Jennifer Fry, July 22, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 22, 2009

Weather Data from the Bridge 
Wind speed: 13 knots
Wind direction: 003°from the north
Visibility: clear
Temperature: 13.6°C (dry bulb); 13.2°C (wet bulb)
Sea water temperature: 15.1°C
Wave height: 1-2 ft.
Swell direction: 325°
Swell height: 4-6 ft.

Science/Technology Log 

Today we did a fishing trawl off the coast of Oregon. First, the scientists used multiple acoustic frequencies of sound waves.  After analyzing the sonar data, the scientists felt confident that they would get a good sampling of hake. The chief scientist called the bridge to break our transect line (the planned east/west course) and requested that we trawl for fish.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

Here is an acoustic image (2 frequencies) as seen on the scientist’s screen. The bottom wavy line is the seafloor, and the colored sections above are organisms located in the water column.

The NOAA Corps officers directed operations from the trawl house while crew members worked to lower the net to the target depth.  The fishing trawl collected specimens for approximately 20 minutes. After that time, the crew members haul in the net. The scientists continue to record data on the trawl house.

The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.

The trawl net sits on the deck of the Miller Freeman and is ready to be weighed and measured.

Today’s total catch fit into 2 baskets, a “basket” is about the size of your laundry basket at home, approximately 25-35 kilos. Included in the sample were some very interesting fish:

  • Viper fish
  • Ctenophores or comb jellies
  • Larval stage Dover sole, lives at the sea bottom
  • Jelly fish, several varieties (*Note: Jelly fish are types of zooplankton, which means they are animals floating in the ocean.)
  • Hake, approx. 30 kilos

The scientists made quick work of weighing and identifying each species of fish and then began working with the hake. Each hake was individually measured for length and weighed.  The hake’s stomach and otolith were removed. These were carefully labeled and data imputed into the computer.  Scientists will later examine the contents of the stomach to determine what the hake are eating. The otolith (ear bone) goes through a process by which the ear bone is broken in half and then “burnt.” The burning procedure allows one to see the “age rings” much like how we age a tree with its rings.

Personal Log 

A view from the trawl house during a fishing trawl.

A view from the trawl house during a fishing trawl.

Everyone works so very hard to make the Hake Survey successful.  All hands on the ship do a specific job, from cook to engineer to captain of the ship.  It is evident that everyone takes their job seriously and is good at what they do. I feel very fortunate to be part of this very important scientific research project.

 

 

A viper fish

A viper fish

Did You Know? 
Bird facts: An albatross’ wing span can be 5 feet, which equals one very large sea bird. A shearwater is slimmer and smaller yet resembles an albatross.

Animals Seen Today 
Ctenophore, Jelly Fish, Dover sole, Hake, Humboldt squid, Fulmar, Albatross, Gull, and Shearwater.

Here is something interesting, a hake with two mouths discovered in the trawl net.

Here is something interesting, a hake with two mouths discovered in the trawl net.

A hake and its stomach contents, including krill, smaller hake and possibly an anchovy

A hake and its stomach contents, including krill, smaller hake and possibly an anchovy

Dover Sole, larval stage

Dover Sole, larval stage†

NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.

NOAA Oceanographer John Pohl and NOAA Fish Biologist Melanie Johnson discuss data about the fish collected.

Jennifer Fry, July 21, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 21, 2009

Boatswain Matt Faber, and Skilled Fisherman, Gary Cooper, tend to full net of hake from one of the day’s trawl.

Boatswain Matt Faber, and Skilled Fisherman, Gary Cooper, tend to full net of hake from one of the day’s trawl.

Weather Data from the Bridge 
Wind speed: 10 knots
Wind direction: 011°from the north
Visibility: cloudy
Temperature: 16.2°C (dry bulb); 14.9°C (wet bulb)
Weather note: When you speak of wind direction you are talking about the direction in which the wind is coming. 

Science/Technology Log 

You can see by the weather data above that the seas were much calmer today. We were able to conduct 3 fishing trawls amounting to several thousand kilograms of hake. Once the fish were hauled onto the deck, we began measuring, weighing, dissecting, and removing otoliths, ear bones, for age analysis. I removed my first pair of otoliths today.  The best part of the day was the last and final trawl. We collected approximately 3,000 pounds of Humboldt squid which equals 444 squid.  The math problem to calculate is… “How much would one squid weigh in our catch?”

Julia Clemons, NOAA Fisheries and Jennifer Fry, TAS pictured with Humbolt squid. Today’s catch totaled 444 squid.

Julia Clemons, NOAA Fisheries and Jennifer Fry, TAS pictured with Humbolt squid. Today’s catch totaled 444 squid.

Personal Log 

What strikes me today is just how dedicated the scientists and crew are to their jobs.  Everyone has a specific job aboard the Miller Freeman that they take seriously.

Question of the Day 

Can you use squid ink as you do regular ink? Is there a market for squid inked products such as cards?

New Term/Phrase/Word 

Cusk eel

Animals Seen Today 

Fish:  Humbolt squid, Hake, Iridescent Cusk eel (see photo), Myctophid
Birds:  Shearwaters, Albatross, Gulls

The Squid 
The squid come on little tentacled feet
Falling, splatting, rolling, and sliding out of its netted jail.
Free at last
To be weighed and measured
Sitting on a strong mantle in a flowing liquid of ebony and midnight.
Your silent escape goes unnoticed.

The Clouds 
The clouds slither on little squid tentacles
The midnight inky darkness envelopes the sky and warns us of foreboding
It sits looking over ships and sea lions
Its silent mantle quietly slides away.

(Inspired by Carl Sandberg’s “The Fog”)

The squid were examined, weighed, and the data entered into the data base.

The squid were examined, weighed, and the data entered into the data base.

A cusk eel

A cusk eel

Jennifer Fry, July 20, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 20, 2009

Chief scientist, Dezhang Chu, gets to know a hake while chief scientist, Lisa Bonacci looks on.

Chief scientist, Dezhang Chu, gets to know a hake while chief scientist, Lisa Bonacci looks on.

Weather Data from the Bridge 
Reading in the morning:
Wind speed: 40 knots
Wind direction: 000°from the north
Visibility: clear
Temperature: 11.6°C (dry bulb); 10.5°C (wet bulb)

Reading in the afternoon:
Wind speed: 20 knots
Wind direction: 358°from the north
Visibility: foggy
Temperature: 12.2°C (dry bulb); 11.8°C (wet bulb)

Science/Technology Log 

Collecting the hake’s stomach help scientists determine its diet.

Collecting the hake’s stomach help scientists determine its diet.

Fishing trawl #1. We conducted a successful fishing trawl.  Collection of hake totaled 3500 kg. (kilograms.)  Pictured are chief scientists Lisa Bonacci and Dezhang Chu getting to know the hake.  Fishing trawl #2: There was trouble with the sonar equipment so we were unable to conduct a successful fishing trawl.

Personal Log 

Today’s unsuccessful fishing trawl due to a malfunction reminds me that we often learn more from our mistakes that our successes. Scientists are constantly reviewing their scientific process to make sure they align with their hypothesis. After 3 days of gale force winds (34-40 knots) and big waves, today was a welcome change with 20 knot winds and calm seas in the afternoon.  I finally feel like I’ve my “sea legs” about me.

The hake stomach and a pair of otolith, ear bones will help determine what the hake is eating and how old the fish are.

The hake stomach and a pair of otolith, ear bones will help determine what the hake is eating and how old the fish are.

Animals Seen 
Fish:  Hake Myctophidae
Birds:  Fulmar, Albatross, Gulls, and Shearwater

Jennifer Fry, July 19, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 19, 2009

The XBT (Expendable Bathythermograph)

The XBT (Expendable Bathythermograph)

Weather Data from the Bridge 
Wind speed: 42 knots
Wind direction: 350°from the north
Visibility: clear
Temperature: 11.4°C (dry bulb); 10.4°C (wet bulb)

Science and Technology Log 

The seas are still very rough with 40 knot winds. No fishing trawls due to the high waves and heavy seas. However, despite the rough seas, we were able to conduct an XBT, which stands for Expendable Bathythermograph.  An XBT is a measuring apparatus consisting of a large lead weight connected to a very thin copper wire. The function of the XBT is to measure the temperature throughout the water column.  It is launched off the stern (back) of the ship. As it sinks to the sea floor, temperature data is transmitted to an onboard computer.

Biologist Chris Grandin prepares to launch an XBT

Biologist Chris Grandin prepares to launch an XBT

Personal Log 

The Miller Freeman is an NOAA research vessel.   Here’s a bit of information about the Miller Freeman…For more information go here. The Miller Freeman is a 215foot fisheries and oceanographic research vessel and is one of the largest research trawlers in the United States. Its primary mission is to provide a working platform for the study of the ocean’s living resources. The ship is named for Miller Freeman (1875-1955), a publisher who was actively involved in the international management of fish harvests. The ship was launched in 1967, but not fully rigged until 1975. The vessel was again re-rigged in 1982. Its home port is Seattle, Washington.  It is capable of operating in any waters of the world. The ship has 7 NOAA Corps officers, 27 crew members, and maximum of 11 scientists.

Following is a “tour” of the ship.  It has many nice amenities for extended life at sea.

The Laundry Room - Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick if you’re up there too long.

The Laundry Room – Here’s where we do our laundry. The laundry room is located in the bow/front of the ship which bounces up and down a lot, so you can feel pretty sea sick at times.

The Kitchen - Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.

The Kitchen – Our 3 amazing cooks, Bill, Larry, and Adam, work hard preparing 3 meals a day for over 30 people. They have quite a difficult and detailed job.

The Galley - This is where we enjoy deliciously prepared meals.

The Galley – This is where we enjoy deliciously prepared meals.

The Library - Pictured here is the ship’s library where crew members can read and check e-mail.

The Library – Pictured here is the ship’s library where crew members can read and check e-mail.

The Lounge - Here’s the lounge where movies and video games can be watched.

The Lounge – Here’s the lounge where movies and video games can be watched.

The Gym - The gym is located on the lowest level of the ship.  This is where you can work off the great food that you’ve eaten.

The Gym – The gym is located on the lowest level of the ship. This is where you can work off the great food that you’ve eaten.

The Gift of Patience 
Wending our way through the North Pacific Ocean,
The massive waves crash against our hull with Herculean strength
As high as a one story building, their tops are dolloped with luscious whipped cream
They take their turn crashing against the ships sturdy hull, as gale force winds whip wildly past.
We play a waiting game. We practice the ancient art of patience.
When will we have hake, the silvery, slender fish that evades our sonar?

As the winds blow, cold sea spray stings my face.
I watch as the never ending line of waves wait their turn to hit the ship’s hull.
The waves wait patiently as do we.
The sea teaches us serenity.
We must not show greed or impatience.
The sea will provide.
One should lay empty and open waiting for the gifts from the sea.

~Inspired by Anne Morrow Lindberg’s Gifts from the Sea

NOAA Ship Miller Freeman

NOAA Ship Miller Freeman

Jennifer Fry, July 18, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 18, 2009

Weather Data from the Bridge 
Wind speed: 40 knots
Wind direction: 350°from the north
Visibility: foggy Temperature: 12.9°C (dry bulb); 12.0°C (wet bulb)
Wave height: 8-10 feet

Science and Technology Log 

Lisa Bonacci, chief scientist and Melanie Johnson, fishery biologist in the Freeman’s acoustics lab

Lisa Bonacci, chief scientist and Melanie Johnson, fishery biologist in the Freeman’s acoustics lab

Acoustics: Lisa Bonacci, chief scientist, and Melanie Johnson, fishery biologist, are in the acoustics lab onboard the Miller Freeman as it travels along a transect line. NOAA scientists can detect a variety of marine life under the sea. They use sonar—sound waves bouncing off an object—to detect the animals. There is an onboard sonar system that puts out four different frequencies of sound waves.  Each type of fish will give off a different signal depending on its size, shape, and anatomy.  The fish are then identified on the sonar computer readout.  The strength of the sonar signal will determine the number of hake and the way that they are swimming.  As soon as it appears on the sonar as if hake are present, Ms. Bonacci then calls the bridge to request that we trawl for fish.

This is the sonar readout as it’s seen on the computer screen.

This is the sonar readout as it’s seen on the computer screen.

Personal Log 

The boat was rocking in all directions with 40 knot winds and 8-10 foot waves. The fishing trawl brought up scores of fish including a lot of hake. The sonar signals worked really well to locate them. We dissected and measured many fish, but not before we sat in a giant vat of hake (see photo.)  It was a great learning day.

Animals Seen Today 
Hake,spiny dogfish, Humbolt squid, Myctophidae, and Birds.

Here we are in a giant vat of hake!

Here we are in a giant vat of hake!

Discovery from the Briny 
As the trawl net was raised from the depths
The sun broke through the clouds revealing a sparkling azure sky.
Scores of seagulls circled the stern
In the hopes of a bountiful offering
Tasty morsels from the deep
Soon to be thrown overboard.

American fishery biologist, Melanie Johnson, and Canadian fishery biologist, Chris Grandin, take biological samples.

American fishery biologist, Melanie Johnson, and Canadian fishery biologist, Chris Grandin, take biological samples.

Jennifer Fry, July 17, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 17, 2009

Hake are unloaded into holding containers, soon to be weighed and measured

Hake are unloaded into holding containers, soon to be weighed and measured

Weather Data from the Bridge 
Wind speed: 20 knots
Wind direction: 340°from the north- north west
Visibility: foggy
Temperature: 15.2°C (dry bulb); 13.0°C (wet bulb)

Science and Technology Log 

Each day I observe the NOAA scientists using the scientific process.  These are the same process skills we learn in the classroom. The scientists determine what they want to find out and state it in a question form. These are some of the questions/hypotheses that they are trying to answer.

  • What and where are the populations of hake?
  • In what environments do the hake best thrive?
  • When do they migrate?
  • What do they feed on?
  • What feeds on the hake?

Once the hake are observed on the sonar, the trawl net is dropped into the water.  The fish are hauled out onto the deck where they are emptied into huge holding bins.  Scientists want a good sampling of hake for the survey, not too much and not too little.  Getting a good sample is important to the scientists; both for their research and the environment.  The scientists don’t want to take too many hake each time they fish, doing this might diminish the hake population. 

Collecting Data: Observing – Using the senses to collect information.

Classifying – Sorting or ordering objects or ideas into groups or categories based on their properties.

Measuring – Determining dimensions (length/area), volume, mass/weight, or time of objects or events by using instruments that measure these properties.

Otoliths—fish ear bones—are extracted and placed in vials (test tubes) for later study.

Otoliths—fish ear bones—are extracted and placed in vials (test tubes) for later study.

The scientists then collect their data. Fish are separated by species or classified.  All hake collected are then weighed. A certain number of them are measured in length, and their sex is determined.  Scientists observe; dissect a group of hake, and collect the fish’s ear bones, called the otoliths, (2 white oval shapes pictured above). Otoliths are stored in small vials, which are like test tubes, for later study. The test tube has a serial number which is fed into a computer as well. Later, scientists will observe the otoliths under a microscope.  The otolith helps determine the age of the fish. When observed under a microscope, the otolith, or ear bone has rings similar to rings of a tree. The more rings, the older the fish.  The age of the fish or data is then recorded in a computer spreadsheet.

Communicating – Using pictorial, written, or oral language to describe an event, action, or object.

Making Models – Making a pictorial, written or physical representation to explain an idea, event, or object.

Recording Data Writing down the results of an observation of an object or event using pictures, words, or numbers.

As data is collected, it is recorded into a computer database, then scientists create tables and graphs from information in this database.

Inferring  – Making statements about an observation that provide a reasonable explanation.

Predicting – Guessing what the outcome of an event will be based on observations and, usually, prior knowledge of similar events.

Interpreting Data – Creating or using tables, graphs, or diagrams to organize and explain information.

The otoliths look like small oval “winglike” structures.

The otoliths look like small oval “winglike” structures.

Once all the data is in the computer, scientists can analyze or figure out the answers to these questions.

  • What and where are the populations of hake?
  • In what environments do the hake best thrive?
  • When do they migrate?
  • What do they feed on?
  • What feeds on the hake?

Scientists use the data to infer or make a statement about the data that gives a reasonable explanation.  Scientists also make predictions by guessing what the outcome might be based on the data/observations.

Marine Mammal Watch – NOAA Fisheries instructs the scientists to conduct a “marine mammal watch” prior to a fishing trawl. This is to protect the marine mammals, such as dolphins, whales, sea lions, and seals.  When the nets go into the ocean, the curious sea lions want to see what’s going on and play around the nets.  This can prove dangerous for the animals because if they get tangled in the net, they cannot come up for air, and being mammals, they need air.  As it happened, a half a dozen sea lions were spotted around our trawl net. To protect the inquisitive animals we found another spot in which to put our net.

California sea lion

California sea lion

Personal Log 

Everyone aboard the Miller Freeman is a team.  It’s an amazing working environment.  The ship runs like a well oiled machine.  The crew is always so helpful and are dedicated to their work.  The scientists are incredibly dedicated to their specific field and are committed to helping the world and the ocean’s biome. Everyone is so patient with all my questions.  I am so grateful and honored to be part of this hake survey which is so scientifically important in determining the health of our ocean.

Animals Seen Today 
California sea lions
Hake Myctophidae: lantern fish

Jennifer Fry, July 16, 2009

NOAA Teacher at Sea
Jennifer Fry
Onboard NOAA Ship Miller Freeman (tracker)
July 14 – 29, 2009 

Mission: 2009 United States/Canada Pacific Hake Acoustic Survey
Geographical area of cruise: North Pacific Ocean from Monterey, CA to British Columbia, CA.
Date: July 16, 2009

Here is Dr. Chu using a sonar readout to determine where the hake are located.

Here is Dr. Chu using a sonar readout to determine where the hake are located.

Weather Data from the Bridge 
Wind speed: 20 knots
Wind direction: 358°from the north
Visibility: foggy
Temperature: 15.2°C (dry bulb); 13.4°C (wet bulb)

Science and Technology Log 

We conducted several sea trawls for hake and other various fish species.   First, the scientists conduct an acoustic survey using 4 different frequencies. Then the nets are lowered and drug at depth. The fun begins when we don our rubber overalls, gloves, and galoshes and count, identify and, weigh the fish. The most numerous fish in the trawls were myctophids (see photo), bioluminescent fish with some species having 2 headlights in front of their eyes to help attract prey.

Here we are sorting the catch.

Here we are sorting the catch.

HAB/ Harmful Algal Blooms Test:  Throughout the day we took HAB samples, “harmful algae blooms”, which measures the toxins, domoic acid, and chlorophyll levels in the water (which correspond to the amount of plankton present). The HAB sample entails collecting sea water and putting it through a filtering process. Julia Clemons, a NOAA Oceanographer, and I conducted the HAB survey (pictured below).  Fifty milliliters of sea water is measured into a graduated cylinder then filtered.

This is a type of fish called a myctophid. They are bioluminescent.

This is a type of fish called a myctophid. They are bioluminescent.

Sea water is collected at specific times during each transect or line of study.  The sea water goes through a filtering process testing domoic acid and chlorophyll levels.  These results will be evaluated later in the lab. One thing that strikes me is the importance of careful and accurate measurement in the lab setting. The harmful algal bloom samples are conducted 5-6 times daily and accuracy is essential for precise and definitive results.  Later scientists will review and evaluate the data that was collected in the field.  It is very important that the scientists use the same measurements and tools so that each experiment is done the same way. Making accurate data collection makes for accurate scientific results.

Animals Seen Today 
Numerous albatross circling the stern of the ship, Viper fish, Octopi (approx. 6 inches in length), Squid (approx. 3 inches in length), and Myctophidae (see photo).

Zooplankton

Zooplankton

Here I am observing Julia as she filters a HAB sample.

Here I am observing Julia as she filters a HAB sample.