of Helen Gibbons.
Erin Clark, USGS engineering technicians Jenny White and Pete dalFerro, and USGS geochemist Chris Dufore (pictured from right to left) put their skills to the test with an efficient assembly line, combining toppings for a diverse array of pizza choices. Photo courtesy of Helen Gibbons.
Captain Michel Bourdeau and Jerry manned the pizza ovens with great style and flair, earning the self-proclaimed designation “SPT” or Ship’s Pizza Technicians.
Captain Michel Bourdeau and Jerry manned the pizza ovens with great style and flair, earning the self-proclaimed designation “SPT” or Ship’s Pizza Technicians.
Sherwood Liu of the University of South Florida showed that he can cut pizza with the same good cheer and dedication that he applies to analyzing water samples.
Sherwood Liu of the University of South Florida showed that he can cut pizza with the same good cheer and dedication that he applies to analyzing water samples.
 PolarTREC teacher Bill Schmoker, Marine Mammal Observer Sarah Ashworth, and Andy Stevenson (pictured from right to left) greeted the hungry Coasties and served up hot pizza, mozzarella sticks and jalapeno poppers. (Pete dalFerro and Jenny White work the deep fryer in back, with Erin Clark lending moral support.)
PolarTREC teacher Bill Schmoker, Marine Mammal Observer Sarah Ashworth, and Andy Stevenson (pictured from right to left) greeted the hungry Coasties and served up hot pizza, mozzarella sticks and jalapeno poppers. (Pete dalFerro and Jenny White work the deep fryer in back, with Erin Clark lending moral support.)
Our rewards for our efforts were the smiling, satisfied faces we saw leaving the Mess that evening, which made the job of washing dishes, cleaning tables and swabbing the decks that much easier. Somehow no one remembered to take pictures of the cleaning crew, which included many of those already named as well as Mark Patsavas (University of South Florida), Justin Pudenz (Marine Mammal Observer), and David Street (Canadian Hydrographic Service). It was a great night. We had a lot of fun and showed that we can work as a team in the kitchen as well as in the lab and on the decks.

Mission Status: We are in the home stretch now, leading Louis on what will probably be the last transect through ice. Sometime soon we will break away and start heading for Barrow to start the journey home. I am spending a good part of each day out on the decks, taking photos and enjoying my last look at Arctic ice. Yesterday’s snow added a new element to the scene.

Snow On Deck
Snow On Deck
Snow on bow
Snow on bow
Morning After Snow
Morning After Snow
Sarah Finds Her Polar Bear
Sarah Finds Her Polar Bear

We’ve also had a couple of polar bear sightings, though none were close enough to get good pictures with my camera, but here’s my roommate, Sarah, right after she spotted Wednesday’s bear.Caroline

Donna Knutson, September 1, 2010

NOAA Teacher at Sea Donna Knutson
NOAA Ship Oscar Elton Sette
September 1 – September 29, 2010

Mission: Hawaiian Islands Cetacean and Ecosystem Assessment Survey
Geograpical Area: Hawaii
Date: September 1, 2010

Getting Underway
 
 

Mission and Geographical Area:

The Oscar Elton Sette is on a mission called HICEAS, which stands for Hawaiian Islands Cetacean and Ecosystem Assessment Survey. This cruise will try to locate all marine mammals in the Exclusive Economic Zone called the “EEZ” of Hawaiian waters. The expedition will cover the waters out to 200 nautical miles of the Hawaiian Islands. To locate these animals the science crew will deploy acoustical equipment engineered to capture whale and dolphin sound and also locate animals visually with binoculars with magnification up to 25x. Another goal of the mission is to collect data such as conductivity for measuring salinity, temperature, depth, and chlorophyll abundance. Along with aquatic mammals, aquatic bird sittings will also be documented.

This survey’s data is necessary to estimate the abundance and understand the distribution of whales and dolphins in the EEZ. The data will be compiled for the Marine Mammal Stock Assessment Report. The assessment is required by the Marine Mammal Protection Act, the Endangered Species Act, and the National Marine Sanctuaries Act.

The old control tower for midway.
Science and Technology:
The Arizona Memorial in Pearl Harbor

Before the Sette left Pearl Harbor on its mission, it had to stop for fuel, at least 90,000 gallons worth according to the boatswain. While at the fueling station the Lieutenant Collin Little talked to the science crew about protocol on the ship and then Chief Scientist, Erin Oleson, gave essential information about the mission. There are sixteen people on the science crew including the Chief Scientist and myself. We are split into five groups: the Chief Scientist, the Acousticians, the Marine Mammal Observers, the Birders, an oceanographer and the Teacher at Sea.

The day was wrapped-up with a fire drill. Everyone had to report to their muster stations to be counted. Safety is extremely important on this ship as I have ascertained by the frequent encouragement to do tasks/activities correctly with as little risk of an accident as possible.
We are still heading out to sea. Tomorrow, when on course, the data collecting will begin.
Personal Log:
I hadn’t realized the time change would be so drastic. We are now 5 hrs. behind North Dakota time. I don’t think it will take me long to adjust, but I am very tired now.  I am impressed with all the young professional scientists! I am also pleased to see many are women, because sometimes it is hard to get girls motivated to do labs in the science classroom.
I will have a “job” soon. It is not very complicated, but I am needed to make sure the extremely expensive CTD (conductivity, temperature at depth measuring device) is not being pulled in any direction by the waves during readings. I don’t have to hold it.  I informed Ray one of the able-bodied seaman, and he reports the angle the CTD is in to the bridge.
Everyone has been very friendly and kind. If I had to go home today I would be sincere in saying I had a truly great time!
A view from the ship while heading to the Northwest Hawiaan Islands.

Peggy Deichstetter, September 1, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Date: September 1, 2010

 

Teacher at Sea Peggy Deichstetter in her hard hat
Teacher at Sea Peggy Deichstetter in her hard hat
On the bridge
On the bridge

Day 4 Sept . 1

We are about an hour away from out first data collection area. This morning just before dawn I got a tour of the bridge. The CO showed my all the computers that keep track of where we are. I learned a lot, not only about the bridge but also about careers in NOAA.(National Oceanic and Atmospheric Administration).. NOAA is made up of several parts, the CO and I talked about the oceanic parts; the officers and crew who run the ship and the scientists. The officers follow the same rules as the military. If you are in the Navy you can transfer directly into this division.

The scientists do the actual research designed by NOAA to answer questions about the ocean. In this cruise we are counting, tagging and releasing shark. This will tell us about how many sharks are in this area at this time of year. NOAA has collected data for twenty year so they will be able to tell the health of the shark population.

To help collect information of the effect of the oil spill we are also doing water analysis and plankton tows.

After lunch we were taught how to do a plankton tow. I have done numerous plankton tows in my life but never on this scale. I used all the skills that I learned when I did research in the Arctic except on a much larger scale.

Peggy Deichstetter: Day 4 September 1

NOAA Teacher at Sea: Peggy Deichstetter
NOAA Ship Name: Oregon II
Mission: Bottom Longline Survey 2010
Geographical area of cruise: Gulf of Mexico

Me on the deck
Me on the deck

Day 4 Sept . 1

We are about an hour away from out first data collection area. This morning just before dawn I got a tour of the bridge. The CO showed my all the computers that keep track of where we are. I learned a lot, not only about the bridge but also about careers in NOAA.(National Oceanic and Atmospheric Administration) . NOAA is made up of several parts, the CO and I talked about the oceanic parts; the officers and crew who run the ship and the scientists. The officers follow the same rules as the military. If you are in the Navy you can transfer directly into this division.

Navigational Computers
Navigational Computers

The scientists do the actual research designed by NOAA to answer questions about the ocean. In this cruise we are counting, tagging and releasing shark. This will tell us about how many sharks are in this area at this time of year. NOAA has collected data for twenty year so they will be able to tell the health of the shark population.

To help collect information of the effect of the oil spill we are also doing water analysis and plankton tows.

After lunch we were taught how to do a plankton tow. I have done numerous plankton tows in my life but never on this scale. I used all the skills that I learned when I did research in the Arctic except on a much larger scale.

Peggy Deichstetter, August 31, 2010

NOAA Teacher at Sea
Peggy Deichstetter
Aboard Oregon II
August 29 – September 10, 2012

Mission: Longline Shark and Red Snapper Survey
Geographical area of cruise: Gulf of Mexico
Day 1 August 30


Peggy Deichstetter in her Safety Suit
Peggy Deichstetter in her Safety Suit
Peggy Deichstetter in her safety suit
Peggy Deichstetter in her safety suit
Peggy Deichstetter in her safety suit
Peggy Deichstetter in her safety suit

I woke up at 2:30am. Why didn’t my alarm go off? Now, I have to get dressed with all the stuff I will need for the rest of the day without waking my roommate. I make my way to the galley for some coffee. I pour a cup and take a gulp. This is soooooo bad. This is ever stronger than Mr. D’Agostino’s coffee. I make a new pot and sit down to work on my blog.

We have not had internet access since we departed yesterday and it looks like we won’t have it until noon tomorrow. Oh, life at sea. I also found out that we have another day at sea before we get to our fishing spot.

With a controlled experiment you need to have everything the same. So the spots we will be fishing in will be the same spots that they have done for the last 20 years. Our assignment is the coast of Mexico to Galveston Texas.

In my quest to stay awake for shift I went to bed at noon. At 12:30 the abandon ship drill was sounded, a difficult challenge, wake up, get down from the upper bunk, grab my survival suit and get to muster station. Once checked for roll call I got opportunity to don my survival suit. I have included some great pictures so everyone can have a good laugh.