Eric Heltzel, October 19, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 19, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

Sailing on the RONALD H. BROWN as a NOAA Teacher at Sea has been an opportunity to experience scientific research first hand.  I have been impressed by the commitment to excellence exhibited by all members of the scientific teams.  They have undertaken the design and logistical challenges of the Stratus 6 cruise with great attention to detail, absolute commitment to execution of the plan, and countless hours of effort.  Tasks were carried out with a high degree of professionalism and in good humor.

The officers and crew of the BROWN were not only generous and considerate, they were very competent.  People knew their jobs and did them without complaint.  There seems to be an enthusiasm for the research that the ship facilitates.  Throughout the cruise I felt confident that the ship was in good hands.

Going to sea for the first time has been a challenge for me.  As with many things that push us outside our comfort zone and away from the familiar, learning is fast paced and intense.  This will be my last log from the RONALD H. BROWN.  I wish to thank the Teacher at Sea program of NOAA for making this experience possible.  Thanks to Captain Tim Wright and the officers and crew of the BROWN for helping this previously land-locked teacher from Wyoming have a great experience.  Special thanks to Dr. Bob Weller and the team from Woods Hole Oceanographic Institution for taking me under their wings and answering my numerous questions.  Thanks to Peggy Decaria for substituting for me in my classes at Evanston High School.  I never would have been able to have this experience if not for the support of Superintendent Dennis Wilson and all of Uinta County School District #1.  I’m going back to school with a rich experience to share, new resources to facilitate my teaching, and many new ideas.  Thanks to you all.

Eric Heltzel, October 18, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 18, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

Rodrigo Castro and Carolina Cisternas are research technicians from the University of Concepcion in Concepcion, Chile.  They joined the cruise at Panama City and have been taking ocean water samples every 60 nm.  Their samples are run through 0.7 and 0.2 micron filters.  They capture and freeze particulate organic mater by this process and take it back to the lab at the university.  The samples are analyzed for the presence of stable isotopes of carbon and nitrogen.  These samples are then used as biomarkers to help determine the circulation of ocean water.  A second analysis will be going on to locate the gene associated with nitrogen-fixing organisms.  This is new ground for the scientists at the university.

Upwellings are areas where deep ocean water comes to the surface.  According to Rodrigo and Carolina there are four significant areas of upwelling along the Chilean coast. The two most northerly are found at 20 degrees south and 24 degrees south.  These are active year round and are slow and steady with no significant seasonal fluctuation. Another at 30 degrees south is moderate in nature with some seasonal variation, being more active during the summer.  The most southerly is at 36 degrees south and is strong September to April. However it mostly disappears the rest of the year. Upwelling zones are recognizable because of their cooler water temperature.  They also have increased nutrients that are brought up from the deep and a higher amount of chlorophyll due to increased photosynthetic activity.  Some fish species are found in greater abundance in these zones due to increased nutrients extending into more food availability.

Personal Log 

The RONALD H. BROWN is under way. We are steaming in an easterly heading on the leg of the cruise that will take us to Arica, Chile.  It is a bit of a challenge for me, as we are no longer headed into the direction of the swells; instead, we are crossing them at a 30-degree angle, which makes for more oscillations in the movement of the ship.  My tummy is being challenged.

Eric Heltzel, October 14, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 14, 2005

Weather Data from Bridge
Temperature: 19 degrees C
Sea level Atmospheric pressure: 1016 mb
Relative Humidity: 70%
Clouds cover: 8/8, stratocumulus
Visibility: 12 nm
Wind direction: 120 degrees
Wind speed: 16kts.
Wave height: 3 – 4’
Swell wave height: 4 – 5’
Swell direction: 120 degrees
Seawater Temperature: 18.3 degrees C
Salinity: 35 parts per thousand
Ocean depth: 4364 meters

Science and Technology Log 

A big day today! We managed to deploy the Stratus 5 buoy.  It was basically the reverse of our retrieval. The buoy was tipped up 45 degrees and the top 35 meters of instruments were hooked together.  Next the mooring was attached to the buoy and it was placed in the water with a crane. This phase was done off of the portside of the fantail.  We held the wire that was attached to the buoy and let it swing out behind the ship.  Then using a large winch we would play out more of the cable, stop, secure the line, and then attach the next instrument.  Consider the fact that if we were to lose hold of the mooring we could lose the whole works into 4000 + meters of ocean water.  It’s not like working on land where if you drop something, you say whoops and pick it up again.  If that happens on the ship the thing you drop may well go over the side.  Serious Whoops!

Once all of the instruments were attached we started paying out nylon and polypropylene line. This was accomplished by using an H-bit to run the line through.  The line was in 4’ x 4’ x 4’ boxes and trailed out into the ocean as the ship moved forward at just over one knot. When we got to the end of the line it was time to attach the new acoustic releases so that this buoy can be recovered next year.  Then it was time for the big splash. The mooring was attached to the anchor which was made up of three iron disks, twelve inches thick and three feet in diameter.  The anchor’s weight is 9000 pounds. The anchor was sitting on a steel plate and the stern of the fantail.  A crane picked up the forward edge of the plate and tipped the anchor into the ocean.  The splash from the six-foot drop to the water went twenty feet in the air.  The anchor started the trip to the bottom dragging all of the mooring and the buoy.  The falling anchor pulled the buoy at about four knots towards the anchor location.  Excited cheers went up on the fantail. The Stratus 5 buoy had been successfully deployed!

Instruments Deployed (top 450 meters)

Deployed on the mooring line beneath the buoy: MICRO CAT temperature, salinity SEA CAT temperature, salinity Brancker temperature, salinity VMCM direction, velocity of water flow NORTEK acoustic Doppler current profiler T-POD   temperature logging device SONTEK acoustic Doppler current meter RDI ADCP acoustic Doppler current profiler (125 m) SDE 39 temperature logging device Acoustic release just above the anchor

On the buoy: (this information is transmitted 4 times a day) Atmospheric pressure, Air temperature, Wind speed and direction, Relative humidity, Precipitation, Long wave radiation, Short wave radiation, Sea surface temperature and salinity.

You may notice that many of the instruments on the mooring measure the same thing.  This redundancy is intentional guaranteeing verifiable data.  There are two complete meteorological systems on the buoy.

Response to Student Questions 

Does the stratus layer extend to the land?

After questioning the senior scientists about this the answer is yes.  We are at about 20 degrees south. Here there is a daily fluctuation in the cloud cover.  It often dissipates during the afternoon as a result of warming by the sun.  Apparently the coast of northern Chile often has a cloud layer that also dissipates during the day.  This can be low-lying enough to be fog. As you travel a few miles inland and up in elevation you are no longer under the stratus layer.

Does the stratus layer affect El Nino?

Ocean and atmosphere constantly influence each other.  I have to do more inquiry to give a solid answer to this question.

Note: There is some confusion about the labels being used for the buoy and the cruise.  This is the sixth Stratus Project cruise which is deploying the fifth Stratus buoy.  Hence, the Stratus 6 cruise is recovering the Straus 4 buoy and deploying the Stratus 5 buoy.

Eric Heltzel, October 13, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 13, 2005

A small boat is launched in order to get to the stratus buoy
A small boat is launched in order to get to the Stratus buoy

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

We are holding on station today as the data from the Stratus 4 buoy is downloaded and analyzed. I helped out on the fantail for a couple of hours today.  We were rearranging the positions of the Stratus 4 and 5 buoys. These are large, heavy devices that can only be moved by crane and winches. The buoy waiting for deployment is now on the portside of the fantail, is strapped down, activated, and awaiting deployment.  The buoy we retrieved yesterday is tucked in next to the starboard side crane. This doesn’t sound like a big thing, but each buoy is very heavy and the deck is moving up and down six feet and rocking side to side every few seconds. We go slowly and are very deliberate.

Sean Whelan attaches a line to the buoy
Sean Whelan attaches a line to the buoy

Jeff Lord is setting up for deployment of the Stratus 5 buoy and its array of instruments.  The buoy will be launched, followed by the mooring and its attached instruments, and lastly the 9000-pound anchor will be deployed over the stern of the ship.  Before this a Sea Beam survey of the ocean floor has to be accomplished to help Dr. Weller choose the site of the Straus 5 deployment.  I am continuously amazed by the thorough planning that has been done for this venture.

Personal Log 

I’m sitting on the foredeck of the BROWN as I write this entry. It’s once again a partly sunny day and I am sitting out of the wind enjoying the sunshine. I realize that I haven’t seen a jet contrail since we crossed the equator. Yesterday I did see a whale spout at about of a quarter mile out and there was a fishing boat about four miles away.  Except for a few birds the view is of ocean and sky.  We had an abandon-ship drill Tuesday and the captain announced that the nearest land is some Argentine islands over 400 miles away.  We are out there.

Glass balls attached to the buoy
Glass balls attached to the buoy
The buoy is retrieved for maintenance
The buoy is retrieved for maintenance

Eric Heltzel, October 11, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 11, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

The throbbing heart of the RONALD H. BROWN is the engine room and the associated systems.  Last night Assistant Engineer Wayne Smith gave me a tour.  I was impressed with the complexity and effectiveness of the systems.

The core of the power is six Caterpillar diesel engines.  These function as electric generators for the ship’s systems.  The three largest of these are dedicated to the propulsion of the ship. The ship is propelled and maneuvered by two aft thrusters and one bow thruster. The thrusters are propellers that have the ability to be rotated 360 degrees. Each thruster is driven by and independent Z-Drive that is actuated by an electric motor and shaft.  Under normal sailing only the two aft thrusters are in use.  The bow thruster is engaged when the ship is maneuvering into dock or holding a position.  As I write, we are holding position 0.25 nautical miles from the Stratus buoy.  By engaging the Dynamic Positioning System a location for the ship is established via GPS and a computer controls the direction and rpm of the thrusters.  This allows the BROWN to hold a position without having to drop anchor.  I was surprised to learn that this ship has no rudder—it is steered via the Z-Drive of the thrusters.

Since the BROWN is a research vessel it has on board many sophisticated electronic instruments.  The current running through its wires is like our household current, about 115 volts.  Because of the sensitive nature of some of the equipment there are outlets labeled “clean power”. This current runs through a secondary motor which ensures that there will be no power spikes that could damage electronic equipment.

Ventilation is very important and there are several air conditioning systems that control the temperature in most of the ship.  Different areas have independent thermostats so the ship is quite comfortable.  The science labs are generally kept quite cool.  Freshwater is supplied by using heat from the engines to evaporate seawater.  The condensed steam is run through bromine filters to ensure no bacteria in the water tanks.  The water is extremely soft, having no salts in it.  Wayne chuckled at the idea of people buying bottled water to drink on ship because the water provided is as pure as water gets.

The NOAA research vessel RONALD H. BROWN was launched in 1997.  It is the largest ship in the fleet and provides a state of the art research platform.  The versatility and capabilities of this ship and expertise of the crew allow up to 59 people to sail for extended periods of time and perform sophisticated oceanographic and atmospheric research.  I feel privileged to be along on the Stratus 6 cruise.

Personal Log

Wow! I can see my shadow.  This is cause for staying out on deck. We have been sailing under overcast skies since we crossed the equator.  I’m sitting out on the bench on the 03 deck beneath the Bridge. There’s a breeze blowing from the southeast but I’m comfortable in a light jacket and shorts.  It has been a surprise to be traveling in tropical waters with overcast skies and cool temperatures.  It makes me realize that we get a lot of sunny days in Wyoming.

At 1415 today we had a meeting outlining the program for tomorrow.  Jeff Lord from WHOI is coordinating the buoy recovery program.  He is very organized and has gone through step by step how it will be done.  It will be a very interesting, very busy day tomorrow.  It is very important to the success of this cruise that we recover all of the instruments and buoy safely.  At 0640 the acoustic release will be activated and the floats attached to the mooring will be released from the anchor.  The depth here is 4400 m and it will take the floats about 40 minutes to reach the surface.  This will be a major operation involving everyone on the ship.

Eric Heltzel, October 9, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 9, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

After Dr. Lundquist and I have a successful radiosonde launch we return to the computer terminal and watch the measurement data come in.  My favorite display is a color-coded graph showing temperature, dew point, and relative humidity graphed against the altitude of the radiosonde. The main area of study is taking place where we are in the eastern Pacific off the coast of northern Chile.  In this area there is a large, semi-permanent layer of stratus clouds.  The effects these clouds have on the ocean temperature, and vice versa, is one of the reasons for choosing this area to study.

As the balloon ascends from the ship the temperature cools at the dry adiabatic rate. The dew point goes down but not as rapidly.  Usually at an elevation of about  600 meters the dew point and temperature intersect.  On the same screen green line showing relative humidity hits 100% as we would expect.  This marks the base of the cloud layer.

As the radiosonde ascends another 200 to 400 meters the temperature shoots way up, as much as 8 degrees C.  This indicates the top on the cloud layer where the sun is shining brightly. As the balloon continues to ascend the temperature once again cools consistently at the dry adiabatic rate.  It’s about negative forty degrees C at an altitude of 20 kilometers.  In this part of the atmosphere the relative humidity approaches zero and the dew point stays well below the air temperature.  This suggests the upper air is descending and is stable. The bottom 800 meters is referred to as a marine boundary layer.

Despite the constant cloud cover there is very little precipitation in this area.  Temperatures at the ocean level are surprisingly cool as evidenced my most of the crew wearing long pants and jackets or sweatshirts.  Atmospheric and oceanic data in this area are very sparse. One goal of the Stratus Project is to gather more information so we can better understand the interrelationships between ocean and atmosphere.

Personal log

As I write this I am on my watch in the main science lab.  I’m preparing to launch a Drifter in about 15 minutes and I will launch a weather balloon at 13:00.  It’s really fun to throw things into the ocean and release balloons into the atmosphere and see where they go.

Our ETA at the Stratus mooring site is 17:30.  We are approaching the end of southerly leg of our cruise. There are about six days of work scheduled at the buoy site.  It should be interesting.

Eric Heltzel, October 8, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 8, 2005

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

I’ve been working with the meteorological team from NOAA in Boulder, Colorado. I’ve been teamed with Dr. Jessica Lundquist to manage the 13:00 weather balloon launch. Balloons are launched four times a day at intervals of six hours.  A balloon carries an instrument called a radiosonde to a height often exceeding 20 kilometers.  Eventually the balloon ruptures and the instrument and spent balloon fall to earth.

When preparing a radiosonde we take the battery pack and add water to activate it. As the battery is soaking, the sonde is attached to the computer interface/radio receiver, and it is activated and calibrated.  It is necessary to have real-time weather measurements to input into the sonde so it has a comparison to ensure accuracy.  A radio transmitting frequency is selected then the sonde is detached from the interface and attached to the battery.  While it is still in the lab, we make sure that data is being transmitted.  If all of this goes correctly the radiosonde is set to launch.

We take the activated radiosonde out to the staging bay, which looks a bit like a garage. There are two overhead doors, a workbench, and bottles of helium.  We inflate the balloon with helium to a diameter of about five feet.  When it is inflated we close the balloon with a zip-tie, then attach the radiosonde by its hook, and close it with another zip-tie. We call the Bridge and let them know we are about to launch a balloon.

Now comes the tricky part, walking out on the fantail of the rolling ship carrying a large balloon in one hand and the radiosonde in the other.  Today there 16-knot winds coming from the SE and a wind generated by the ship’s speed of an additional 10 knots from due south.  To complicate matters further, the superstructure of the ship blocks the wind and creates erratic eddies. We check the wind direction and decide on which corner of the fantail will give us the cleanest launch.  Walking aft, the balloon is buffeted by the wind. It pulls and pushes you in various directions while you try to maintain balance on the heaving deck.  When you reach the railing, you hold your hands out and release the balloon and radiosonde. If it clears the A frame and the other equipment you stand and watch your balloon ascend until it enters the cloud layer and disappears.  We call the Bridge and let them know the balloon is away.

Now we return to the Lab to check that our sonde is sending out data.  Measurements of temperature, relative humidity, and atmospheric pressure are taken and sent back every two seconds. The GPS tracking device allows us to know wind speed, wind direction, altitude, and location of the radiosonde.  The measurements of temperature and relative humidity allow the computer to calculate the dew point.  Data streams in until the balloon reaches an elevation where the atmospheric pressure of  about 30, the balloon fails and the radiosonde falls to earth. Tomorrow: More about radiosonde information.

Questions to Consider 

-What is an eddy?

-What will happen to the volume of the balloon as it rises in the atmosphere?

-Why does atmospheric pressure decrease as elevation increases?

-What is the relative humidity when dew point and air temperature are the same?

-What is the adiabatic rate?

-What is a temperature inversion?

Personal log

I am a Pollywog.  Yes, that’s right. I’m one of those slimy little creatures with a spherical body and a tail. At least that’s what the Shellbacks tell us.  A pollywog is a person who has never sailed across the equator and gone through the ceremony and initiation to move onward. Shellbacks are people who have been through these rites.  I made the mistake of admitting that I don’t know what a Shellback is.  I fear that admission will come back to haunt me.  Initiation is approaching. I don’t know what I’ll have to do. I’ll keep you posted.

Eric Heltzel, October 7, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 7, 2005

The adopted buoy, ready for deployment
The adopted drifter buoy, ready for deployment

Weather Data from Bridge

Temperature: 18.6 degrees C
Sea level Atmospheric pressure: 1014 mb
Relative Humidity: 78%
Clouds cover: 6/8,stratocumulus, cumulus, cirrus
Visibility: 12 nm
Wind direction: 140 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 6 – 8’
Seawater Temperature: 18.6 degrees C
Salinity: 35.25 parts per thousand
Ocean depth: 4476 meters

Evanston High School, your adopted Drifter is in the water! 

Lara Hutto is a Research Associate II at Wood’s Hole Oceanographic Institution in Massachusetts. She and I deployed our Drifter Buoy off the port side stern of the fantail at 19:01 UTC (the time at the Prime Meridian) on October 6, 2005. Our Drifter serial number is 54410.

The sock of the drifter buoy is unfurled
The sock of the drifter buoy is unfurled

To: Heltzel’s Oceanography/Meteorology students:  The NOAA decals you signed were placed on the dome of our drifter.  All of your names and the name of Evanston High School are floating freely in the eastern Pacific off the west coast of Peru.  You should be able to track it on the Drifter web page. Should anyone find it they will be able to identify who adopted Drifter 54410.

Update: the EHS drifter is streaming in data from the eastern Pacific. Check it out here. I can’t access this website from the ship but Kevin O’Brien of NOAA says that data is being sent by our adopted drifter.  Check it out and let me know what you find.

Science and Technology Log 

Drifters are a wonderful tool for gathering information about earth’s oceans.  They have a spherical top which provides flotation and contains the electronics of this device.  These include a temperature probe for measuring the surface seawater temperature and a GPS tracking signal. This device is battery powered and is regularly sending out information on seawater temperature and location.

When deployed a fabric tube (sock) extends downward to a depth of between 10 and 15 meters. This is attached to the floating sphere by cable. The sock reduces the effect of winds and surface waves on the movement of the Drifters.  The data is gathered via satellite and plotted. This helps us figure out movements of the ocean waters at the surface.

An entire person can easily fit inside the sock
An entire person can easily fit inside the sock

Compared to many of the instruments that are attached to the Stratus mooring, Drifters are simple.  They are easily deployed because the unit activates itself once it hits the water.  A magnet is attached to the dome and it holds the switch in an off position. Once the magnet is removed, the switch is activated and The Drifter is on the job.  The magnet is attached with water-soluble glue so once in the water the glue dissolves, the magnet falls off, and the Drifter is activated. The sock is also rolled up and held in position with water-soluble tape.  Once in the water this also dissolves and the sock extends downward. The ingenious design of Drifters makes them very easy to deploy.  These are sent out with any type of ship so Drifters have been placed in many of the world’s oceans. Life expectancy on a Drifter is one to two years.

Questions to Consider 

How might the information gathered from Drifters be useful?

What are some ways that the oceans and the atmosphere affect one another?

Personal Log

My quarters are in the low part of the ship.  I have no natural light to tell whether it is night or day. As I lay in my bunk I can hear the sounds of the ship pushing downward through the waves. Sometimes it sounds like gurgling water, sometimes like something solid is striking the hull, other times like the sound of rapids on a river.  When I’m nearly asleep I imagine I am at home in Wyoming and the sounds I hear are of a raging blizzard outside my window. I go on deck of the RONALD H. BROWN and look at the tropical eastern Pacific waters.  Toto, this definitely isn’t Wyoming!

Eric Heltzel, October 6, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 6, 2005

Eric on the bridge of the RON BROWN
Eric on the bridge of the RON BROWN

Weather Data from Bridge, 07:00 

Temperature: 19.1 degrees C
Sea level Atmospheric pressure: 1012 mb
Relative Humidity: 78%
Clouds cover: 8/8, stratocumulus
Visibility: 12 nm
Wind direction: 160 degrees
Wind speed: 6kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 18.3 degrees C

Science and Technology Log 

The science team from the Upper Ocean Processes Group is busy preparing instruments to be deployed on the mooring of the Stratus 5 Buoy. Each instrument must be physically examined to ensure that it is properly mounted in its rack.  Then these instruments are awakened to make sure that they are working properly. They are hooked up to a computer so that their operation and calibration can be tested.

The Stratus Buoy
The Stratus Buoy

Today I had a look at a mechanical current meter.  These were designed by Senior Scientist, Dr. Bob Weller as part of his Doctoral work at Scripps Institute. The instrument is housed in an aluminum cylinder that is 2 feet long and 7” in diameter.  The canister is water tight utilizing two interior rubber seals. Extending from one end is a 3’ long PCV mast that has two propeller mounts on it. At each mount are two sets of propellers on either side of the hub.  The two mounts are set at 90 degrees to one another. When water flows through the propellers revolutions are measure and the data is stored in a chip inside the canister.  The number of revolutions per given unit of time gives the velocity of the current.  Having two sets of propellers set at 90-degree angles allows the direction of the current to be determined.

There is also a second type of current meter that uses measurements of sound waves to determine current velocity.  Several of these will be deployed on the mooring along with the mechanical current meters.  Using two types of instruments allows the team to compare results.  The mechanical units have been used for about 20 years and they are known to be reliable and accurate.  Placing the acoustic velocity meter nearby will help determine the accuracy of these devices.

Questions to Consider 

Why are all the instrument cases cylindrical in shape?

Why is a “sacrificial zinc anode” placed on each end of the mechanical current meter?

How could the direction of a current be determined using two sets of propellers at 90- degree angles to one another?

Why build canisters out of aluminum?

Eric Heltzel, October 5, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 5, 2005

Weather Data from Bridge 

Temperature: 19.5 degrees C
Sea level Atmospheric pressure: 1010 mb
Relative Humidity: 90.5%
Clouds cover: 8/8, stratocumulus, altostratus
Visibility: 9 nm
Wind direction: 230 degrees
Wind speed: 6kts.
Wave height: 3 – 4’
Swell wave height: 3 – 5’
Seawater Temperature: 19.5 degrees C
Salinity: 34.7 parts per thousand

Science and Technology Log 

Notice that the seawater temperature declined from 28.7 to 18.8 degrees C between yesterday and today. We crossed the equator last night so this must have something to do with it.  I went to Doctor Weller and asked for an explanation:

At this latitude and at this season we are still under the influence of the southeast Trade Winds.  Wave motion generates and moves at 90 degrees to the wind direction.  Now the Coriolis Effect comes into play causing waves to deflect to the left in the southern hemisphere.  That means that the prevailing wave direction is from northeast to southwest south of the equator.

As the winds move into the northern hemisphere wave movement is still at 90 degrees. However, now the Coriolis Effect causes waves to deflect to the right, from southwest to northeast. So this time of year the wave motion in the two hemispheres is 180 degrees to one another.  As the surface waters move apart, deeper ocean water comes to the surface to fill the area evacuated by the surface wave motion.  This water is coming from greater depths and is colder.  This accounts for the lowering of the seawater temperature.  Dr. Weller suggests that this action brings nutrients to the surface which should enhance feeding opportunities for marine life.

Vertical and horizontal motion of ocean water causes constant exchanges of heat energy. These exchanges are between water of different temperatures and also the atmosphere.  Currents, waves, upwelling, evaporation, and winds are just some of the factors that influence heat exchanges on planet earth.  These processes are critical to maintaining global climates.  Dr. Weller’s Upper Ocean Processes Group seeks to better understand these relationships.

Ship Crew Activity 

I went to the Bridge this morning to gather weather and sea condition data.  The Officer of the Deck was LTJG Silas Ayers and the Watch Stander was Ordinary Seaman Phil Pokorski.  The Bridge Officer always has a crewmember with them whose job it is to be lookout to scan the ocean and report what can be seen.  This could be another ship, debris, or whales. The crewmember takes a sighting and determines the distance and bearing. Avoiding collision is an important job for the Officer of the Deck.

While there, the three of us engaged in a discussion of nautical measurements and their equivalencies. LTJG Ayers went to the Chart Room and extracted a reference book.  Here are the values we found:

Fathom = 6 feet, 2 yards, 1.8288 meters

Cable = 720 feet, 240 yards, 219.4560 meters

Statute Mile = 5280 feet, 1760 yards, 1609.344 meters

Nautical Mile = 6,076.11548556 feet, 1852 meters, 1.150779448 statute miles

League = 3 statute miles, 4830 meters

(As in 20,000 Leagues under the Sea)

Being a Jules Verne fan, I’ve often wondered how far 20,000 leagues really is.  Now I know that it is 60,000 statute miles.  But nowhere is the ocean nearly that deep. Phil then pointed out that Verne was referring to horizontal distance traveled while submerged in the Nautilus.  Finally the title of his tale makes sense to me.

Personal Note 

Starting last evening I was hearing a squeaking sound.  At first I thought it was my deck shoes squeaking on the tile deck floors.  Then I notice that even when I wasn’t moving the sound persisted. I was beginning to wonder if being at sea and wearing a motion sickness patch wasn’t causing me to be hallucinatory.  I looked and looked for the source of the sound. I finally asked Dr. Weller if he could hear it and fortunately he said yes. It is the sound generated by the Sea Beam, the ocean floor profiler.  I was relieved to know that if wasn’t just me hearing this sound.

Eric Heltzel, October 4, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Southeast Pacific
Date: October 4, 2005

Acoustic releases
Acoustic releases

Weather Data from Bridge

Temperature: 25.5 degrees C
Clouds cover: 6/8, stratus, altocumulus
Visibility: 12 nm
Wind direction: 245 degrees
Wind speed: 13kts.
Wave height: 3 – 5’
Swell wave height: 3 – 5’
Seawater Temperature: 28.7 degrees C
Sea level Atmospheric pressure: 1005 mb
Relative Humidity: 82%

Science and Technology Log 

Today Senior Scientist Bob Weller and Senior Engineer Assistant Paul Bouchard showed me the acoustic releases.  These are devices that are placed on the tether that holds the Stratus Buoy to its anchor on the ocean floor. At the deployment location the ocean depth is 4425 meters (14,518 feet).  The acoustic release will be placed 30 meters from the anchor. Attached to the tether will be 35 instruments placed at a particular distance from the buoy. Their attachment distance will determine the depth at which they are located and will allow scientists to gather data about conditions at these particular depths of the water column.

The job of the acoustic release is to detach the buoy and tether from the anchor.  When we arrive at the currently deployed buoy a digitized acoustic signal will be sent through the water.  The acoustic release will “turn loose” of the anchor and allow our team to retrieve the buoy and the instruments attached to the tether. This is important because some of the instruments contain a year’s worth of data that must be downloaded and analyzed. Another reason is the cost of the buoy itself, all of the instruments, and the cable and line that have held it to the anchor. These things are worth about $500,000 dollars and would be difficult to replace. All of the instruments can be refurbished and used again.

Cornell Hill making a line splice.
Cornell Hill making a line splice.

When we arrive at the currently deployed Stratus Buoy the acoustic release that was put in place last year will be activated.  This should allow us to retrieve the system and replace it with the one we are carrying on board the ship. The acoustic releases we are carrying will be placed in the tether holding the new buoy and will not be activated until next year when that system is recovered. Acoustic releases are also used on drilling platforms and other objects tethered to the sea floor. These machines allow the objects tethered to be freed without the need to dive into the water and cut the line. These are an ingenious piece of technology that improves the safety and convenience of oceanographic research teams.

Ship Crew Activity 

I had the opportunity to watch Boatswain Group Leader Cornell Hill making a line splice.  He took the end of the line around a metal eye that is built with a groove on the outside. The line comes back on itself and Cornell braids the strands into the main part of the line. He has a knife with a spike on it to help lift the strands so he can braid it together.  What results is a closed loop with metal lining at the end of the line.  It’s very strong and is used as an attachment point. I have long wondered how this was done so it was very interesting to see the skillful way Cornell accomplished this feat.

Terms 

Acoustic signal – a particular blend of frequency and pattern of sounds that sends a message through the water to instruct a device to perform its operation. Example is the signal sent to activate the acoustic release.

Acoustic Release – a device that releases a line when given the proper sound signal. Used in the tether system of the Stratus buoy.

Bosun – crew member in charge of deck operations

Line – rope Line Splice – Braiding stands of a line back into itself.

Tether – attachment to a fixed object. This may be a combination of cable, chain, line, or wire. Example is the attachment of the Stratus Buoy so that it  doesn’t drift away.

Eric Heltzel, October 3, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Panama Canal
Date: October 3, 2005

Weather Data from Bridge
Clouds cover: 7/8, stratus, cumulus, altocumulus
Wind direction: 250 degrees
Wind speed: 18kts.
Wave height: 3 – 4’
Swell wave height: 5 – 5’
Seawater Temperature: 29.9 degrees C
Sea level Atmospheric pressure: 10.10 mb
Relative Humidity: 82%

Science and Technology Log 

Today I worked my first watch from 08:00 to 12:00.  I was responsible for being present in the main science lab and monitoring our position and being aware of where the first deployment of instruments will occur.  Since we are not yet allowed to deploy any instruments, it was a fairly slow day.  We did receive training from Sergio Pezoa on how to calibrate and activate radiosondes.  These are the instrument packages that send back information on its position, temperature, atmospheric pressure, and relative humidity.  These instrument packages carry a water-activated battery and are attached to a helium balloon. They are released into the atmosphere at prescribed times and send back by radio the information they gather to the receiving unit.  This continues until the balloon fails and the instrument package tumbles to earth.  Radiosondes are the basis for most of the information about conditions in the upper troposphere.  I’ll be working on the team that launches the weather balloons carrying these instrument packages.

Eric Heltzel, October 2, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Sailing through the Canal
Sailing through the Canal

Mission: Climate Observation and Buoy Deployment
Geographical Area: Panama Canal
Date: October 2, 2005

Science and Technology Log 

We’ve been in port at Panama City.  The whole idea of sailing from the Atlantic basin across part of the continent to the Pacific basin seems rather amazing. Seeing the locks in operation was fascinating. A tug helped us get into the correct position then four cables were attached, two forward and two aft. These cables were each fed out from a winch on railroad switch engines which were on tracks on either side of the lock.

The engines moved with us and kept tension on the cables so our ship stayed in the center of the lock.  The locks are 1000 feet long so our 274’ vessel could fit in with another ship. Once we were in, the lower gate closed and water started to flow in from the base of the sidewalls of the lock. I was surprised at how rapidly the lock filled with water.  The water largely flows in by gravity so little has to be pumped.  Once we finished going through the three locks we were lifted to the level of the natural lake that acts as a critical part of the passage. This lake, which is filled by the abundant rainfall, provides water to fill the locks and has a navigable channel dredged across. On the western side is the infamous cut.  Here the canal looks like it is a river going through a canyon although it has no current and the canyon is man-made.  The ship descended through locks on the Pacific side and we docked at Panama City.

A closed lock inside the Panama Canal
A closed lock inside the Panama Canal

When I awoke on Saturday the deck crew and engineers were preparing to take on fuel.  This is a ticklish business that requires a lot of attention.  It’s the same principle as pulling into the local gas station except the hoses are 8” in diameter and get bolted together then bolted to the ship. We took on 80,000 gallons of diesel fuel which we will need for the next leg of our voyage to Arica, Chile.  The RON BROWN can hold about 120,000 gallons of fuel. I was pleased that this wasn’t billed to my account.

This morning I went out for a walk around the compound where our ship is docked. This is a military compound with nicely kept grounds but around the edges the indigenous vegetation is showing itself.  There were several pathways up into the trees where I got a sense of what the forest in Panama is like.  “Green” and “busy” are two operative descriptors. In areas along the edge there were several beautiful plants in bloom. I also got to watch leaf-cutter ants carrying there booty back to their nests. These guys travel back and forth along the same path from the tree they are carving leaves from to their residence.  It always reminds me of a safari through the jungle. I also saw an Agouti in an opening. I had only seen photos of this large rodent and I was excited to see one in the field. It was in the 80’s and very humid so I returned to the ship very damp.

Tropical flowers
Tropical flowers

We are preparing to depart on the next leg of the cruise.  We expect to pull away about 17:30 after the Pilot comes on board.  Twelve more members of the scientific team arrived yesterday so we now have our full complement.  I have assigned my first “watch” tomorrow from 08:00 to 12:00.  We will be trained on deployment of drifters and ARGOS buoys this evening.  I also will be helping the meteorological team by launching weather balloons. We’re going to begin the scientific research tomorrow.  Wow!

Things to pursue: Design of the Panama Canal, History of the Panama Canal, and Plants and animals of Panama

Eric Heltzel, September 30, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Panama Canal
Date: September 30, 2005

Science and Technology Log 

At 12:00 local time, we are sailing south towards the Panama Canal.  To portside, mountains rise up directly from the ocean.  Ahead is the isthmus lying low just above the horizon. As I watch the distant skyline, Captain Wright appears on the deck below.  As he walks the decks of his ship, he stops to make sure that I am armored against the tropical sun. He sees that I am wearing long sleeves, a sun hat, and gloves and asks if I have on sunscreen, which I do. He then comments, “we don’t have to worry about looking good at our age.” He looks sharp in his khaki uniform, and those of you who have seen me in my sun clothes know what prompted his comment.  Oh well.

As I scan the sea southward I can tell when the Canal begins because of the silhouettes of numerous ships.  All through the morning we have seen other ships traveling headings that converge on the Canal.  Captain Wright says that usually ships go through in convoys of four or five and the trip takes about twelve hours.  We will be starting about 16:30 so most of our passage will be at night.

I’m sitting on the deck just below the bridge.  This affords me a good view of where we are going. It’s the rainy season in Panama and there are banks of cumulonimbus clouds over the land.  Captain Wright cautions that I should be prepared for sudden downpours. Going through the Panama Canal is an experience I never expected having. I’m very excited.

Eric Heltzel, September 29, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Caribbean
Date: September 29, 2005

Science and Technology Log 

I can hardly believe that this is my fourth full day on board the RON BROWN.  We are sailing southward across the Caribbean towards Panama.  It is so very different from my life in Wyoming.  Outside are temperatures in the 80’s and low 90’s with high humidity.  I’m having a bit of difficulty adjusting to the fact that the deck (floor) is in constant motion.  Walking down a corridor, I must be prepared to catch myself.  I’m a bit slow in finding my “sea legs.”

Yesterday I had the opportunity to interview the Executive Officer, Stacy Burke.  What follows is a synopsis of that interview.

The Executive Officer (XO) is number two, second only to the Captain.  Her responsibilities focus on the ship’s personnel.  She is responsible for hiring crew, solving problems that might arise, and overseeing the wellbeing of the crew.  Commander Burke stands half watch (4 hours) on the Bridge.  When there, she is responsible for “driving” the ship, navigation, avoiding collisions, and executing maneuvers to enable the scientific missions.

Commander Burke has been working for NOAA for nineteen years.  The last six of those have been “at sea.” She indicated that operating a ship is complex and she enjoys being part of a team that works towards the success of the mission.  “Going to sea is not solitary,” says Commander Burke. The crew lives and works together, often for months at a time.  A working cruise has little resemblance to “taking a cruise.”  This ship rarely calls in at ports. Most missions take the RON BROWN to remote locations to enable the gathering of scientific data.

To become a NOAA officer Commander Burke suggests a bachelor’s degree in one of the “hard” sciences (physics, chemistry) or engineering.  Oceanography works if the student focuses on the technical aspects of the field.  She also said, “I have openings right now for Deck Hands.” Operation of a large research vessel requires crew performing many different jobs.

I hope to continue interviewing personnel aboard the RONALD H. BROWN to help clarify what ship life and ocean research are like.

Eric Heltzel, September 26, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

TAS Eric on board, Miami in the background
TAS Eric on board, Miami in the background

Mission: Climate Observation and Buoy Deployment
Geographical Area: Caribbean
Date: September 26, 2005

Science and Technology Log 

As I sit to write this entry I realize I’ve been on the ship just over 24 hours.  It’s interesting how perceptions change. I can now find my way to my berth without difficulty. I’ve had three excellent meals and can remember the first names of all the Scientists on the Stratus Project team.  It is odd how I can hear sounds of moving water through my wall, intermittent sloshing.  We are under way now so I can only assume that this noise is normal.  I hope so!

Today was a very busy day. We had a lot of equipment that still needed to be loaded onto the ship and then secured.  They have these really neat threaded holes all over the decks and in the science labs that you can put eye bolts into.  These are attachment points for come-along straps that are used to keep objects from moving around. Much of the equipment was loaded on board with cranes that are mounted on the rear deck. We then use dollies and pallet jacks to move heavy objects around.  There is stuff galore. I helped the Deck-Hands move and secure equipment this morning and helped the Science team to move equipment into the Labs.  It was quite hot and humid and fairly heavy work. I felt good to help get the ship ready to go.

When we were two miles offshore we started doing safety drills.  There are three, man overboard, fire, and abandon ship.  Every person is assigned a mustering station where an officer (in my case, the Lead Scientist) checks to make sure we are all there.  Hopefully we will not have to follow any of these procedures for real. (Sorry kids, I’m really not planning on falling overboard)  There were inspectors checking that we did things correctly. We even had to put on our survival suits to see how they fit. These are a lovely red with built in gloves, booties, and a hood. Very becoming, perhaps a good school uniform?

We finally got under way about 19:00 and are traveling in a southerly direction.  I went on deck to watch the sun go down behind a cumulus cloudbank.  The skyline of Miami was backlit with a rosy glow.  I even saw a Dolphin racing along beside us. It has been a full day and a great start to my adventure on board the RONALD H. BROWN.

Eric Heltzel, September 25, 2005

NOAA Teacher at Sea
Eric Heltzel
Onboard NOAA Ship Ronald H. Brown
September 25 – October 22, 2005

Mission: Climate Observation and Buoy Deployment
Geographical Area: Caribbean
Date: September 25, 2005

Science and Technology Log 

Today I flew from Salt Lake City to Orlando, then on to Miami.  This was an educational experience in and of itself. Having chosen a seat with a view my head was pressed against the window for the first hour. We flew along the south slope of the Uinta Mountains and I could look down on Tungsten Basin where we caught such beautiful Brook Trout last summer.  I could see King’s Peak and the length of the range.  What a great way to connect studies of maps and experiences on the ground.  It was like looking at the best three-dimensional map possible

Having received a degree in Geography from the University of Colorado it was great to get such a bird’s eye view of the places I had studied.  I saw the mountains near Crested Butte and gazed delightedly at the highest fourteeners in the Sawatch Range.  The view changed when looking down on the striking contrast of the light color of Great Sand Dunes National Monument.  A bit was vertical view of the summit of the Spanish Peaks. I could see dikes radiating from the summit of the western mountain.  It was striking evidence of the geologic complexities of these mountains that were once active volcanoes.

As we crossed over the flatter country my interest became more focused on the atmosphere.  Looking northward from over New Orleans I was searching for the remnants of Hurricane Rita.  By this time she had moved inland and was already downgraded below a Tropical Depression. My gaze was drawn to where I thought her center would be and there were tall, well-developed cumulonimbus clouds.  The phenomenon that interested me most was the sight of bands of mid-level cumulus clouds radiating southward from what was Rita’s center. They were in bands with clouds alternating with clear air.  Students, I don’t have a clear hypothesis as to why this occurred.  I’d be curious to hear your ideas. I hope to discus this with the scientists on board.

Speaking of on-board I arrived at NOAA Ship RONALD H. BROWN at the Coast Guard facility in Miami Beach at 1900 without a hitch.  The ship is larger that I had visualized, about 270 feet long and over 50 feet wide.  My berth is one level below the main deck and has no porthole. It is, however, quite comfortable.  I have a small bunk (too low to sit up in, but plenty long), a desk, storage for my clothing and equipment, and a bathroom I share with the room next to me.  It strikes me as comfortable and I am sitting at my desk as I write this first entry.

Tomorrow we sail.  I hope to get some photos of our departure.  So far it looks great!

Stephanie Wally, September 9, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: September 9, 2005

Launch Deployment
Launch Deployment

Weather Data from Bridge 

Time: 0600
Cloud Cover: Partly Cloudy
Visibility: 10 nm (nautical miles)
Wind: 12 knots
Sea Wave Height: 0-1ft
Swell Wave Height: 0
Sea Water Temperature: 12.2°C
Sea Level Pressure: 1022.8 mb (millibars)
Temperature: 11.7°C

Science and Technology Log 

Early this morning at 4:35 am, RAINIER and her crew got underway for Valdez.  My twelve days aboard the ship have gone by quickly, and I am excited about all the experiences I will have to take back to my students.  The photo below depicts one of my favorite parts of the hydrographic mission:  taking launches out into the sound to survey the seafloor. During these workdays, the crewmembers took the time to train me on how the ELAC and RESON sonar work. I was able to actually participate in all of the ship’s data collection and operations. One of the most interesting software programs I had the opportunity to use was the HYPAC program that helps guide the coxswain of the boat.  The technology and equipment are key elements in the current data collection and analysis surrounding hydrography.

During informal interviews with crewmembers, I learned a great deal about the logistics and planning of a two-week survey such as this one.  Most of the crew resides in or around Seattle where the ship will remain during the winter.  During this time, officers will write their reports on the survey, data will be processed in Seattle, then delivered to Silver Springs, MD where nautical charts will be updated.  The Captain of RAINIER, Commander Guy Noll, gave me another insight into the purpose for this project.  The data collected could be used in the future to better understand ecosystems, fish habitats and other aspects of the hydro “big picture.”  NOAA collects and organizes the data for the maritime community, as well as for future scientific investigations.

I feel very fortunate that I was given this opportunity to take part in a leg of RAINIER’s journey. It is interesting to think that on Monday, I will be back to school with my students, while RAINIER and her crew will be getting underway for the next leg of the survey back to the Columbia Glacier, then on to Juneau.  I’m sure their future missions will go smoothly, as did this one, considering the competence and dedication of the crew.  With my plane leaving early tomorrow morning, I now have a little bit of time to go explore the town of Valdez, take some final pictures, and hang out with some of the new friends I made aboard RAINIER.

Stephanie Wally, September 6, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: September 6, 2005

Ensign Stevenson collects multi-beam bathymetric data from the launch
Ensign Stevenson collects multi-beam bathymetric data from the launch

Weather Data from Bridge 

Time: 0800
Cloud Cover: Low Clouds, Stratocumulus
Visibility: 10 nm (nautical miles)
Wind Direction: 60°
Sea Wave Height: 0’
Swell Wave Height: 0’
Sea Water Temperature: 11.7°C
Sea Level Pressure: 1013.5 mb (millibars)
Temp: 11.1°C

Science and Technology Log 

This morning, I barely had time to scarf down a delicious breakfast sandwich before heading out on one of the skiffs with Ensigns Gonsalves, Hauser, and Pounds. All of the officers have science/math/engineering degrees that provide them with the necessary background to complete NOAA’s hydrographic objectives.  It was a crisp morning, with fresh snow on the Chugach mountaintops.  Speeding out on the uncovered skiff can get very cold if you’re not dressed warmly.  Goggles, hoods, gloves, and a thermos of coffee helped keep us warm.  The two-hour morning mission consisted of monitoring horizontal and vertical control, and monitoring the tide station. Since Ensign Hauser is a tides officer aboard RAINIER, she is in charge of recording observations and making sure gauges are operating properly.  With the data and observations recorded, water depth will be calculated. The horizontal and vertical control teams are responsible for establishing accurate latitude and longitude coordinates for soundings taken by RAINIER and the launches.

In the afternoon we got underway back toward Boulder Bay.  During the transit, another visitor on the ship during this leg, Kyle Ward, and I reflected on the Exxon Valdez oil spill that occurred on March 24, 1989.  Mr. Ward is a physical scientist who annually works aboard the RAINIER with hydro projects.  We agreed that, considering the fact that the oil spill was the largest and most destructive to have happened in the U.S., Bligh Reef and the sound show barely a trace of this spill today.  The spill, estimated to have killed 250,000 seabirds, 2,800 sea otters, 300 harbor seals, 250 bald eagles, 22 killer whales, and billions of fish eggs, drastically affected many species and the entire sound ecosystem.  Fortunately, this habitat has been recovering during the past fifteen years.  Today, oil is still present on some shores and remains trapped beneath rocks.

Answer to yesterday’s question of the day: The Alaskan Earthquake of 1964

Stephanie Wally, September 5, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: September 5, 2005

TAS Wally pulling up the SEACAT CTD
TAS Wally pulling up the SEACAT CTD

Weather Data from Bridge 

Time: 1800
Cloud Cover: Low Clouds
Visibility: 5 nm (nautical miles)
Wind: Light Airs
Sea Wave Height: 0’
Swell Wave Height: 0’
Sea Water Temperature: 12.2°C
Sea Level Pressure: 1006.5 mb (millibars)
Temperature: 12.8°C

Science and Technology Log 

It’s always exciting to consult the Plan of the Day and find out you’re assigned to go out on a launch from 0800-1630!  Here on the RAINIER, boats are deployed daily from the ship to collect seafloor data. The picture below shows how a cast is taken to measure the conductivity, temperature, and depth of the water column.  The CTD sensor is lowered to the bottom for two minutes.  Once it is recovered using an electronic winch, data is uploaded into the launch computers.

Today we had some minor problems due to moisture seeping in through the launch windows and affecting the computer hardware.  Fortunately, we were not far from the ship, and the Electrician Technician, Gary Streeter, was able to fix the problem.  With two hours left of our workday on the water, we headed back out to complete more lines. The multi-beam sonar we used collects a “footprint” of the seafloor.  Each beam is composed of pings emitted from the sounder that records information below the launch as we transit over a specific imaginary line.  Sets of lines are preplanned in advance for the crew of the launch to follow. The data collection process runs smoothly since everything is organized prior to going out on the water.

The emphasis on safety here aboard RAINIER is always apparent. We conduct weekly fire drills and abandon ship drills. My first day on the ship I was issued a Mustang Survival Suit that I donned during the abandon ship drill.  Like earthquake and fire drills we conduct in school, these drills are taken seriously and people move quickly to their assigned stations.

After drills, everyone gets right back to work.  I am continually impressed how the NOAA crew is able to stay on task throughout the entire leg of the project, without a single day off! Here, it is business as usual for the officers, deckhands, engineers, cooks, and surveyors. For me, I am continually distracted by the scenic beauty, bountiful wildlife, various hydrographic data projects being conducted, and the interesting conversation from others aboard RAINIER.  While we don’t have entire days off, there are times in the day where you can go fishing, kayaking, or get together for a weekend beach party.  Since the daylight lasts until approximately 9 p.m., there’s lots of time for outdoor recreation and relaxation after dinner.

Answer to previous day’s question:  A glaciologist studies glaciers and their movement.  Some glaciologists believe that the Columbia Glacier is making its first retreat in 3,000 years!

Question of the Day: What significant geological event took place in Alaska in 1964 that created changes in the crust, topography, and hydrography of the region?

Stephanie Wally, September 3, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: September 3, 2005

The Columbia Glacier
The Columbia Glacier

Weather Data from Bridge 

Time: 0800
Cloud Cover: Low Clouds, Stratocumulus
Visibility: 10 nm (nautical miles)
Wind Direction: 60°
Sea Wave Height: 0’
Swell Wave Height: 0’
Sea Water Temperature: 11.7°C
Sea Level Pressure: 1013.5 mb (millibars)
Temp: 11.1°C

Science and Technology Log 

This evening, after the regular workday and data gathering were complete, some of the crew visited the face of the Columbia Glacier.  We headed there in a skiff, driven by Coxswain Carl Verplank. The Columbia Glacier is the Sound’s largest tidal glacier.  In 1984 it began to recede, going through a process called “calving.”  We were lucky enough to witness this process, as huge chunks of the glacier broke off and plummeted to the water. Fortunately, we were at a far enough distance away not to capsize from the swell. The iceberg pieces that break off do not make a soft “kerplunk” sound, but rather a loud, grinding noise that echoes around the face.  As seen in the photo below, the massive glacier towers over our crew and skiff.

I have been onboard for nearly a week now, away from the city, immersed in nature.  In contrast to city life in the San Francisco Bay area, wildlife is everywhere here in Prince William Sound.  It’s not every day in San Francisco that I see the back of a humpback whale slowly moving through the water, or a Golden Eagle taking off from a nearby rock.  In Alaska, these sights are common when one takes the time to observe.  On the launch boats, it’s easy to spend time studying the shoreline through binoculars or just listening to the quiet calm of the surrounding water. The ice often makes a crackling noise while it is floating and breaking on the water, giving way to our “icebreaker” skiff.

Also of note in the below photo are the snowy peaks of the Chugach Range, which is one of the most precipitous coastal mountain ranges in the world.  As the glacier retreats toward the mountain backdrop, harbor seals and sea otters find new feeding areas, and birds find new places to nest.  In class, we will further investigate how the geological process affects ecosystem habitats. NOAA is on the forefront of this exploration since they are the ones collecting the data of the surrounding ocean floor and water depth.

Question of the Day: What is a glaciologist? 

Stephanie Wally, August 31, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: August 31, 2005

Tide Staff Installation
Tide Staff Installation

Weather Data from Bridge 

Time: 1400
Cloud Cover: Low Clouds
Visibility: 10 nm (nautical miles)
Wind: 340°, 4 knots
Sea Wave Height: 0’
Swell Wave Height: 0’
Sea Water Temperature: 5.0°C
Sea Level Pressure: 1009.2 mb (millibars)
Temp: 11.7°C

Science and Technology Log 

The crew of RAINIER has been upbeat since yesterday’s successful installation of a tide gauge on an island close to the face of the Columbia Glacier.  Data from the temporary tide gauge will be collected to analyze changes in water level.  It is important to know the water level since other portions of the ship’s current mission depend on surveying the bottom in shallow depths.

The officers, surveyors, divers, coxswains, and crew worked together to ensure all aspects of the gauge were installed and operating correctly.  The weather proved to be the biggest challenge in the installation procedure.  We had periods of heavy rain, stormy seas, and near-freezing temperatures.  Thanks to our foul-weather gear, snack supply, alternating breaks, and sheer dedication of the team, we all returned safe and sound to RAINIER. We were welcomed by the CO, XO, and a warm meal from the galley crew.

Today we returned to the island in fairer weather to take bearings of the NOAA bench marks we laid in the rock.  By triangulating the position of each disc, their location can be recorded for future surveying and exploration.  Even though Global Positioning System (GPS) technology provides the station location, it is important to have a back up means of finding these bench marks in the future.  Who will look after our tidal gauge and bench marks while we continue our transit toward Valdez?  Hopefully the harbor seals, otters, and bald eagles!

Answer to yesterday’s question: 180° = South

Stephanie Wally, August 30, 2005

NOAA Teacher at Sea
Stephanie Wally
Onboard NOAA Ship Rainier
August 29 – September 10, 2005

Mission: Hydrographic Survey
Geographical Area: Eastern Prince William Sound, Alaska
Date: August 30, 2005

Leaving Seward at Dusk
Leaving Seward at Dusk

Weather Data from Bridge 

Time: 0800
Cloud Cover: Low Clouds, Stratocumulus
Visibility: 10 nm (nautical miles)
Wind Direction: 60°
Sea Wave Height: 0’
Swell Wave Height: 0’
Sea Water Temperature: 11.7°C
Sea Level Pressure: 1013.5 mb (millibars)
Temp: 11.1°C

Science and Technology Log 

Greetings from Prince William Sound, Alaska!  My name is Stephanie Wally, and I teach 6th grade math and science in Oakland, California.  For the next two weeks, I will be aboard the NOAA ship RAINIER participating in a hydrographic survey of the Eastern Prince William Sound… charting the seafloor and installing tidal gauges where no man, woman, or vessel has gone before!  The exciting adventure began Monday, August 29, when we departed from Seward, Alaska.

The crew, led by our Captain, Commander Noll, and Executive Officer, Commander Neander, helped me get acquainted with life aboard a scientific research vessel.  Ensign Laurel Jennings picked me up from the train station and gave me my first tour of the ship.  As a visitor on this vessel, I was quick to notice how each individual is constantly focused on their duties that contribute to the completion of the mission.  The primary objective of this project is to gather hydrographic survey data that can be used to create accurate charts of south central Alaskan waters.  We will be navigating through the waters near the Columbia Glacier, just outside Valdez.  What makes this leg of the journey so interesting is that we are charting areas that have never been documented before. Some charts that the NOAA Officers and survey technicians are using were created in the early 1900’s!  In the following log entries, I will further explain the ins and outs of hydrography, also known as “hydro” here on the ship.  I am looking forward to sharing my experience during this expedition with my students, colleagues, friends, and family.

Question of the day: If 0° is considered NORTH, 90° is EAST, what direction is 180°? 

Joan Raybourn, August 25, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 25, 2005

Personal Log

Today was the last day of our two-week adventure at sea. At dawn this morning, we paused for a while before entering the north end of the Cape Cod Canal. While we have been within sight of land for a day or two, it was strange to see land on both sides of us. The canal was built in the 1930s, and using it to get back to Woods Hole saves at least half a day’s sailing time. Without it, we would have to sail all the way around the “arm” of Cape Cod. We slipped into the canal and eased our way south, back into civilization. We stood on the bow of the ship and watched fish playing in the water, seabirds hovering hopefully over them. People walked their dogs on the path beside the canal, and sailboats passed silently. All was quiet. When a siren split the air, we knew we were back.

The trip through the canal took about an hour and a half, and we were in Buzzards Bay. We made our way through the islands and back around to Woods Hole, to the pier where our trip began. We cleaned the labs and packed our gear and samples to go ashore. At the pier, a gangplank was attached to the ALBATROSS IV so that we could move “all ashore that was going ashore”. We lugged boxes and crates over it to the NOAA warehouse, the EPA truck, and the NOAA van that would take the samples back to the lab in Rhode Island. It was a strange feeling to be back on land. At the beginning of the trip, my body had to adapt to the motion of the ship, and for the first two days I staggered around until I got my sea legs. Back on land, my body had to adapt again; even though my brain knew I was on solid land, the sensation of motion persisted.

And then it was over. By 2:30, everyone who was leaving was gone, and our shipboard community was dissolved. Since my flight home is not until tomorrow, I will stay one more night aboard the ALBATROSS IV. It’s a little lonely now, with everyone gone and no work to do. But I’ve been up since midnight, when my last watch began, and an early bedtime tonight will be welcome. What an adventure this has been! I will never forget my days out on the wide blue sea, with nothing to see but sky and wind and ocean. Whenever city life hems me in, I’ll be able to go back in my mind’s eye, feeling the wind and the sunshine, and watching the endless play of the sea, all the way to forever.

14

15

James Miller, August 25, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 25, 2005

Science and Technology Log 

Woke up last night at 2:00am during transit to Seward to catch some of the Northern Lights show.  For a short while they jumped around the sky in the distance but never came directly above like they often do.  If it is clear enough, I’ll try again tonight in Seward.

After racing out to the public phone to make my first call home in two weeks, I spent the day touring Seward. It’s a beautiful fishing town with great views of the glaciers and lots of tourists.  It is much like Homer but better in that the town is in walking distance of the ship.

I went to the Sea Life Center, which has great exhibits of Alaska’s wildlife.  They have huge tanks with birds, sea lions, and harbor seals.  They also had a live video feed of the sea lion rookery about 35 miles outside of Seward.  There were three or four cameras set high up on the rocks overlooking the seals and the adjoining harbor.  While I was there, a pod of transient killer whales entered the harbor at the sea lion rookery.  They would zoom-in on the whales, and you could see them clearly through the video feed hunting and waiting for an unfortunate pup to fall off one of the rocks.  It was an amazing sight and apparently uncommon because many of the center’s employees came to watch. In the half hour I watched, the whales just swam by closely with their heads out of the water, but they didn’t get any meals.

Met with surveyor, Dave Sinson, to get some training on a 3-D surveying software program that he’ll be burning onto a disk for me to show my students.  The software is actually downloadable for free off the internet and comes with sample data.  It will be tremendously useful in demonstrating, visually, the crucial mission of the RAINIER.

Going to hike up Mt. Marathon tomorrow, which leads up to a glacial dome.  On Saturday I’m going with some crewmembers to hike the famous Exit Glacier.  Should be fun! From there it is home to N.Y.

Personal Log 

Being this is my last log, I just want to direct my final personal comments to any potential Teacher-at-Sea candidates.  I have learned much over the last two weeks from this experience.  There are so many real world lessons to be learned working on a NOAA ship such as the RAINIER.  At first I was a bit reluctant about the parallels that could be drawn between the work onboard and my math classes, but it didn’t take long before I saw the endless number of connections that can be integrated into K-12 classrooms.

The crew of the RAINIER is very professional, patient, and friendly.  As I mentioned in an earlier log, I was amazed at the depth and breadth of their knowledge.  I am the fifth TAS member aboard the RAINIER this year.  You would think the crew would get tired of having to train another TAS member only to have them leave in a couple of weeks. At sea they are teachers, and I was grateful by how they would go above and beyond in terms of training me.

With regard to life aboard the ship, you adapt to it quickly.  There’s really something to the whole “getting your sea legs” thing.  Your body does seem to adjust to the constantly moving world of a ship.  Even the other visitor aboard, who had a difficult time with motion sickness early on, did fine after a few days.

I’m thankful for having been afforded this tremendous opportunity.  I’ve grown personally and professionally, and I’m sure my students, in turn, will benefit from it.

TAS Miller out.

Joan Raybourn, August 24, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 24, 2005

Weather Data from the Bridge

Latitude: 43°32’ N
Longitude: 69°55 W
Visibility: 8 miles
Air Temperature: 17° C
Wind direction: E (99 degrees)
Wind speed: 5 knots
Sea wave height: 1’
Sea swell height: <1’
Sea water temperature: 18.8°C
Sea level pressure: 1018.0 millibars
Cloud cover: 7/8 Cumulus

Question of the Day: At what degrees on the compass would you find the intermediate directions? (Use information below to help you and look for the answer at the end of today’s log.

Yesterday’s Answer: GMT stands for “Greenwich Mean Time”. GMT is the time at the Prime Meridian, which passes through Greenwich, England. People around the world can use this time as an international reference point for local time. We are on Eastern Daylight Time (EDT), which is four hours behind GMT. At 1:33 a.m. GMT, it was already August 24 in Greenwich, but our local time was 9:33 p.m. EDT, still August 23, so that is the date I used in the log.

13

Science and Technology Log

Over the last eleven days, the ALBATROSS IV has zigzagged back and forth across southern New England waters, Georges Bank, and the Gulf of Maine. The collection stations were chosen in advance of the trip and plotted on an electronic chart. So how does the crew drive the boat to the next station?

Ship navigation is a combination of automated and manual tasks. Based on the ship’s current position and the latitude and longitude of the next station, the navigator determines what heading to take. That is, he decides in exactly which direction to go using a compass. The ship has an electronic gyroscope as well as a manual compass similar to the ones you may have seen, only larger. It has a magnetic needle that points north, and is divided into 360 degrees. The cardinal directions are these: 0° is north, 90° is east, 180° is south, and 270° is west. The navigator enters the heading into the ship’s navigation computer, and if conditions are normal, he can set the ship on Autopilot. Then the computer will automatically adjust the ship’s direction to keep it on course.

The fact that the ship is running on Autopilot does not mean that the crew can take a break. The crew sets the ship’s speed depending on weather and sea conditions, and on how much other ship traffic there is in the area. In open water, the ALBATROSS IV cruises at about ten to twelve knots, which means we cover about 10 to 12 nautical miles per hour. The crew must constantly monitor to make sure the ship is operating safely and efficiently. They plot the ship’s course on paper, monitor weather conditions, watch for other ships and communicate with them, and adjust the ship’s course and speed. At the collection stations, they are able to put the ship at the exact latitude and longitude called for, and keep it there during water casts and sediment grabs, or moving at just the right speed for plankton tows.

Navigators keep a constant watch out for other ships, using a combination of visual and radar data. They use radar to pinpoint the ships’ locations, and often can be seen scanning the sea with binoculars. Signal lights on ships help with navigation, too. Ships have a red light on the port (left) side and a green light on the starboard (right) side. This helps navigators know which side of a ship is facing them and in which direction it is headed. Of course, radio communication makes it possible for ships’ crews to talk to each other and make sure they are passing safely.

Personal Log

Tonight will be the last night of the cruise. We expect to be back in Woods Hole by midday tomorrow, two days earlier than planned. We’ve been blessed with excellent weather, and have made good time cruising between stations. I was very excited last night to see fireworks in the toilet! Toilets on the ship are flushed with sea water, which often contains some bioluminescent phytoplankton. Sometimes the swirling action of the water will excite them, and we’ll see blue-green sparkles and flashes as the water washes down. (Sewage and waste water are biologically treated on board so that they are safe to release into the ocean.)

I want to thank the crew of the ship, especially the NOAA Corps officers who have welcomed me on the bridge and answered many questions about ship operations. I am particularly grateful to Capt. Jim Illg, who reviewed all of my logs, and Ensign Patrick Murphy, who answered many questions about weather and navigation.

Finally, I want to thank the scientists who willingly shared their knowledge and patiently taught me protocols for their work. Jerry Prezioso, a NOAA oceanographer, served as chief scientist on this cruise. He helped me prepare ahead of time via telephone and email, and has been endlessly helpful to this novice seafarer. His enthusiasm is infectious, and he has a knack for turning any event into a positive experience. Jackie Anderson, a NOAA marine taxonomist, taught me to operate the CTD unit and helped me identify the kinds of zooplankton we captured in the bongo nets. Don Cobb, an EPA marine environmental scientist, helped me understand the kinds of research the EPA is doing to monitor the health of our oceans and estuaries. Thanks to all of them for their  work in keeping Planet Earth healthy, and for making this an experience I can take back to my classroom and use to help make science real for my students.

Today’s Answer: The intermediate directions are those that fall between the cardinal directions, so to find their degree equivalents, find the halfway point between the numbers for each cardinal direction. Northeast would be at 45°, southeast would be at 135°, southwest would be at 225°, and northwest would be at 315°.

James Miller, August 24, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 24, 2005

Location: Kodiak Island Coast Guard Station
Weather: Sun and clouds, 60’s
Wind: variable
Seas: calm
Itinerary: Refuel and depart for Seward

Science and Technology Log 

We arrived into the Kodiak Island Coast Guard Station around 8am for refueling.  The seas were calm and the views were great.  The island is much bigger and mountainous than I anticipated, and most of it is uninhabited. The Coast Guard base is immense, and as I understand it, the largest in the country.  Many of the people that live on the island either work on the base, or on one of the many fishing boats.

A brand new NOAA ship the OSCAR DYSON was also tied up at the dock.  The DYSON is a fisheries ship that takes out researchers for up to forty days.  It was an impressive ship to look at; it actually seemed as tall as it was long (~200 ft).  I received a full tour of the DYSON with the captain and XO of the RAINIER.  It’s inevitable that new ships have kinks that need to be worked out by the crew.  The DYSON certainly has its fair share of kinks, and it will probably take several years before they correct them all.

The DYSON was designed to make little to no noise, the theory being they would be able to come up on schools of fish or whales without them scattering.  The hull is rounded to prevent noise, and the propeller, which was designed with declassified submarine technology, is also built for stealth.  However, they were actually having some noise trouble with the propeller (go figure), so they asked the RAINIER to send down some divers to check if something got fouled in it or the shaft.  They didn’t find any problems.

The Coast Guard has a few vehicles that they permit NOAA to use for the time that they’re in port. So I had an opportunity to go with some of the crew to visit the NMFS Wildlife Center.  It had some interesting displays and a large aquarium with all sorts of marine critters.

Personal Log 

It was nice to put my feet on stable ground and walk more than 30 yards today.  I wanted so much to make a phone call home, but unfortunately I didn’t have a calling card and that was the only way the phones on the dock worked. The phones were quite busy though, the crew wastes very little time getting to the phones.  We’ll be in Seward at 7am tomorrow, so one more day.  We’re getting into port a day early, so I’ll have all of Thursday, Friday, and Saturday to see Seward.  The RAINIER doesn’t leave for Prince William Sound, the next leg of the trip, until Monday morning.  I’ll be staying on until Saturday Morning.

Joan Raybourn, August 23, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 23, 2005

Weather Data from the Bridge

Latitude: 44°23’ N
Longitude: 66°37’ W
Visibility: 10 miles
Wind direction: W (270 degrees)
Wind speed: 12.7 knots
Sea wave height: 1’
Sea swell height: 1’
Sea water temperature: 11.1°C
Sea level pressure: 1014.7 millibars
Cloud cover: 1/8 Clear with a few cumulus clouds low on the horizon

Question of the Day: What does “GMT” stand for and how does it affect the date in the log information above?

Yesterday’s Answer: The clock shows 9:17 a.m. There are 24 hours around the clock face. The hour hand is pointing a little past the 9, so that is the hour. To read the minute hand, notice its position. On a twelve-hour clock, this position would indicate about 17 minutes past the hour. Since this clock counts off 24 hours instead of counting to 12 twice, the afternoon and evening hours have their own numbers. For example, 4:00 p.m. on a twelve-hour clock would be 16:00 on a twenty-four-hour clock. There is no need to indicate a.m. or p.m. since each hour has its own unique number.

12

Science and Technology Log

Today I spent some time up on the bridge talking to the crew about weather. The ship collects all kinds of weather data from on-board sensors, including air temperature, air pressure, wind speed and direction, and relative humidity. It also receives weather data from sources outside the ship via satellite link and email. I was especially interested in how the crew determines visibility, cloud cover, sea wave height, and sea swell height, since these represent subjective data. “Subjective” means that someone uses known data and their own experience to make a judgment. Here are some examples.

Visibility just means how far you can see into the distance. This is very hard to judge on the sea because there are no reference points – no objects to “go by” to decide how far away something is. Radar gives an accurate distance from the Albatross IV to objects such as other ships, and on a clear day, the horizon is about twelve miles away. A navigator learns to estimate visibility by combining radar information with how far away objects look in relation to the horizon. It takes a lot of practice to be able to judge visibility using only your eyes!

Cloud cover just means the amount of the sky that is covered by clouds. This is expressed in eighths. Today the cloud cover was about 1/8, meaning about one eighth of the sky had clouds and seven eighths was clear. To make the estimate, mentally divide the sky in half and ask yourself if about half of the sky is cloudy. If you see that less than half the sky has clouds, then mentally divide the sky into fourths, and then eighths. This can be tricky if the clouds are scattered around because it is hard to see a fraction that isn’t all “together”. Once again, this skill takes a lot of practice.

Sea swell height and sea wave height are both descriptors of how the ocean surface is behaving. These are important to observe because they affect the motion of the ship. Swells are large rolling humps of water that are created by the winds from storms. Navigators can tell how far away the storm is by observing the speed of, and length between, the swells. The ship might rock with long, slow swells caused by a storm hundreds of miles away, or with the shorter, faster swells of a storm that is closer. Waves, on the other hand, are caused by local wind; that is, the wind that is blowing right at your location. Waves might just be rippling the water if the wind is light, but can be large if the wind is strong. Both swell height and wave height are estimated in feet from the trough (bottom) to the crest (top) of the wave. Again, this skill takes lots of practice.

Personal Log

Yesterday we got word that a pod of about seventy right whales had been sighted in the Bay of Fundy. This represents a large fraction of this endangered species’ entire population of fewer than 300. Our route has taken us up a little way into the bay, and we have been eagerly watching for whales. We’ve seen several blows in the distance, and occasionally a glimpse of a long back breaking the water. Most of them have been fin whales, but we did see two or three right whales before it was completely dark. It’s exciting to see these giants of the ocean and we hope to see more when the sun comes up.

James Miller, August 23, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 23, 2005

Location: Anchored in Fish Range Bay; north of Mitrofinia Island
Weather: Sunny, low 70’s
Wind: variable
Seas: 1-2 foot swell
Itinerary:  Working in Fish Range Bay area for couple of days

Science and Technology Log 

We are anchored in Chiginigak Bay on the peninsula to basically wait out the weather. Since there is no needed surveying in the area, the plan of the day is to have the less experienced crew and officers train in the launches and small skiffs.  For safety concerns, it’s important to have all crew and officers comfortable with all operations regarding the launches. Everything from learning how to lower the launches using the davits, to maneuvering the launches safely near the shoreline was covered.

I had an opportunity to get instruction on the use of the heavy davits and how to secure the launches for getting underway. The deck hands know their jobs really well and every move is deliberate and geared towards safety.  The RAINIER has been doing this kind of work with these exact launches since 1968, so all the kinks have been worked out of the procedures. Everything has to be done a certain way, and if you do it differently you get an earful of why your way could be dangerous.

During the long transits, I’ve begun working on the lessons required by NOAA.  I’ve come up with the framework for about eight lessons so far that align nicely with the classes I’ll be teaching this upcoming school year. I haven’t found it very difficult to find potential math lessons while onboard.  My lessons thus far cover topics ranging from basic geometry and trigonometry, to calculus.  I’m also working on getting some visuals such as charts to display on my classroom bulletin boards.

Personal Log 

Before departing for Kodiak in afternoon, I tried some more salmon and halibut fishing. No luck on the salmon, but I caught a couple of small halibut in the 3lb range, which I released. I eventually caught a larger fish (~ 8lbs) that I decided to keep.

I’ve talked about the food often in my logs but haven’t mentioned much about the menu.  All the meals are very large, and it’s hard to resist not eating until your completely stuffed.  Anything can be made to order at breakfast, which is served 7 – 7:30 am.  (I usually go for the waffles and eggs). Lunch is served at noon and is basically equivalent to an early dinner with meat or vegetarian dishes, soup, and salad.  Then dinner comes along at 5pm, which is again a full course meal that includes a dessert.  You never seem to go hungry on the ship and I’m sure I gained a few pounds.

We’ll be arriving in Kodiak in the morning for refueling and then departing for Seward later in the afternoon. Each day the captain sends the crew weather updates through e-mail.  It is welcomed news to hear the weather is supposed to be good for the reminder of the trip.

Joan Raybourn, August 22, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 22, 2005

Weather Data from the Bridge

Latitude: 42°17’ N
Longitude: 69°38’ W
Wind direction: SE (130 degrees)
Wind speed: 10.3 knots
Air Temperature: 19°C
Sea water temperature: 21.8°C
Sea level pressure: 1016.5 millibars
Cloud cover: High, thin cirrus

Question of the Day: What time does the 24-hour clock in picture #7 show?

Yesterday’s Answer: Sediment is composed of all the small particles of “stuff” that sink to the ocean floor. Near the coast, fresh water is flowing into the ocean from rivers and streams, and human activity creates more matter that is flushed into the ocean. Because there are more sources of sediment near the coast, it collects more quickly there than it does in the open sea.

10

11

Science and Technology Log

Advances in computer technology have made the process of collecting plankton and water samples much easier than it was in the past. During a plankton tow or a water cast, many different people are working together from different parts of the ship, and technology makes it easier to communicate, obtain plankton and water samples from precise locations, and protect equipment from damage. The ship’s crew navigates the ship to the exact station location and maintains the location while the samples are collected, there are scientists and crew members on the aft deck handling the collection equipment, a crew member operates the winch to lift and move the equipment, and a scientist operates the computer system that collects data from the Conductivity, Temperature, and Depth instrument (CTD).

The stations, or places where we will collect samples, are designated in advance of the trip and plotted on a computer map. A computer chooses the stations randomly so that we get information from all over the area with no accidental human pattern. The ship’s commanding officer and the head scientist work together to determine the course the ship will take to visit each station. Many factors must be considered, including efficiency, fuel conservation, and weather. Once the course is set, the chief scientist “connects the dots” on the computer map. Then it is easy to see where we are going next, how far away it is, and when we can expect to be there. “Are we there yet?” is a question asked not only by children on vacations, but by scientists and crew at sea!

When the ship approaches a station, the bridge crew makes an announcement so that everyone knows to get ready. “Ten minutes to bongo” means that it is time for the CTD operator to fire up the computer, for the winch operator to get set, and for the deck crew and scientists to get into their gear and make sure the equipment is ready to go. There is a video camera on the aft deck that enables everyone inside to see what is happening on the deck. This makes it easier to coordinate the collection process and to act quickly if there is an emergency.

When the ship is at the exact position of the station, the bridge radios the winch operator. He in turn lets the CTD operator know that we are ready to begin. The CTD person starts the computer program and tells the deck crew to turn the CTD on. The winch operator lifts the equipment and casts it over the side of the ship into the ocean. The “cast” might have just the CTD unit, or water bottles to collect water samples, or the bongos to collect plankton samples. The CTD goes down on every cast since it is collecting data that is important for the success of the tow as well as for further study.

During the cast, the CTD operator watches the computer display to make sure collections are made at the correct water depths. He or she talks to the winch operator over a walkie-talkie so that he knows how far to drop the line and when to pull it back up.  Plankton is collected at about 5 meters above the ocean floor. The ship’s computer tells us how deep the water is and the CTD tells us how deep the instrument itself is. By comparing these two numbers, the CTD person can make sure the equipment doesn’t drag the bottom, which would damage it and contaminate the samples. Once the CTD and the collection equipment are out of the water, the unit is turned off and the CTD operator finishes up the data collection process by entering information such as date, time, latitude, longitude, station and cast numbers. We just finished Station #75, and will be doing our 100th cast at the next station. (More than one cast is done at some stations.) Sample collections at each station can take anywhere from about 20 minutes for a relatively shallow plankton tow to about 2 hours if we are in deep water and collecting plankton, water, and sediment.

During the cast, the CTD operator can watch as the computer creates line graphs showing the data that is being recorded by the CTD unit. In picture #6 above, the line graph on the right shows the depth, while the graph on the left shows the sea temperature in red, the density of the water in yellow, salinity in blue, and fluorescence in green. Density is kind of like how “thick” the water is, salinity is how salty it is, and fluorescence is a measure of phytoplankton. Line graphs show change over time, so we can see how these values change while the CTD is in the water.

Personal Log

Some adaptations take longer than others. Since I switched watches, I have never been completely sure of what day it is, and when I get up in late morning, I’m always surprised to see lunch being served instead of breakfast. However, I have learned to use the physics of the ship’s motion to make everyday tasks easier. Carrying a heavy load up the stairs is easier if you wait for a swell to lift the ship and give you a little boost, and opening doors and drawers, standing up, and even drinking water is easier if you do it with, rather than against, the roll of the ship. As much as I staggered around for the first two days of the cruise, I wonder now if dry land will feel odd when we get there at the end of the week.

James Miller, August 22, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 22, 2005

Location: Anchored in Fish Range Bay; north of Mitrofinia Island
Weather: Sunny, low 70’s
Wind: variable
Seas: 1-2 foot swell
Itinerary:  Working in Fish Range Bay area for couple of days

Science and Technology Log 

Due to the deteriorating weather forecast for the entire area around Mitrofania Island we are packing up and moving out.  There were two things that needed to be done today. First, a tide gauge that the crew installed on Mitrofania earlier in the season had to be removed.  The gauge sent tide information via satellite to a facility on the mainland.  Second, the differential global positioning system (DGPS) that was also installed on the Island earlier in the season had to be removed.  The DGPS was installed to enhance GPS signals when launches are surveying in the area.

I was assigned to help break down the DGPS with two officers and a survey technician. We headed out early in one of the skiffs for the island.  The DGPS consists of a tall antenna mounted on aluminum framing which is supported by lines tied off to stakes in the ground. It also has a watertight box that acts as the main processor for transmitting and receiving.  The processor is powered by six 12v car batteries, which get charged by a series of solar panels. Soon after being dropped off we realized we all forgot to bring bug dope, and soon after that the bugs were swarming.  It’s amazing the motivational power of flying, pestering insects.  We had the station apart and lugged down to the beach in under an hour.  Unfortunately the amount of gear and people exceed the capacity of the skiff, so it required more than one trip.  I drew the short straw along with one of the officers to wait on the island for the skiff to return.  It took about an hour so we did a little treasure hunting along the beach at the high tide line.  Earlier in the season, some of the crew found antique fishing trap floats made of blown glass.  I’m unsure of how old they are, but let’s just say very.  We didn’t find anything as interesting.

Personal Log 

I’m sorry to be leaving Mitrofania Island, partly because it is so beautiful, and also because it marks the end of the work for this leg of the trip.  We got underway for Chiginigak Bay around 4:00pm to basically run from the oncoming storm.  The travel time was about 8 hours.  The seas had already started to build when we left. For the first half of the trip we were traveling with the seas, which made for a smoother ride, however, we had to turn broadside (parallel) to the seas for the second half. When running broadside to the sea the ship pitches from side to side at pretty steep angles. I was typing up some logs in the computer room when all the books and games on the shelf came tumbling down, what a mess.  Anyway, it certainly wasn’t as bad as we anticipated and we arrived in the bay some time around midnight.

Before bed I went up to the bridge to see how the ship was handling in the seas.  One of the newer officers to the ship gave me some more navigation lessons, which was cool.

Sleeping hasn’t been a problem, even with the constant noise of the engines and rolling of the ship. In fact, I sleep deeply and have to drag myself out of bed in the morning. My cabin doesn’t have a porthole so NO light gets in.  It could be the middle of the day and I wouldn’t know it.

Despite all the fun I’m having, I have to say I really miss my home and family.  I give the crew a lot of credit for doing this all year long.  One of the crewmembers said that longing for home is a great feeling, it keeps you going, and that’s why you can’t make the ship your home.  Seems like good advice for newcomers on the ship.

Joan Raybourn, August 21, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 21, 2005

Weather Data from the Bridge

Latitude: 42°17’ N
Longitude: 69°38’ W
Wind direction: SE (130 degrees)
Wind speed: 10.3 knots
Air Temperature: 19°C
Sea water temperature: 21.8°C
Sea level pressure: 1016.5 millibars
Cloud cover: High, thin cirrus

Question of the Day: Why does sediment collect on the ocean floor more rapidly near the coast than it does further out in the ocean?

Yesterday’s Answer: The stern of the ship is at the back, and the sun rises in the east, so the ship must have been heading west.

9

Science and Technology Log

On this cruise, there are actually two separate but complementary kinds of research going on. We have two scientists from the Environmental Protection Agency (EPA) who are collecting samples of the sediment on the ocean floor, which will be analyzed both biologically and chemically. Biology is the study of living things, so the scientists will look to see what organisms are living in the top layer of the ocean floor. The chemical analysis will show what non-living substances, mainly nitrogen and phosphorus compounds, are present. Chemicals may occur naturally, or may be a result of pollution. This work gives us information about human influence on the ocean ecosystem.

To collect the ocean floor sample, scientists use a sediment grab (picture #1). The “grab” is lowered into the ocean until it hits the bottom, where the container closes and “grabs” a sample of whatever is down there. Then it is hauled back to the surface and opened to see what has been collected. There could be sand, silt, mud, rocks, and any creatures living at the bottom of the ocean. There are two chambers in the grab. From one chamber, the top 2-3 cm of sediment are scooped into a pot, mixed up, and put in jars for later chemical analysis. This thin top layer will yield information about the most recent deposits of sediment. Near the coast, that sample may represent matter that has settled to the ocean floor over a year or so. Further out, that much sediment would take several years to deposit. The contents of the other chamber are dumped into a bucket and washed through a sieve to remove the sediment and leave only the biological parts.

The sieves used for the sediment sample are very much like the ones used for the plankton samples, but bigger and with larger mesh at the bottom (picture #4). The bigger “holes” in the mesh allow silt and sand to be washed out. Whatever is left in the sieve is put into jars and stored in coolers for later analysis. The sample contains evidence of what lives in the benthic layer, the top layer of the ocean floor. This evidence could be plankton, worm tubes, or remains of once-living animals.

At each station where a sediment grab is performed, three water samples are taken, one each from the bottom, the middle, and the surface of the ocean. One liter of each water sample is filtered (picture #6) to analyze its nutrient content. This process is somewhat similar to the chlorophyll filtering I described in yesterday’s log. The filters are saved to be analyzed in laboratories, which will look for both dissolved nutrients and particulate matter. Dissolved nutrients are like the sugar that dissolves in your cup of tea – you can’t see it, but it’s still there. Particulate matter consists of tiny bits (particles) of things such as plankton, whale feces, plants, anything that might be swirling around in the ocean.

The EPA is primarily concerned with human influences on natural environments. By collecting sediment and water data, scientists can see what substances humans are putting into the ocean, and what effects they are having on the plants and animals living there. This work meshes well with the plankton research work, since the health of the plankton is directly influenced by the health of its environment. Everything in the natural world is connected, and we humans must learn how to balance our wants and needs with the needs of all other living things. If we are not careful about how we use our Earth, we will upset the balance of nature and create negative consequences that we may not see for years. For example, if chemicals dumped into the ocean (on purpose or accidentally) kill large numbers of phytoplankton, then the entire food web will be disrupted in a kind of ripple effect, like a stone dropped into a pond. The zooplankton (who eat phytoplankton) will starve, and the animals that eat zooplankton will either starve or move to a different part of the ocean, which in turn changes that part of the ecosystem. From this very small example, maybe you can see how huge our responsibility is to keep our oceans (and other environments) clean.

Personal Log

I am so grateful to Jerry Prezioso, our NOAA chief scientist, and Don Cobb, our EPA scientist. They have included me in all of their operations from Day 1, and have been infinitely patient with my many questions. They have explained things over and over until I “got it”, from procedures for collecting samples to the science behind all their work. It has been eye-opening to be on the student side of learning. Many times I have not even had enough background knowledge to know what questions to ask, or have been almost paralyzed with fear that I might do something wrong and skew someone’s data. I know this experience will help me better understand my students who go through these same feelings of anxiety and joy when they are learning something new.

James Miller, August 21, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 21, 2005

Location: Anchored Northeast side of Mitrofinia Island
Weather: Sun and clouds, low 60’s
Wind: 5-10kts
Seas: Calm
Itinerary: Working around Mitrofinia Island

Huge halibut
Huge halibut

Science and Technology Log 

To ensure completion of some of the longer lines located further out in the open ocean, the ship spent the day running surveying lines.  The RAINIER is also fitted with sonar transducers and is used when the lines are 8 miles or longer. I was assigned to work in the plotting room with the surveyors cleaning up data that was collected the previous day.

Many processing steps must be performed on the bottom contour data before it makes it onto a chart.  On the ship, the surveyor performs a basic “cleaning” of the data with powerful computers, and very sophisticated software.  The surveyors pull up the bottom contour data on the screen and analyze it for stray signals.  It is very cool software because they look at the bottom in 3-D and from any angle.  At first it doesn’t look like much but a chaotic grouping of lines; however, after the surveyor selects areas and stray signals to cut out, the bottom contour emerges.  The surveyor definitely develops an eye for understanding these 3-D images, but it didn’t take long before I was performing some of the basic cleaning tasks.  I also downloaded some of the images onto a disk to be used in a PowerPoint presentation.

I had an interesting conversation with one of the surveyors whose background is geology. He said that this entire area is a geologists dream.  He described how much of the area was probably form by Mt. Veniaminof volcano, which is visible in the distance and is still active. The thing is immense and stands above all the other surrounding mountains. Additionally, he has also seen clear evidence of structures formed by seismic activity.

Personal Log 

It was actually nice to have a day off from the launches.  I had time to do some laundry and get caught up with some e-mails.  I’m definitely used to the daily routine and I’ve finally learned all the crew and officers names and responsibilities.

We’re scheduled to leave the area in the afternoon tomorrow because of very poor weather forecasts. Winds to 40kts seem to make the captain a bit nervous, so we’re going to run for cover in Chignik Bay on the peninsula about 80 miles or so northeast of the Mitrofania Island. Since it might be my last opportunity to fish, after dinner I went out to the fantail to try for halibut. I was determined and planned to put in some serious time.  After about a half hour I hooked and landed a 25 pounder, and then ten minutes later lost a 15 pounder. Then within another 20 minutes I caught one about the same size as the first.  By this time many of the crew started fishing. I saw LT Evans wrestling with a fish on the other side of the boat. It was apparent he had something big, so I put my rod down to watch as he slowly reeled it up. About 20 minutes later this hulk of a halibut appeared, it was huge. It took two harpoons, and me and another guy to haul the fish up onto the boat. We didn’t have a scale but it was estimated at over 100 pounds.  It also took all night for LT Evans to clean it and bag it.

Joan Raybourn, August 20, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 20, 2005

Weather Data from the Bridge

Latitude: 42°17’ N
Longitude: 69°38’ W
Wind direction: SE (130 degrees)
Wind speed: 10.3 knots
Air Temperature: 19°C
Sea water temperature: 21.8°C
Sea level pressure: 1016.5 millibars
Cloud cover: High, thin cirrus

Question of the Day: Based on the caption for photo #6 above, in which direction was the ALBATROSS IV traveling when the picture was taken?

Yesterday’s Answer: Our location at 41.39 N and 67.11 W means our goldfinch was 160 nautical miles from Woods Hole. A nautical mile is equal to one minute of latitude and is slightly longer than an ordinary land mile.

99

Science and Technology Log

In addition to collecting zooplankton samples, we also collect water samples and measure the amount of chlorophyll they contain. Phytoplankton are too small to see, but an instrument called a flourometer can measure their presence. The flourometer shines a beam of light through the water sample and measures how much blue light (fluorescence) is present.

This process is fairly delicate and great care must be taken to get a good representative water sample, and then not to contaminate it during processing. Water samples are collected in two ways: some are collected in water bottles that are attached to the bongo cable, and others are collected from a hose that is pumping sea water into the plankton lab.  In picture #1 above, our chief scientist, Jerry Prezioso, is collecting a sample from the plankton lab hose. The sample itself is poured through a filter into the bottle to remove any large particles that may be present. Then 200 ml of the sample water is pumped through a fiberglass filter (picture #2). The filter traps chlorophyll as the water passes through. Even though the large amounts of chlorophyll in land plants gives them their bright green color, the small amounts present in phytoplankton are not visible, so you can’t see it on the filter. In picture #3, Jerry uses tweezers to remove the filter (a small white circle) and place it into a cuvette, which is a small test tube. The cuvette contains acetone, which preserves the sample. Then it is placed upside down in the cooler for 12 to 24 hours, which allows the chlorophyll on the filter to wash out into the acetone.

When the sample is ready to be measured, it is taken out of the cooler along with a “blank”, a cuvette of plain acetone with no chlorophyll present. The two cuvettes must warm up a little before they are read, because water condensation on the outside of the cuvette can result in a false reading. We use the flourometer to take three separate readings. When we do science investigations at school, we determine which factors are constant (kept the same for each trial) and which are variable (the thing you are changing in each trial). In this case, the variable is the amount of chlorophyll on the filter. In order to make sure we are measuring only chlorophyll, we also “read” two constants: a solid standard, which is contained in its own tube and used for every trial, and the blank containing only acetone. After the chlorophyll sample is read, we can compare the three sets of data to see how much chlorophyll is really there. In picture #4, I am putting a cuvette into the flourometer, which will shine a light through it and display a number value. The numbers for the solid standard, the blank, and the chlorophyll sample are all recorded on the clipboard along with data such as date, time, and where the sample was collected. Later, the data will be entered into a computer for further analysis.

Why do we want to know about chlorophyll in the ocean? Well, chlorophyll is produced by plants, in this case, phytoplankton. By measuring the amount of chlorophyll in the water samples, scientists are able to determine how much phytoplankton is present. Since phytoplankton is the base of the ocean food web, it is one more piece of the ocean ecosystem puzzle.

Personal Log

Today I switched from the day watch to the night watch, but the timing was good because we had a long steam between stations and I was able to get a little extra sleep before doing a double watch. While all the scientists usually eat meals together, we work in teams to cover the watches, so I will be working with a different set of people. I am now on watch from noon to 6:00 p.m. and from midnight to 6:00 a.m. We will be working our way north for the next week, and the probability of seeing whales is increasing. That will be exciting!

James Miller, August 20, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 20, 2005

Location: Anchored in Fish Range Bay; north of Mitrofania Island
Weather: Sunny, low 70’s
Wind: variable
Seas: 1-2 foot swell
Itinerary:  Working in Fish Range Bay area for couple of days

Science and Technology Log 

I was assigned to RA-3 today to do some deep-water surveys northeast of the Island. Had a big breakfast of waffles and eggs because I figured with the rough seas I wouldn’t be interested in eating much for lunch.  I was one of three assigned to the launch. In addition to myself, there was an officer and coxswain.  The past couple days I was the fourth, so I felt good that they trusted me enough working with the boat and equipment that I made up the third spot.

We were delayed about an hour because they couldn’t lower our launch into the water. One of the tracks on the boom that lowers the launch bent the day before so the wheels couldn’t pass through. They had to pull out torches and all sorts of equipment to repair it. Within an hour they were able to temporarily fix it to get the launch in the water but it took the rest of the day to finish the job.  The crew is incredibly skilled and ready to fix anything that breaks onboard.

The survey lines we had today were about 8 miles long.  Considering we can only cruise at about 7 knots when surveying, it took about an hour to complete one line.  The weather wasn’t too bad until we got out into the open ocean.  It was just sloppy. A three to five foot chop tossed us around. In addition, what made it worse was that the survey lines ran parallel to the seas; we were getting tossed from side to side for hours on end.  I was amazed that the sonar signal could accurately collect the bottom data in such rough seas. Apparently the POS System that senses and records all the movement of the boat using an accelerometer is designed to compensate for these situations.

Again, the first thing we had to do was send down the cast.  The cast is the device that collects water temperature, salinity, and density at varying depths, which is then used to calibrate the sonar. We were in 300 feet when we sent it down and it took forever for it to hit bottom and bring it back up.  The pitching boat made it all the more challenging.

We had a very knowledgeable and seasoned coxswain onboard.  He is a big burly guy with a white beard like Santa Claus, and he’s the type that can drink cold black coffee and lukewarm clam chowder in 5 foot seas.  He also made us do two man-over- board drills. When we weren’t paying attention, he would throw a fender overboard and yell out man-over-board.  I learned quickly that they take these drills very seriously.  During the first one, the officer was at the helm, and I had to pull in the fender (person).  During the second one, I was at the helm, and had to turn the boat around and approach without running it over. It definitely broke up the day.

Personal Log 

I have to say I was glad when the day was over.  When I got back onto the ship my head was spinning. Luckily I had no problem with seasickness though and was able to perform my job on the launch.  Had a big dinner of ziti and chicken and then went back to the fantail to try my luck at halibut fishing.  After about an hour, I called it quits. No luck today. At 7:00 a skiff was running people to the beach for a beach party.  It was a good time, but as the sun started setting the bugs started biting.

I’m barely finding time to work on my logs.  Although tomorrow I’m not scheduled to be on a launch and I might be able get caught up.  I’d also like to get up to the plot room where they begin processing the data.

The ship will be getting underway tomorrow to do some deep-water surveying itself. I think we’ll be anchoring on the northeast side of the Island to get out of the bad weather that’s heading our way.  Unfortunately the weather will be with us until we get back to Seward. We will be making a stop off at Kodiak Island for refueling which will be cool. Officer Evans said I might be able to check out the sights for a couple of hours.

Joan Raybourn, August 19, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 19, 2005

Weather Data from the Bridge

Latitude: 40’ 17” N
Longitude:  70’ 08” W
Wind direction: NNE (29 degrees)
Wind speed: 19.6 knots
Air temperature: 19° C
Sea water temperature: 22.8°C
Sea level pressure: 1018.1 millibars
Cloud cover: cloudy

Question of the Day: Yesterday a goldfinch visited us, but we are far out to sea. When I took the picture above (#6), our position was 41.39 N and 67.11 W. About how far was this little guy from Woods Hole, Massachusetts?

Yesterday’s Answer: Qualitative data is the “what” that your doctor can observe but not necessarily measure. She might look in your ears, eyes, and throat, feel your internal organs through your abdomen, observe your spine, test your reflexes, have you balance on one foot with your eyes closed, and ask general questions about how you feel. Quantitative data is the “how much”; it is something that can be measured. Your doctor will probably measure how tall you are and how much you weigh, and take your temperature and your blood pressure. If she takes blood or urine samples, they will be analyzed for both qualitative and quantitative properties. We are observing and recording similar kinds of data about the ocean, so scientists can get a good picture of the health of this ecosystem.

8

Science and Technology Log

We are very fortunate on this cruise to be able to deploy a drifter buoy. The NOAA Office of Climate Observation (OCO) established the Adopt-a-Drifter program in December 2004. The program makes buoys available to teachers who are participating on cruises as Teachers at Sea. Our drifter has been adopted by my school, Greenbrier Intermediate School of Chesapeake, Virginia, and by Julie Long’s school, Farnsworth Middle School of Guilderland, New York. We named him (It’s a buoy!) Moose in honor of the fact that he was deployed in the Georges Bank area of the Gulf of Maine, which has a number of GOMOOS (Gulf of Maine Ocean Observing Systems) buoys. Moose is the fourth drifter buoy to be deployed as part of the NOAA program, and joins over 1,000 drifter buoys collecting data worldwide.

The buoy itself is a blue and white sphere about the size of a beach ball. It is attached to a drogue, a long “tail” that hangs below the buoy and ensures that it is drifting with the surface currents and not being pushed along by the wind. The buoy is equipped with a water temperature sensor, and a transmitter so that its position and temperature data can be beamed to a satellite, which relays this information to a ground station that will place it on a website. Julie and I decorated the buoy with our school names and signatures – it even has a Greenbrier Intermediate School sticker and a picture of our panther mascot. Then we deployed the buoy on August 18 by tossing it over the side of the ship while it was moving slowly. It was a little sad to see Moose drifting off without us, so small on the huge ocean, but we can follow his adventures for the next 410 days by checking the Adopt a Drifter website. You can begin tracking it here. You can find Moose by clicking on his WMO number, which is 44902. The website will give you the location of the buoy (latitude and longitude) and the date, time, and temperature of the surface water at that location.

What can scientists do with the data about surface water currents that buoys such as Moose are collecting? Of course it can be used to track major ocean currents. Knowledge of currents is useful for understanding the ocean ecosystem and for navigation. But this data will also be used to build models of climate and weather patterns, predict the movement of pollution spills, and even to assist with forecasting the path of approaching hurricanes.

Personal Log

I finally feel like I am becoming useful as a scientist on this cruise, not just an interested observer. Although I have been busy helping from Day 1, I am gaining confidence about conducting some parts of the work on my own. I have learned to collect and preserve the plankton samples, process water samples for chlorophyll, and operate the CTD (Conductivity, Temperature, and Depth), a computer linked instrument that measures oceanographic data. This morning I was up in time to watch a beautiful sunrise and had time to do a load of laundry during a long steam between stations. We had a raft of seabirds sitting hopefully off the stern while we were stopped for some work, and the weather is cool and sunny. It’s a beautiful day in the neighborhood!

James Miller, August 19, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 19, 2005

Location: Anchored in Fish Range Bay; north of Mitrofania Island
Weather: Sunny, low 70’s
Wind: variable
Seas: 1-2 foot swell
Itinerary:  Working in Fish Range Bay area for couple of days

Science and Technology Log 

I am assigned to launch RA-5 today, which will be working what are called holiday lines. These are small areas that didn’t get adequate coverage the first time they were scanned. Most of the lines were situated very close to shore near the peninsula and a bunch around Mitrofania Island. Being assigned to holidays is very labor intensive for the coxswain (boathandler) because he/she is constantly turning the boat and working very close to shore. Often we had to put somebody (usually me) on the bow to watch we didn’t plow into any rocks. The geology in the area is strange in that it could be 300 feet one second and then 3 inches the next, so running onto rocks is always a concern especially when working close to shore.

The entire crew is working extremely hard to finish up this area on this leg of the trip. The RAINIER is scheduled to be in Prince William Sound on the next leg and will continue surveying until mid-October.  Between November and March the ship is in its homeport of Seattle, WA, getting repairs and preparing for the next season.

There are a few crewmembers onboard who are college students either working for the summer or taking time off to make some money.  Then there are some crewmembers, such as the Chief Steward, that have been on the RAINER for over 30 years.

The surveyors rotate between collecting data at sea and processing the data at NOAA Headquarters.  They are required to be at sea for several months out of the year.  Most of them have a four-year college degree and majored in geology or Graphical Information Systems (GIS), but there are a couple of assistant surveyors with associate degrees.

The officers are onboard for two years before moving on to their next assignment.  They rotate between two years at sea and three years on land.  It’s clearly a difficult lifestyle for those who want a family.  They all have four-year college degrees and usually majored in some sort of engineering, math, or one of the sciences.  After signing on to the NOAA Corps, they are sent to Kings Point Merchant Marine Academy for 3 months of intensive training before getting their first assignment.

Personal Log 

Since we worked so close to shore, my day on RA-5 was great for getting some pictures of wildlife.  There are puffins, and loons everywhere.  When the launch approaches they try to fly but can’t seem to get their fat little bodies airborne, so they skid across the water for about thirty feet and then dive.  Along the shore of the peninsula there were a lot of fresh bear tracks. The grizzly bears in this area are among the largest in the world due to their high protein diet of salmon.  Unfortunately, we didn’t get to see any. Several Sei whales breached near the boat, which was really cool.  It happened very quickly, but I think I was able to get some pictures.  We also saw lots of bald eagles.  They nest high up on the bluffs and when they get hungry they swoop down and grab a puffin or small gull.  The highlight of the day was the seals.  There’s a large rock structure on the south side of the Island that a family of seals inhabit.  The survey we were doing required us to get right up next to the island.  There were at least two dozen seals some of which were huge—over 1000 pounds!  When we approached they stood up and barked at us. Got some great pictures!

When we returned to the ship I decided to do some fishing off the fantail for halibut. Yesterday someone caught a 50-pounder in Fish Range Bay.  After about 45 minutes of bouncing this glow-in-the-dark squid on the bottom, wham.  It felt like I was snagged. It only turned out to be about a 20-pound halibut, but it fought like mad.  My arms were killing me from reeling it up from 200 feet of water.  These fish get over 300 pounds–I can’t imagine!  I just finished cleaning the fish and writing some logs, it’s midnight.  Assigned to RA-3 tomorrow for deep-water surveying.  I’ve got to prepare myself for some rough seas and a long day.

Joan Raybourn, August 18, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 18, 2005

Weather Data from the Bridge

Latitude: 41.36 N
Longitude:  67.11 W
Wind direction: N (343 degrees)
Wind speed: 2.6 knots
Sea water temperature: 17.9°C
Sea level pressure: 1019.3 millibars
Cloud cover: 00 Clear

Question of the Day: What kind of quantitative and qualitative data does your doctor take when you go in for a checkup? (Read the science log below for explanations of these terms.)

Yesterday’s Answer: Phytoplankton are eaten by zooplankton, which are in turn eaten by penguins, sea birds, fishes, squid, seals, and humpback and blue whales.

7

Science and Technology Log

On some of the plankton tows, we attach a set of “baby bongos”, which are a smaller version of the big bongos. Their nets are made of a much finer mesh, so they catch even smaller kinds of plankton. The samples retrieved from the baby bongos are sent to scientists who are working on genetic analysis. By examining the DNA present in the samples, they can discover new species and determine how known species are distributed in the water.

After the nets are washed down, and their contents are in the sieves, we bring the sieves inside to preserve the samples. The plankton from each net go into separate jars, two jars for each big bongo haul, and two more if we do a baby bongo haul. The plankton are carefully washed out of the sieve and into the jars with a small stream of water. Then we add formaldehyde to preserve the samples in the big bongo jars, and ethanol to preserve the genetic samples in the baby bongo jars. Each jar is labeled to show where it was collected, and stored until we get to shore. The big bongo samples each have a special purpose. One will be analyzed to see what kinds of ichthyoplankton, or tiny baby fish, are present. The second jar will be analyzed both qualitatively and quantitatively. Qualitative data tells what kind of plankton you have. Quantitative data tells how much plankton the jar contains. You can think of these as “the what (qualitative) and how much of the what (quantitative)”.

All of this data is an indicator of the health of the ocean ecosystem. It’s kind of like when you go to the doctor for a checkup. Your doctor takes your pulse and your temperature, looks in your mouth and ears, tests your reflexes, and takes other kind of data to see how healthy you are. The scientists involved in this project are giving the ocean a checkup. We are collecting data on the water itself (salinity and temperature at different depths), on the plankton that live in it, and on the weather. Over the years, patterns develop that help scientists know what is “normal” and what is not, how weather influences the ocean ecosystem, and how to predict future events.

Personal Log

I decided not to take a nap yesterday afternoon, and I can feel the difference this morning. It was hard to get up! Sometimes it is hard to remember what day it is because of the six-hour watch schedule. Instead of a nap yesterday, I went up on the hurricane deck with my book and just sat. I read a little, watched the other crew do a bongo haul, dozed a little, but mostly just watched the sky and the ocean. The sea stretches all the way to the horizon in every direction, the sun sparkles on the water, a few feathery clouds float in the sky. Very occasionally, a far away fishing boat or cargo ship slips by. Life is good. We are planning to deploy our drifter buoy this afternoon. More about that tomorrow.

James Miller, August 18, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 18, 2005

Location: Anchored in Fish Range Bay; north of Mitrofinia Island
Weather: Sunny, low 70’s
Wind: variable
Seas: 1-2 foot swell
Itinerary:  Working in Fish Range Bay area for couple of days

Science and Technology Log 

Got up early this morning (6:30am) so I could eat a big breakfast and get my gear loaded into the launch and. I was assigned to launch RA-3 with an Officer, a Surveyor, and a Coxswain (boat handler). Last night I was briefed on all the safety equipment on the launches as well as how to board and disembark.  The survey launches are 29-foot aluminum boats with a small cabin that houses the survey computers. There’s a total of 6 survey launches, two of which are water jet powered for shallow surveys, and the remaining launches have single inboard diesel engines.

The launches are also fitted with either multibeam or single-beam sonars.  The multibeam sonars scan a wide path of the bottom, about three times the depth of the water. For example, if we are in 50 feet of water the sonar cone is scanning a path about 150 feet wide. The multibeam sonars are less powerful than single beam sonars, therefore, are primarily used in shallower waters.  The single beam sonar scans a much narrower path and also uses a more powerful signal and is often used in deeper water.  An astonishing fact for the day is that a single sonar could cost as much as $500,000.  The launch I was in today was fitted with a multibeam.

Our Plan of the Day (POD) indicated that we would be scanning areas around Fish Range Bay. The POD has the track lines that you are to work on laid out on a paper chart. The track lines are also set up on one of the onboard computers.  There are basically three main computers onboard that are all interconnected.

One computer acts as a GPS and has all the track lines we are to follow pre-programmed.  The coxswain also has a terminal at the helm so he/she can steer the boat onto the track line. It’s kind of like a PacMan game for the coxswain, or as they call it “mowing the lawn”.  Depending on where you are working, the track line can be as long as 8 miles long or longer.  We were working relatively close to the shore so our lines for the day were no longer than one mile.

Another onboard computer is designed to record data related to the movement of the boat. As the boat scans a track line the boat rolls (side to side motion), pitches (from front to back), and heaves (up and down).  The sonar single coming from the bottom of the boat is similar to the shape of an ice cream cone.  These motions have an impact on the way the signal records or sees the bottom. So to ensure the quality of the bottom data collected, this motion information is fed into a complex algorithm that will calculate a percent error and apply it to the data.  It’s truly some amazing stuff.

A third computer shows the actual sonar signal and the data it is collecting.  On one of the screens you can see how the signal changes with the motion of the boat.  Another screen shows the track lines you create with each pass of the sonar.  See, the track lines are set up parallel to each other and close enough so that there is overlap.  As you complete a track line the screen shows the actual signal coverage.  On the boat they call this “mowing the lawn” because that is exactly what it looks like you are doing on the computer.  Scanning every inch of the bottom.  Another screen produces a 3-D image of the bottom, and yet another screen shows the motion of the boat in the form of sinusoidal curves.

In addition, before we can begin scanning the bottom we also have to lower a gauge called a cast down to the bottom to record temperature, salinity, and density of the water. After we retrieve it, we hook it up directly to the computer to download the information.  These factors have an impact in the way that the sonar signals travel through the water column; therefore, this data is also fed into the algorithm to ensure high quality readings.

It’s truly amazing how much effort and attention is given to obtaining an accurate image of the ocean bottom.  Their philosophy simply seems to be, if we’re going to do it, let’s do it right!

Personal Log 

It was a very interesting day and I learned much.  I had an opportunity to rotate into each of the positions including steering the launch on track lines and operating the computer.  Since the weather was so good, the CO extended the working day, so we were in the launches for about ten hours today. At lunch, I couldn’t resist fishing for halibut, so I dropped a line down for about ten minutes and caught my first.  It was very small for AK halibut standards, but definitely a trophy fish where I come from.  It’s after eleven o’clock and I’m exhausted.  I looked on tomorrows POD and I’m on RA-5 (the leaker).  This should be interesting!

Joan Raybourn, August 17, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 17, 2005

Weather Data from the Bridge

Latitude: 40’ 17” N
Longitude:  70’ 08” W
Wind direction: NNE (29 degrees)
Wind speed: 19.6 knots
Air temperature: 19° C
Sea water temperature: 22.8°C
Sea level pressure: 1018.1 millibars
Cloud cover: cloudy

Question of the Day: What kinds of animals depend on plankton as a major food source?

Yesterday’s Answer: Phytoplankton are producers, since they make their own food.

6

Science and Technology Log

On this cruise aboard the ALBATROSS IV we will be taking plankton samples at 90 stations off the coast of New England. The stations are randomly chosen by a computer, so some are close together and some are further apart. The idea is to get a broad picture of the ecological health of the entire region.

The actual process of plankton collection is called a plankton tow, because the nets are towed through the water while the ship is moving slowly, collecting plankton as the water moves through them. Can you guess why the collection apparatus is called a bongo? (Look at picture #2 above.) The frame looks just like a pair of bongo drums! Attached to the frame are two long nets that collect the plankton. The bongo isn’t heavy enough to sink into the water evenly on its own, so a lead ball is added to help pull it down to the bottom smoothly. (See pictures 3 & 4.) The bongo is attached to a cable, which is in turn attached to a pulley system that lowers the bongo into the water and pulls it back up again. Since we only want floating plankton, we have to be sure the bongo doesn’t scrape the bottom. We lower the bongo to about 5 meters above the bottom, and then bring it back up.

The nets bring in all kinds of zooplankton, very small but big enough to see. (Most phytoplankton are so tiny they slip right through the net!) There are lots of copepods, which are related to lobsters, and sometimes arrow worms, which are tiny predators that love to eat copepods! There are other species as well, including some jellyfish. We have to be very careful to save the entire sample so that scientists back on shore can see exactly what was living near each station. When the nets are back on board, we use a hose to wash the plankton down to the bottom of the net. Then we untie the net, dump the plankton into a sieve, and spray some more to be sure nothing is left in the net. At the end of this process, we tie the bottoms of the nets again (so they are ready for the next tow) and take the sieves with the plankton inside to the wet lab for the next step. I’ll describe the process of preserving the plankton samples in tomorrow’s log.

Several kinds of data (besides the plankton itself) are collected on each tow. For example, we take water samples to analyze for salinity and chlorophyll, and the EPA scientists are collecting samples of the ocean floor. In the days to come, I will describe them and explain how computers are used to make all of this work easier. Stay tuned!

Personal Log

I am becoming much more comfortable with the routine tasks of the trip. I can handle the bongo pretty well, and can preserve the plankton samples we get. I am learning to operate the computer end of the process and will soon be able to do that on my own. I can use the tracking system to see where we are going next and how long it will be until we get there. Do I have time to take some pictures? How about to grab a snack? I enjoy talking with the crew, and have discovered that “it’s a small world after all” – our navigator grew up in Virginia Beach and another crew member just built a house in Chesapeake. I can now walk without too much trouble, and this morning I awoke before my alarm went off because I heard the engines slow down as we approached a tow station. There is rumor of a cookout on the deck tonight, so I’d better go get in a nap before then!

James Miller, August 17, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 17, 2005

Weather

Sky: Clouds and rain, low 60’s
Wind: 10-15 kts.
Seas: 6 – 8 foot
Itinerary:  Should arrive in work area tonight (9:30pm). Anchor in Fish Range Bay on peninsula.

Science and Technology Log 

Went up to the bridge last night prior to going to bed.  There’s usually an officer and three crew on a rotating four-hour shift schedule.  It’s reassuring that there is so much redundancy regarding navigational equipment.  The officer on duty (OOD) is constantly checking our position on the chart and comparing it to the radar, and GPS chart plotter. He also does some quick time, distance, speed calculations to determine where we should be at half hour increments, these he marks on the chart (good lesson potential).

We also had a good conversation regarding compass headings.  Typically, smaller boats navigate using magnetic compasses and therefore always steer toward magnetic north. The problem with magnetic north is that charts use true north (north pole) and depending where you are in the world there is a deviation between true and magnetic north (close to 20 degrees where we are). The ship is fitted with both magnetic and gyrocompasses.  The gyro compass points towards true north but requires power.  The ship uses the gyrocompass to navigate but would have to fall back on the magnetic compasses if the ship lost power (which is highly unlikely).

I met with LT Ben Evans and Commanding Officer Guy Noll after lunch for a briefing. They were interested in what specific classes I teach, and the things I wanted to get out of the cruise. They also briefed me about the RAINIER’s mission and where we would be working. They showed me a chart in and around Mitrofania Island.  Charts will typically have depth soundings (in fathoms) every ¼ inch or so.  The map they showed me had a lot of white space with only a few limited depth soundings.  The reason for this is because the area is literally uncharted.  Very few ships or even fishing vessels come into the area because, in Alaska, the ocean bottom rises very quickly and they are concerned about running aground. This is where the RAINIER comes into play.  Its mission is to collect the data to eventually be put on charts.  It sounds like an easy task, however, the process is very complex and lengthy.  I’ll be learning more about the details of this process over the next week and two days.

Seeing the charts really gave me a good visual of where we are heading and the importance of the RAINIER’s mission.  I plan on putting together a bulletin board in my classroom detailing my experiences and the charts would be an excellent addition to it.  I wrote down the chart numbers and asked Navigational Officer Pounds if they had any old ones on board they could part with. He’s going to check for me, but if they don’t, I’ll just order them through NOAA.

Just before dinner I attended a briefing for the survey crew.  These are some of the things I learned:

1) This leg is considered a clean-up leg since they worked the area for three weeks on the previous leg. Apparently there are five open sheets (sheets are designated areas that need surveying) that need to be completed.

2) There is an unstable weather pattern in the area and it will obviously determine whether or not we can finish in this area on this leg.

3) In addition to taking soundings, we will need to pick up a tide gauge and differential GPS station that they put on the island the last leg.

4) The tide gauge sends tide information via satellite to NOAA Headquarters.  Again, very little is known about this area including tide variations.

5) As I understand it, the GPS stations that are set up on the Alaskan peninsula are too far away to be effective, therefore, the differential GPS was temporarily set up on Mitrofinia Island so that the RAINIER could navigate better while working in the area.

6) We will initially be anchoring north of Mitrofania Island in a protected bay on the peninsula called Fish Range Bay.  We will spend a day or two there and then move to Cushing Bay, which is on the north side of Mitrofinia Island.

7) They once again reiterated the fact that they are a bit short-handed this leg and will be relying on me to be part of the launch crews.  I should expect very long days for about 5-6 days.

Personal Log 

I slept very well last night.  I was in such a deep sleep that I almost missed breakfast. I guess it was the rocking of the ship.  The seas are about 6-7 foot and the boat seems to handle it well.  We’re going with the wind so it’s more of a soft but rolling ride.  It’s kind of a funny sight seeing everyone on board bouncing off the walls as they walk down a hallway. My cabin is on the port side on the bottom of the ship, so you can hear the water rushing by the hull, a bit eerie. Although, I guess it’s much better than a cabin next to the engine room.  I’m feeling fine; in fact, I had a big greasy breakfast and a hot dog for lunch. You can be assured I would not eat that kind of food if the seas were getting to me. I feel bad for another visitor onboard whom I’m friendly with.  Unfortunately, he hasn’t found his sea legs yet, but I’m sure he’ll feel better when we get the Fish Range Bay tonight.

The other bad side to this weather is the visibility is terrible.  On our right (starboard) has been the Alaskan Peninsula, and we passed Kodiak Island to our left (port) but could barely make them out.  I hope the weather clears at some point so I can get some good pictures.  I promised my wife!!!

I have to get a good night’s rest tonight because I’m scheduled to be out on a launch for close to 9 hours tomorrow.  After dinner I’ll be working with the survey crew to analyze the data. So it’s going to be a long day, but I’m looking forward to it.

Joan Raybourn, August 16, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 16, 2005

Weather Data from the Bridge

Latitude: 40’ 17” N
Longitude:  70’ 08” W
Wind direction: NNE (29 degrees)
Wind speed: 19.6 knots
Air temperature: 19° C
Sea water temperature: 22.8°C
Sea level pressure: 1018.1 millibars
Cloud cover: cloudy

Question of the Day:  What is phytoplankton’s place in the food chain? (producer or consumer)

Yesterday’s Answer: Factors that could influence the depth to which sunlight penetrates the sea water include amount of cloud cover and how clear the water is. If the weather is clear, more sunlight makes it through the atmosphere to the surface of the sea. If the water is clear, the sunlight can go deeper than if the water is murky with a large mass of surface plankton, excess nutrients, pollutants, or silt.

5

Science and Technology Log

In yesterday’s log I talked about phytoplankton. The other group of plankton is zooplankton. Phytoplankton are plants, and zooplankton are animals. If you think of the sea as a bowl of soup, the zooplankton are the chunky parts. They include organisms that spend all of their lives as plankton, as well as the baby forms of other seas animals, such as crabs, lobsters, and fish. Most zooplankton eat phytoplankton, making them the second step up the ocean food chain.

While you would need a microscope to see most phytoplankton, you can see most zooplankton with an ordinary magnifying glass. Many are big enough to see with the naked eye. While phytoplankton need to stay near the surface of the sea in order to absorb the sunlight they need for photosynthesis, zooplankton can live at any depth. Zooplankton have structural adaptations that help them float easily in the ocean currents. Some have feathery hairs to that can catch the current. Others have tiny floats filled with air, and still others contain oil that helps them float. There are even behavioral adaptations that zooplankton have developed to help them survive. One kind of snail makes a raft of air bubbles and floats on that. Some even link together and float through the ocean looking like skydivers holding hands.

Many animals go through several physical changes as they go through their life cycles. For example, a butterfly begins life as an egg, hatches into a caterpillar (larval stage), makes a chrysalis, and finally emerges as a beautiful adult. Many marine animals go through similar changes, and during their larval stage they are part of the mix of plankton in the ocean. These “temporary” zooplankton are called meroplankton. These include baby crabs, lobsters, clams, snails, sea stars, and squid. Permanent plankton are called holoplankton, and include copepods, krill, sea butterflies, and jellyfish.

One of our deck hands joked about having sushi for breakfast right after we completed a very productive plankton tow. We might not like that kind of sushi, but many ocean animals love it, and depend on it as their food source. Krill (shrimp-like zooplankton) are a very popular menu item with penguins, sea birds, fishes, squid, seals, and humpbacks and blue whales. “A single blue whale may devour up to eight tons of krill a day.” (from Sea Soup: Zooplankton by Mary M. Cerullo)

Most of the plankton we are collecting on this cruise are zooplankton. We preserve them in jars, and when the cruise is over they will be sent to laboratories where other scientists will analyze the samples. We also analyze water samples for chlorophyll, though, which is made by phytoplankton and is therefore an indicator of their health. In the days to come, I will describe the procedures used for the plankton collection, as well as those used for the EPA research.

Personal Log

Life on board a research vessel is not all work and no play. During down time, people rest, read, play games, watch movies, work on needlework, or get a snack, much like life at home. When I am not on watch, I write my logs, take and organize pictures, take a shower, do laundry, send email, and sleep. The scientists are usually able to eat meals together around the time we switch watches. We gather for breakfast around 5:30 a.m., for lunch around 11:30 a.m., and for dinner around 5:30 p.m. It’s nice to have a chance to catch up with each other while one group comes to work and the other goes off to bed.

Joan Raybourn, August 15, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 15, 2005

Weather Data from the Bridge

Latitude: 40° 01’ N
Longitude: 71° 37’ W
Wind direction: SSW (207)
Wind speed: 14 knots
Air temperature: 24° C
Sea water temperature: 24.8° C
Sea level pressure: 1015 millibars
Cloud cover: Hazy

Question of the Day: There is some variation in the depth to which sunlight penetrates. What factors could account for this?

Yesterday’s Answer: Because phytoplankton use photosynthesis to make their own food, they live near the surface of the ocean where they can absorb sunlight. Enough sunlight for photosynthesis penetrates to about 10 meters below the surface.

4

Science and Technology Log

“Phytoplankton are incredibly small. Each one is a single cell or a chain of identical cells. One teaspoon of seawater can hold a million phytoplankton.” (from Sea Soup: Phytoplankton by Mary M. Cerullo) They are so small that pictures of them must be taken through a microscope that magnifies them hundreds times. There are thousands of different kinds of phytoplankton, and new species are being discovered all the time. In fact, some kinds of phytoplankton were thought to be dust specks on microscope slides, until researchers built microscopes that are more powerful and discovered that those specks were really living organisms. Even though phytoplankton are plants, they don’t look like plants on land. They don’t have roots, stems, or leaves. “Instead they resemble spiky balls, tiny harpoons, links on a bracelet, spaceships, and many other shapes that defy description.” (Cerullo)

Why should we care about something that most of us will never see? First, phytoplankton are the base of the ocean food web, and all other living organisms in the ocean depend on them. Many ocean animals (including zooplankton) eat them, and are in turn eaten by larger animals. Without phytoplankton, the ocean food web would collapse. A special kind of phytoplankton called zooxanthellae helps to build coral reefs, one of the largest structures on earth. Corals are animals, but they need the help of the zooxanthellae to survive. The zooxanthellae live with the corals, providing food and oxygen, helping the corals take in minerals, and giving the corals their beautiful colors. Many people are worried about global warming, often called the greenhouse effect. This phenomenon is mostly due to the release of excess carbon dioxide into the air, which traps heat in the upper atmosphere. Every year, phytoplankton use nearly half of the carbon dioxide, slowing down global warming. Phytoplankton also help replace the ozone layer, which protects us from the harmful ultraviolet rays of the sun. The remains of ancient phytoplankton provide us with oil and natural gas to use for energy. When they died, their remains sank to the bottom of the ocean, were covered with layers of mud, and over millions of years changed into oil deposits. “Products made from phytoplankton also filter swimming pools, distill fruit juice, wine, and beer, put the polish in toothpaste, and keep dynamite from exploding too soon. But perhaps most important, phytoplankton help us to breathe. About half of the world’s oxygen comes from phytoplankton. That means every other breath you take is thanks to phytoplankton.” (Cerullo)

As you can see, keeping the ocean environment healthy for phytoplankton is very important. Whenever you enjoy your warm house on a cold day, enjoy pictures of corals, eat fish, brush your teeth, or just breathe, you have phytoplankton to thank!

Personal Log

Now that we have been at sea for almost two days, I am adjusting to the watch schedule, which is different from normal life on land. My watches are from 6:00 a.m. to noon and from 6 p.m. to midnight. I try to get four or five ours of sleep between midnight and 6:00 a.m., and a shorter nap in the afternoon. Sometimes there is time to rest even on watch, while we are traveling to the next station. It’s a good time to catch up on reading, or wander around and ask questions about ship operations. About halfway through the cruise, Julie and I will swap watch schedules so that we can each experience what happens at other times of the day. Meals are excellent; usually better than I eat at home, since someone else is doing the cooking! The weather continues to be warm and muggy, but this morning is a little cooler. The crew is keeping an eye on Tropical Storm Irene, which does not look like a threat to our mission. Best of all, I have not been seasick, and probably won’t be unless we hit some rough seas. Today we discovered a stowaway in the wet lab. As the fume hood was being repaired, a bat flew out and perched on the ceiling (See picture #6). Definitely not a shipboard critter! Our chief scientist, Jerry, caught it in a paper cup and released it. We were close enough to land that the little guy should make it safely to a more hospitable habitat. Until tomorrow.

Greta Dykstra-Lyons, August 15, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 15, 2005

Science and Technology Log

Last night I was invited to attend an early morning session in the oceanography lab with oceanographer Candy Hall. Like most mornings on this cruise, she and colleague Liz Zele were collecting water samples from 1000 meters and up with a device known as the CDT (Conductivity, temperature with depth).  These samples are used to test things like  nutrient, salt, and chlorophyll levels. Candy also runs a primary productivity test on the samples.  This test will identify the rate at which phytoplankton grow.

After a short nap, I was off to the flying bridge.  Due to the fact that the sun was shining (a first in over 2 wks) and the seas were calm, it felt like a promising day.  There was the typical early morning fin whale sighting, followed by a lull.  During this let-up it must have been decided that our time would be best spent fishing for albacore (as several trawlers were within sight). Almost as soon as the fishing lines were tossed over a blue whale appeared not far from the boat.  The sun on the whale’s back made for a beautiful sight in and out of the water.  It did not take long to get the small boat launched and on the trail of the whale for a biopsy and photographs.  The time between mammal sightings was spent watching birds. My highlight today was observing a flock of arctic terns headed to Antarctica. This I am told is the longest migration of any animal.  Today became more fruitful when four adorable Dall’s porpoises flirted with our bow for several minutes.  To top it all off…as we were beginning to enjoy our first visible sunset and the rising of a nearly full moon, observers found spunky dolphins engaging in acrobatics worthy of gold medals near the horizon.  It was not long before they graced us with their playful presence. Several of us took turns in the bow chamber and caught some underwater glances as well as auditory treats!  Smiles all around.

Yesterday, Monday, a somewhat elusive whale species showed itself despite the horrid weather. Two Baird’s beaked whales appeared around the boat for several surfacings.  Luckily, the photographers were able to get a few good head shots. And, like most days, there was the morning fin whale sighting! Due to poor visibility, observers went off effort a bit early.  Sunday also supplied us with less than perfect condition, but a fin whale was recorded before noon. The JORDAN picked up a worn-out, far from home hitchhiker in the afternoon.  The deck of the ship hosted this cowbird for the evening. She hasn’t been seen since.

Saturday’s conditions were similar to Sundays, but it was even colder.  The only sighting was…you guessed it, a morning fin whale. When there are few sighting to report and animals to observe, the members of the JORDAN become curious about floating objects. During these “slow times” the ship has collected a few things, three buoys to be exact. Two of them are your standard orange plastic fishing buoys (probably headed for the dumpster).  These buoys provided bonus entertainment because they had lines attached to them and thus “things” attached to the lines. The other buoy is a much more prized and sought after glass fishing buoy once used by Japanese fishermen.  It was given to the captain.

Tomorrow is our last full day of the cruise.  Currently we are about 60 miles from the coast. Due to our position and course, tomorrow has the potential to be an outstanding day for observing marine mammals and birds.

Joan Raybourn, August 14, 2005

NOAA Teacher at Sea
Joan Raybourn
Onboard NOAA Ship Albatross IV
August 14 – 25, 2005

Mission: Ecosystem Productivity Survey
Geographical Area: Northeast U.S.
Date: August 14, 2005

Weather Data from the Bridge

Latitude: 40° 01’ N
Longitude: 71° 37’ W
Wind direction: SSW (207)
Wind speed: 14 knots
Air temperature: 24° C
Sea water temperature: 24.8° C
Sea level pressure: 1015 millibars
Cloud cover: Hazy

Question of the Day: Phytoplankton are plants and use photosynthesis to make their own food. Where in the ocean would you expect to see phytoplankton living?

3

Science and Technology Log

The main function of this cruise is to collect plankton samples, which will be analyzed to determine the health of the ecosystem. The word plankton comes from the Greek “planktos”, meaning to drift. These tiny creatures of the sea have very little swimming ability of their own, but drift with the currents of the ocean. Plankton fall into two groups: phytoplankton, which are plants and require sunlight for photosynthesis; and zooplankton, which are animals. Phytoplankton are the base of the ocean food web and are the food source for zooplankton. Some kinds of zooplankton are plankton for their entire lives, drifting at the mercy of ocean currents. Other kinds of zooplankton are in the larval stage of their life cycles and will grow and change into free swimmers or bottom dwellers. Most plankton are microscopic, but some are much larger, such as jellyfish. I will expand on these topics in the days to come.

In addition to the plankton research, we have two scientists from the Environmental Protection Agency (EPA) with us. They are collecting samples from the bottom of the ocean, as well as water samples at each of their sampling locations. The first sample collected this morning was mostly sand, and it will be analyzed for both chemical and biological properties. The chemical analysis will show what kind and how much of any pollutants are present. The biological analysis will show how many and what kind of organisms are living on the ocean floor. Both sets of information give important clues to the health of the ocean ecosystem, and about human impact on it.

These two sets of data, from the plankton collection and the ocean floor collection, will give scientists a good picture of how healthy this part of the ocean ecosystem is. Healthy plankton is critical to the health of all other ocean species, since it is the base of the food web. Humans can have an impact on that through pollution of the water, whether intentional or not. This research will help us understand how we can keep our oceans healthy.

Personal Log

I arrived in Woods Hole, Massachusetts on Friday evening and spent the night in town. At the motel, I met the other teacher, Julie, who will be sailing on this cruise. She teaches eighth grade science in Albany, New York. On Saturday morning we made our way to the dock and boarded our home for the next two weeks, the NOAA ship Albatross IV. Jerry, our chief scientist, showed us around the boat and introduced us to the crew and other scientists. We moved into our room, retrieved linens from a closet and made up our bunks. At 2:00 p.m., we set sail for the southern portion of our cruise. It was foggy as we left the harbor so visibility was poor. We participated in an abandon ship drill, struggling into our “Gumby” suits and learning how to work all the parts that will keep us safe if we have to abandon the ship. In a real emergency, I will have to be much faster! The weather, while humid, is much cooler than back home in Virginia Beach. Julie and I are on opposite watch schedules, so we will see each other only briefly during the cruise. The crew and scientists are all very friendly and helpful, which is good because I have so much to learn!

James Miller, August 14, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 14, 2005

Science and Technology Log 

Most of the day was set aside for administrative duties; however, I did get to meet my temporary roommate, Dave Sinson.  Dave works for NOAA as a surveyor and is assigned to the RAINIER for this leg. Dave and I had an interesting discussion about statistics and his goal to integrate a new software algorithm for analyzing and reporting bottom contour and depth data.  When bottom contour data is collected, the sonar reports points every 10 centimeters.  This, as you can imagine, creates a tremendous amount of data, which explains why their computer system has over 12 terabytes of storage.  Anyway, it would be impossible to illustrate all of this data on navigational charts; therefore it must be averaged in the most efficient and accurate way.  Apparently, to date, all of this “averaging” has been done by hand and there has been much discussion regarding the best method.  In any event, Dave is interested in my knowledge of statistics and I’m obviously interested in hearing more about the new program, in addition to the manual process they are currently using.  This has great potential for lessons because next school year I will be teaching a unit on probability and statistics.

I am also getting a grip on the organizational structure of the ship.  There are six main departments.  You have the Officers (Commanding Officer, Executive Officer, and Junior Officers); Survey Dept. (scientists and survey technicians); Deck Dept. (deals with launching and operating boats, cleaning, and gear); Engineering Dept. (responsible for keeping all the engines and mechanical devices operating); Steward (all food preparation); and Yeoman & Electronics (Administrative and IT).

Personal Log 

Although a bit overwhelmed, I’m enjoying every minute.  I’m never bored and seem to always have something to do or someone to meet with.  When I do have a few minutes I just wander around ship getting more familiar with it, or introduce myself to crewmembers and ask them questions (without being a pest of course).

I did get my ship e-mail address and password for the network.  Although, the computers that I have access to are giving me some trouble, which I’ve heard is not uncommon. I lost some files that contained a couple hours worth of work—we’ve all been there—very frustrating. Dave came to the rescue though and gave me a removable storage chip that I can use to back up all my files.  I think this will solve any future issues.

Went into town today to buy some personal things.  On the way back, I saw a 311-pound halibut hanging outside of one of the charter boat weigh-in areas.  Amazing sight!

The beds are very comfortable and I am sleeping well.  Love the food.

Things to do for tomorrow: 

1) Type my daily logs and e-mail them to NOAA Headquarters.

2) Visit the engine room.

3) Talk more with Dave regarding his work with the data.

Greta Dykstra-Lyons, August 14, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

 

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 14, 2005

Drew Barth

Profile of More Crewmembers 

Name: Drew Barth
Age: 20
Home: Billings, MT
Position on DAVID STARR JORDAN: Wiper–engine room
Years of experience: 1
Favorite part of job: Traveling to different places
Favorite cruise: Shark cruise
Favorite port: Yet to be discovered
Memorable experience: Dolphins bow riding while in the small boat
Continents visited: 1

 

 

lyons_log7a
Jason Larese

Age: 37
Home: San Diego, CA
College: UC-San Diego and University of Washington
Major: Undergrad—chemical engineering; Graduate—Marine Policy
Job: Biological Technician
Position on DAVID STARR JORDAN: Independent observer
Number of months at sea this year: 1
Highlight of job: Stimulating, exposure to interesting things
Memorable experience: First stranding—deceased juvenile gray whale; bow-riding dolphins in bioluminescence
Favorite species: Risso’s dolphins
Concern: Apathy
Continents visited: 4

 

 

lyons_log7b
Mike Sapien

Name: Mike Sapien
Age: 37
Home: San Diego, CA
Position on DAVID STARR JORDAN: 2nd cook
Years of experience: 2
Previous experience: In port support for DAVID STARR JORDAN and deck crew
Favorite part of job: Star gazing
Favorite cruise: Clipperton Island
Favorite port: Acapulco, Mexico
Memorable experience: An 8′ sand shark brought up in bottom trawl net
Other boats in NOAA fleet: ALBATROSS IV and DELAWARE
Continents visited: 1 

James Miller, August 13, 2005

NOAA Teacher at Sea
James Miller
Onboard NOAA Ship Rainier
August 13 – 27, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific, Alaska
Date: August 13, 2005

On the bridge, exploring the ship
On the bridge, exploring the ship

Science and Technology Log 

I was picked up at the hotel by the ship’s liberty van at noon. At the ship, I was greeted by Officer Laurel Jennings who assigned me temporary sleeping quarters. To my surprise, the room was two doors down from the captain’s cabin and across the hall from the executive officer’s – which probably explains why they said temporary.  Typically, crew and guests are assigned shared rooms down in the bottom of the ship and officers and scientists have more private and comfortable rooms near the Bridge.

Following the room assignment, Officer Jennings gave me a thorough tour of the ship. I was amazed at how much space there is onboard a ship that appears, from the outside, to be relatively small.  I also had an opportunity to meet Commanding Officer Guy Noll. He was very friendly and informative.  He said that on Tuesday the ship will be hosting some Congressional staff visitors from the Senate Appropriations Committee.  Later that afternoon following the visit the ship will depart for Mitrofania Island that is located several hundred miles south of Kodiak Island.  He also said the ship has been fortunate to have successful cruises this season with favorable weather; however, it seems we may encounter a strong weather front on Wednesday or Thursday.  The forecast is calling for gale force winds and seas to 17 feet.  So it appears I will be experiencing what it is like to work on a ship in rough seas right from the get go!

There were many details that I learned about the ship during my tour.  Some of them included:

1) Ship Specifications: The RAINIER was built in 1967 and is 231 feet long.  Its complement is 10 commissioned officers, 35 crew, 4 engineers, and 4 scientists (and 1-2 Teacher-at-sea members).  The RAINIER was designed mainly to be a coastal waters ship.  Due to its relatively shallow draft (only 15 feet) and high center of gravity, it is susceptible to rough seas.  The ship cruises at 12 knots and has a range of 5,898 miles.

2) Ship’s Mission: The RAINIER’s primary mission is to collect and analyze bottom contour data to eventually be used in navigation charts.  The ship is equipped with six 29-foot launches fixed with various bottom sonar devices that are deployed to map the ocean bottom in coastal waterways in and around Alaskan waters. The process from data collection, to analysis, to navigational charts is a lengthy one. Currently it takes up to three years for the data that the RAINIER collects to make it onto charts.  I was amazed to hear that many areas around AK have never been charted. In fact, the waters around Mitrofania Island are one such area. Other responsibilities of the RAINIER are GPS mapping of obstructions, and bottom and seawater temperature collection.

3) Propulsion System: The engine is always in gear, meaning the propellers are always turning. Forward, neutral, and reverse is obtained by varying the pitch of the propeller blades. Neutral pitch yields zero thrust, positive pitch yields forward thrust, and negative pitch yields reverse thrust.

4) Other than food supply, the ship is totally self-sufficient.  It generates its own 110-volt power; it produces its own fresh water by a process of desalination; it cleans all wastewater prior to discharging it; and it has its own incinerator to dispose of burnable waste such as paper, cardboard, and rags.

Personal Log 

I’m really excited and find myself fascinated about the smallest of details regarding living onboard ship, the facilities, its mission, and the crew’s job responsibilities.  One such detail is they have a small workout area with treadmills.  I couldn’t help but wonder how in the world they run on the treadmill when the ship is underway or tossing?  Liberty is given to the crew on weekends; therefore, there is only a fraction of the crew on board. Everyone I’ve met thus far seems friendly and happy to have me aboard.  Two TAS members left the ship as I arrived, so the crew is very familiar with the myriad of questions coming from us greenhorns.  I had my first meal on board (beef potpie), which was excellent. I’m having a bit of trouble remembering all the crewmembers names and responsibilities, but I’m sure it will come with time.  I suppose as soon as I do commit it to memory it will be time for me to leave.  I’m looking forward to being put to work. I was told that they are a bit shorthanded this leg and there going to use me every chance they get.  Sounds good to me!

Things to do tomorrow

1) Get a computer network password and email address. 2) Watch the computer network security video. 3) Get assigned a survival suit and all other required gear. 4) Get mandatory survival suit training. 5) Fill out new crewmember packet and get proper clearance from Officers.

Greta Dykstra-Lyons, August 13, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 13, 2005

Profile of Another Crewmember 

Name: Laura Morse
Age: 36
Home: Portsmouth, NH
College: SUNY Buffalo, NY
Majors: Biology and anthropology
Job: Field Biologist (specializing in marine mammals)
Position on the DAVID STARR JORDAN: Mammal Observer
Years of experience: 11
Months at sea this year: 9 (including work with river dolphins in Cambodia)
Best part of job: Travel, being on the ocean, and the freedom and flexibility the job offers|
Concerns: Coastal pollution and fisheries interaction
Favorite species: North Atlantic right whales
Continents visited: 7 

Greta Dykstra-Lyons, August 12, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 12, 2005

Working in the lab
Working in the lab

Science and Technology Log

Since I last checked in, several days and a lot of water have passed by.  I wish I could say the same for marine mammals!  For quite some time we have been in international waters between 200 and 300 miles off shore. Some time last night we made a turn that put us at a heading of about 105 for most of today.  The turn of the boat also seems to have brought a turn of good luck for the observers.  Up until today the sightings have been very sparse. Tuesday only one sighting of sperm whales was recorded and observations were delayed due to uncooperative weather. We did manage a successful fire-and- abandon-ship drill.  At about 3:00 p.m. on Wednesday a sperm whale was sighted and the decision to launch a small boat for photos and biopsy was made.  Luckily for me, it was my turn in the rotation to take a ride. Despite using a directional hydrophone we were not as successful as we had hoped in tracking the whale while it was submerged.  The closest we were able to get was about 30 yards away.

Whale sighting
Whale sighting

Oddly enough, in our pursuit of the sperm whale we stumbled upon a fin whale and had good luck pursuing him/her.  The small boat returned to the JORDAN about at 6:30 p.m.  It was quite a unique and thrilling experience to get that close to a such a gigantic animal!  I am told that under normal circumstances, vessels must be at least 100 yards away from the whales or risk a hefty fine. Due to special permits we are allowed a more intimate experience.  Wednesday evening I assisted with the oceanography chores, including the bongo net tow. Thursday was a slow sighting day. It was not until the afternoon that a sperm whale was sighted. Shortly after dinner we passed by a weather buoy.  This excited the crew because often fish will hang out by buoys and other floating objects.  The observers took a short break and the boat made a few slow circles around the buoy.  To everyone’s dismay, no fish were caught.  By Thursday evening we had reached our western most position.

Today, Friday, was a relatively busy day for sightings.  In total, nine animals were observed. Most exciting was a blue whale that passed within a good viewing distance from the ship. Cameras were clicking away! One other blue whale was sighted and the small boat was launched. In addition to the blue whales, sperm whales and fin whales were added to today’s list.  Due to equipment failure and malfunction in the oceanography lab, I stayed away today!

lyons_log5b
Using the hydrophone to track whales

 

Philip Hertzog, August 12, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 12, 2005

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

Last evening we stopped and fished for a few hours off the Barren Islands located between Kodiak Island and the Kenai Peninsula.  I caught three rockfish with a 12-pound test line (compared to 60-pound used by others) by slowly reeling in the fish and letting them run to prevent breaking my line.  A few other people caught rockfish and lingcod, but no one came near reaching their limit like at Albatross Banks.

After cleaning my fish, I went up to the flying bridge around 11:30 pm to watch the evening sky. The flying bridge sits above the main bridge and forward of the ship’s smoke stack.  It offers the best view on the ship with an open deck and observation platforms.  Jonathon Anderson stood watch on the center platform looking ahead for any whales that might surface in front of the RAINIER.  A small diameter metal tube runs down from the flying bridge to the main bridge, which serves as a communication link by shouting into it. In addition to calling down any whale sightings, Jonathon let the bridge know of any light buoys or vessels he spotted.  The deck crew takes turn standing watch on the flying bridge, which usually starts at dusk and ends at sunrise.

The main bridge maintains a quiet dignity.  Before entering the bridge, you must obtain permission from the officer of the deck.  People talk quietly and infrequently while on the bridge. The conversations focus on ship’s business, but mostly quiet dominates the bridge as the officers concentrate on handling the ship safely.  An officer always scans the horizon to look for potential danger to the ship.  A second officer maintains record books and frequently plots the ship’s location on charts.  A helmsman, usually a deck crewmember, steers the wheel under direction of the officer of the deck.  The CO comes on the bridge when problems arise and is the only one allowed to sit in the Captain’s Chair.

Here are photographs of the bridge and deck crewmember Dennis Brooks serving as helmsman:

After I spent a few minutes on the flying bridge, Corey Mussey and Allison Thueur relieved Jonathon of watch duty. Allison came on board with us in Kodiak as a new General Vessel Assistant. Corey stands watch with her as part of her training, but she will eventually be on her own.  Allison previously worked on sailboats in the Caribbean and enjoys life on board. Allison told me she makes a point of teaching any visitors to the flying bridge the name of at least one star.  She showed me a star and then pointed out several other constellations.  Allison then made Corey point out the star he learned from her the previous night.

I stayed on the flying bridge for 45 minutes and looked at two distant volcanoes to the west silhouetted against a faded orange skyline.  To the east, the dark outlines of mountains on the Kenai Peninsula slowly approached us as we headed towards Homer and our final transect runs starting at 2:00 am.  What a wonderful way to spend my last evening at sea on board the RAINIER.

My journey aboard the RAINIER ended at 8:00 am as we pulled into Kachemak Bay and tied up at the Alaska State Ferry Terminal in Homer.

hertzog_log19_img_3

I want to thank the senior officers for giving me the freedom to explore the ship and allowing me to participate in all aspects of ship life.  I end my log entries with a little bit of information on each of them.

Commander Guy Noll
Commander Guy Noll, Commanding Officer

Commander Guy Noll captains the RAINIER. Commander Noll grew up in Olympia, Washington (in my own neighborhood) and has three children.  His oldest daughter will enter the Eighth Grade this fall in a school district north of Seattle. The Commander served on board the RAINIER as an Ensign earlier in his NOAA career and returned as Executive Officer about six months ago.

In June he received a promotion to Commanding Officer (CO) during a formal ceremony in Seattle.  The Commander has many years of experience in conducting hydrographic surveys and I found him to be one of the most knowledgeable people on board in charting technology.  He also is an expert fisherman, though I observed that his command duties severely limit this recreational activity.

 

 

 

 

Commander Julia Neander, Executive Officer (XO)
Commander Julia Neander, XO

Commander Julia Neander serves as our Executive Officer (XO). The XO is second in charge, sets the ship’s schedule, and makes administrative arrangements for mooring in harbors like Kodiak and Homer.  She also deals with personnel issues, makes room assignments, and resolves disputes among the crew.  In many ways, XO Neander’s job is similar to that of an assistant principal at a school while the CO acts as the principal.

Commander Neander went to Montana State University (at the same time I did) and once circled the Earth over the course of a year on a NOAA ship. Her husband served on the RAINIER as XO and they have a five year-old son.

 

 

 

Lieutenant Ben Evans, Field Operations Officer (FOO)
Lieutenant Ben Evans, Field Operations Officer

Lieutenant Ben Evans runs all of the mapping efforts as the Field Operations Officer (FOO).  As the FOO, Lt. Evans makes decisions on all aspects of survey work.  He organizes the junior officers in the field and constantly monitors the radio to resolve any technical problems the survey crew encounters on the launches. Lt. Evans also looks over the quality of the sonar data and determines its acceptability.  He oversees the officers processing the data on board the Rainier and works long hours to make sure mapping efforts run smoothly.  Lt. Evans grew up in upstate New York near Lake Ontario.  To the right is the FOO out in the field trouble shooting the HOR CON.

 

Again, I thank the Senior Officers and all the crew of the RAINIER for the wonderful experience

Personal Log 

My voyage has officially ended aboard the RAINIER as her Teacher at Sea.  I’ll spend tonight on the ship and then stay in a hotel tomorrow night before flying back to Washington State.

As I write this, I hear laughter in the hallway from the Junior Officers for the first time since we left Mitrofania. Commander Neander stops by with her five-year-old son and says good-bye to me as she leaves to spend a weekend with her family away from the ship. Other people talk about plans for the weekend: going to Anchorage, renting a hotel room, going camping, and eating in a fine restaurant.  A joyous mood seeps throughout the RAINIER as people prepare for two days off after three weeks at sea.

What a journey for me.  I got to touch base with technical fieldwork that I had done prior to teaching. Before the RAINIER, I had spent no more than two continuous days aboard a ship. I learned how a ship at sea operates like a small community, like a family.

I look forward to meeting my new students in a few weeks and telling them about the RAINIER. Both Mike Laird (the other teacher) and I have started to use our experience to modify lesson plans for the fall.

The RAINIER departs in a few days for the uncharted waters of the Southwestern Alaskan peninsula. Miles of coastline and deep water await her as she carries out a mission to update decades-old nautical charts that will then safely guide mariners engaged in commerce or pleasure.  Goodbye to the RAINIER and may fair seas greet you on your mission…

Goodbye, RAINIER!

Question of the Day 

Would you like to live on a ship like the RAINIER for a year?  What are the pros and cons of living a seafaring life?

Mike Laird, August 11, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 11, 2005

Weather Data

Time: 13:00
Latitude: 55° 53.4 ̍ N
Longitude: 158˚ 50.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 225˚
Wind Speed: 10kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: Sky 8/8 covered; Lower level: cumulus Mid-level: altostratus High level: cirrus

Science and Technology Log 

The survey operations being conducted in the waters around Mitrofania have been closed as we begin our transit that leads to the end of an educational and entertaining 22-day voyage onboard the RAINIER. The RAINIER’s reputation as one of the most productive hydrographic survey platforms in the world can be attributed, in large part, to her officers and crew. The people who serve onboard the RAINIER come with different backgrounds, levels of education, and amounts of experience at sea.  They come for different reasons, plan to stay for different periods of time, and have different expectations of where their service on the RAINIER will lead them.  However, each of them takes pride in doing their job well. Not only does the survey and support work require everyone’s contribution but also the safety of the people and ship demands constant teamwork and cooperation.

During the time I spent on the RAINIER, everyone I interacted with was friendly and attempted to involve us in the day-to-day operations of the ship as much as possible.  I felt like a member of the team, not an outsider, and was encouraged to participate in all aspects of ship life.  All ship personnel made themselves available and patiently answered the multitudes of questions sent their way.  As a result, I have learned a lot (admittedly there is a great deal more to learn) during these three weeks about the science and technology behind hydrographic research and the importance of strong support from the following areas: the officer corps, deck, engineering, electronics, the steward’s department, and ship’s yeoman.  Without their support, the survey crew’s work would not happen.

So as we draw closer to Homer, AK and the end of my journey with the RAINIER, I would like to thank the officers and crew of the RAINIER for inviting me along for the ride!

Now – some miscellaneous stuff that didn’t fit anywhere else in my logs:

  • Fuel capacity of the RAINIER: 112,000 gallons
  • Recreational activities available during off duty hours:
  • Fishing: salmon (king, coho, pink); yelloweye rockfish; black rockfish;  lingcod
  • Sea kayaking
  • Shore exploration if a skiff is available
  • Movies – available most hours
  • Exercise area: free weights, weight machine, rowing machine,
  • stationary bike, and treadmills (2)
  • Computer games in the crew library
  • Cribbage
  • Whale watching
  • Electronic newspaper (New York Times Digest) complete with crossword
  • College degrees held by officers and crew (list is not all inclusive):   Marine science Electronic engineering and technology Biology Geographic biology Electrical engineering Environmental studies Anthropology Physics Zoology Oceanographic engineering Shoreline engineering

Personal Log 

We are scheduled to arrive in Homer around 8:00a.m. tomorrow.  The first liberty vehicles will be available in the afternoon, and I’m planning to head into town to do a little gift shopping. I was not home for my wife’s birthday (although I did send a card, and called to wish her happy birthday from Kodiak during our refueling stop), and I have to find something really good.  Planning to go to Alaska Wild Berry Products shop (I received a helpful hint before leaving home that there is one located “right in Homer”).  I also plan to check out the Pratt Museum, a place called the Blackberry Bog – sounded like an interesting shop, and of course the Salty Dog (the local watering hole).  I only have two more nights on the ship. Have to pack up, clean the room, and vacate the premises before the arrival of the next teacher at sea Saturday afternoon. I’ll spend Saturday night at the Bidarka Inn in Homer before flying out Sunday night.  It’s been great – couldn’t ask for a better experience!

Philip Hertzog, August 11, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 11, 2005

Weather Data from Bridge

Latitude: 58˚ 04.93’ N
Longitude: 152˚ 02.55’ W
Visibility:  10 nm
Wind Direction: 215˚
Wind Speed: 4 kts
Sea Wave Height: 0-1 feet
Sea Water Temperature:  10.6˚ C
Sea Level Pressure: 1025mb
Cloud Cover: 0, no clouds

Science and Technology Log 

We continued our transit towards Homer, but made a stop in Kodiak to pick up fuel.  I woke up with the sun rising in the eastern sky and ran up to the flying bridge to snap these photos of Kodiak Island as we entered the harbor at the Coast Guard Station. We stayed at the station for about four hours and had the opportunity to go on shore to the Station’s store. The RAINIER took on 17,000 gallons of diesel fuel that cost $ 20,000. This replaced the fuel we used for our travel during the past three weeks.  The Coast Guard charged the ship at a rate of $ 1.18 per gallon, but other locations may over $ 2.00 a gallon.

Screen shot 2013-09-05 at 10.49.55 PM

In leaving the Station, we followed navigation buoys out of the harbor.  The buoys located the deep water channel the RAINIER follows to avoid grounding. Two main types of buoys help mariners navigate waters: nuns and cans.  Nuns are red in color and the tops are triangle shaped (like a nun’s cap).  Cans are green with a flat top shaped (like a can): If you are returning to harbor, one keeps the red buoys on the right (starboard) side and the green buoys on the left (port) side of the ship.  Leaving harbor you do the opposite, green on the right and red on the left. Everyone on board has memorized the saying “red right returning” to remember the proper side to pass buoys.

As we left Kodiak Island and headed into open waters, the bridge spots Orca whales on both sides of the ship.  The Orcas traveled in small groups of two to four and surfaced to show their large dorsal fins.  I spotted the large fin of a male and several females nearby.  Orcas follow their mothers and the males tend to be “mamma’s boys.”  The females lead the pods and can live to be over 80 years old.

Personal Log 

The seas were calmer last night and the crew got some rest.  People’s spirits picked up after the large halibut fishing excursion and in anticipation of a free weekend. We had clear blue skies today without a cloud in sight.  We have been lucky to have three weeks without rain in Southwestern Alaska. I spent several hours on the flying bridge watching the scenery pass. Our trip is winding up and will end early tomorrow in Homer, Alaska.  I am starting to think about how much I will miss being on the ship, but I’ll be glad to get back home to the Olympia/Tacoma area in Washington State. Tonight we will stop for a few hours to fish near the Barren Islands.  Stay tuned for my report and my last log entry.

Question of the Day 

We learned about green and red buoys.  What other types of buoys do ship’s navigators need to keep them safe?  Make up your own buoys and come up with a color code and shape.

Philip Hertzog, August 10, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 10, 2005

Chief Yeoman Paul Fletcher in his office
Chief Yeoman Paul Fletcher in his office

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

With Mitrofania Island far behind, we transited the deep waters of the Gulf of Alaska towards Kodiak Island. The RAINIER rolled during the night as we stopped to take a CTD cast and run a six-hour sonar line on channel approaches to the Semidi Islands.  Few people slept well and the crew talked very little at breakfast due to the exhaustion of three strait weeks of solid work.

RAINIER’s crew works a hard 10 to 12 hours each day, but they do receive overtime pay. Paul Fletcher, the Chief Yeoman, told me he has seen  young people out here make enough money to pay for college if they save money and keep expenses down.  Paul noted that the overtime and sea duty pay make up for low base wages.  In addition you get three meals a day, housing, and you don’t need to carry full car insurance while out to sea for 200-plus days each year.

left: Megan Guberski, middle: Jodie Edmond, right: mooring the ship
left: Megan Guberski, middle: Jodie Edmond, right: mooring the ship

As mentioned in an earlier entry, the crew of the RAINIER consists of two groups: NOAA Corps Officers and civilians.  Let’s focus on the civilian portion today.  Six departments employ the crew of the RAINIER.  Some of the positions on board require a college degree, while others only require a high school diploma and a willingness to work hard.

I worked most closely with the Survey Department while on board the RAINIER.  The Department consists of survey technicians who go out on the launches to operate the sonar and then computer process the data on board the ship and generate maps of the ocean bottom.  Several levels of hydrographic survey technicians exist depending on one’s experience and training. You generally need a four-year college degree with an emphasis in computer science or remote sensing, but two-year degrees with specialized computer training will also suffice.  Survey technicians I introduced to you in previous entries include Greg King, and the Boles brothers (Matt and Dan).

Left: Correy Muzzey drives a launch, Right: Getting ready to set anchor
Left: Correy Muzzey drives a launch, Right: Getting ready to set anchor

Though at first it may seem like a dirty and tedious job, the people of the Deck Department love their work.  Over the years people have actually transferred from other departments to work the deck crew.  Deck employees maintain the exterior and interior of the ship, moor and anchor the ship, secure lines, load supplies, stand watches, steer the ship, swab the decks and clean bathrooms.  More experienced deck staff also get to drive the launches and serve as coxswains.

Mike Riley, who is in charge of the motors on all the launches.
Mike Riley, who is in charge of the motors on all the launches.

One starts out as a deck crew member in the position of Ordinary Seaman (OS) or general vessel assistant (GVA). OS’s and GVA’s need a high school diploma, need to be at least 18 years old, but don’t need prior experience.  You can then move up to endorsed positions by meeting time and training requirements set by the US Coast Guard.  The RAINIER provides on-the-job training and sends crew to workshops when in port so one can move up to higher positions.  With training and 365 days at sea, one can be promoted to Able Seaman.  More advanced positions include Seaman Surveyor and Chief Boatswain.

The Engineer Department operates all of the ship’s systems such as propulsion, fuel, electric power, ventilation, sanitation, water, and launch motors.  This Department has the highest paying jobs on board the RAINIER, but also the most responsibility to keep the crew safe by making sure the engines don’t fail while at sea.  Some positions require special licenses (for example Diesel Engine 2400 horse power Class II), but many people start out with a high school degree and work their way up by learning on the job. You can start out with no experience as a Wiper (wipe and clean up oil) and then move up to an Oiler after a year of experience.  One can move into the higher level positions right away if you have trade training from high school or a Vocational/Technical school.

Mike also checks the launch hulls for cracks and makes safety recommendations on whether or not a launch should go out to survey.  Mike is in his mid twenties and an expert fisherman while off duty.  Engineering is a great place for those who are mechanically inclined and love repairing machinery. The Steward Department plans menus, prepares meals, maintains the galley and provides clean linens for the ship. You can start out as General Vessel Assistant with no experience plus a high school diploma and then train and work your way up to higher-level positions such as Cook or Chief Steward.  Prior experience in on-shore restaurants or culinary schools can land you a higher-level position right away.  Sergio Taguba, our Chief Steward, started out at an entry-level position 35 years ago and worked his way into the top position. Sergio has been on board the RAINIER for almost the whole time and plans to continue with NOAA until retirement.

Raul in the kitchen and below are some of our galley
Raul in the kitchen and below are some of our galley

Our Chief Cook, Raul Quiros, learned his skills on board ship and started right after finishing school. Raul has been with NOAA for 25 years and on the RAINIER for the past nine. Raul enjoys working for NOAA and can be spotted fishing off the side deck any time he’s not on duty. When we first got to Cushing Bay, I spotted Raul catching our first halibuts, but he quietly took them below and never brags about his catches. The crew suspects Raul has caught more fish than any other person on board, but he shies away from any attention to his renowned skills.  The last two departments, Yeoman and Electronics, each have one person.  Paul Fletcher is the RAINIER’s Chief Yeoman.  A Yeoman is like a business manager on land.  Mr. Paul (as everyone on board calls him) handles the ship’s budget, payroll, personnel paper work, and mail. He works directly with the Commanding Officer and Executive Officer of the ship. Mr. Paul lives in Virginia Beach, VA when not on the ship and plans to retire there in December.  Mr. Paul retired from the Navy and joined NOAA around 1990-91.  He has been with the RAINIER since 1996.

Mr. Paul feels NOAA provides young people with an opportunity to learn about life and personnel management on board a ship. He feels more young people from urban areas like Tacoma (where I teach) should try life at sea for a couple of years and gain skills that will help them to be good managers.  When on a ship, you are with your boss and coworkers 24/7, Mr. Paul told me.  “You learn how to suck up your anger, because the person you’re angry with may be in the shower stall next to you or at the same meal table a few hours later.”

The galley
The galley

Screen shot 2013-04-12 at 9.06.27 PMLarry Wooten runs our Electronics Department and maintains all electronic equipment and computers onboard.  Larry told me the Electronics Department really has evolved over the past few years to a mix of skills especially in computers.  Larry makes sure the sonar and radar systems work and then he turns around to operate the computer’s file server.  After serving in the Air Force, Larry went to South Dakota State University to earn a degree in Electronic Engineering Technology. He has been with NOAA seven years and on board the RAINIER for two. Larry’s guitar always sits in the corner of his office and I hear from the crew he plays well during jam sessions held below deck when off duty.

I hope the students reading this entry have gotten a good feel for the positions on board the RAINIER and other NOAA ships. Many people stay for their entire careers on a ship, while others stay a year or two to gain valuable experience and then move on to other ventures.

Personal Log 

I think the NOAA ships offer a unique opportunity for many of my students to consider.  We have a diverse, multicultural crew on board with African Americans, Hispanics, Asian American and women.  The jobs range from those requiring college degrees to high school diplomas.  Learning aboard the RAINIER occurs continuously as older staff mentor younger crewmembers on the skills they need to advance.  I can see both my “hands on” and “cerebral” students finding challenges and adventure on a NOAA ship.  If only for a year or an entire career, I could see my students getting valuable skills on board ships that will serve an entire life time. On other matters, we did get a break from our long transit to Homer last night around 8:30 pm.  We stopped at Albatross Banks, an underwater pinnacle that rises up from the ocean bottom to about 48 feet below the surface.  We took out our fishing poles and soon caught large halibuts off the bottom.  I caught one on my first cast and almost everyone reached their limit in a matter of minutes.  Josh Riley caught one over 77 inches long that weighed over 200 pounds. It took four people to haul it onto the fan tail.

Josh’s fish and a second photo of Dan Boles cleaning a halibut
Josh’s fish and a second photo of Dan Boles cleaning a halibut

Question of the Day 

Why are underwater pinnacles a good place to catch fish compared to deeper, flat bottoms?

Greta Dykstra-Lyons, August 9, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

lyons_log4
Jose Coito

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 9, 2005

Profiles of Four Crewmembers 

Name: Jose Coito; Age: 52; Home: San Diego; Position: Lead Fisherman–Deck department; Years on DAVID STARR JORDAN: 12; Previous experience: 22 years as a tuna fisherman; Favorite part of job: Working with different people, going different places, getting close to the whales in the small boat; Favorite port: “All good. Most every port we have a good time…eat, drink, have fun.” Most enjoyable cruise: Southern shark cruise; Number of continents visited: 4

Name: Annie Douglass; Age: 29; Home: Olympia, WA; College: Evergreen College, WA; Major: BA Science; Job: Mammal Biologist at Cascadia Research Collective;

lyons_log4a
Annie Douglass

Position on DAVID STARR JORDAN: Mammal Observer/Mammal Photographer; Years of experience: 8 years; Months at sea this year: 6 months; Best part of job: Getting close to the mammals in a small boat; Memorable sighting: Observing 12 killer whales attack a stellar seal lion in the Olympic  Coast Sanctuary; Concerns for marine mammals: Run-off contaminants effect on coastal animals and under water noise pollution impact on whales; Favorite species: Blue whales and humpback whales; Continents visited: 3;

 

 

Thomas Staudt

Name: Thomas Staudt; Age: 56; Home: Tucson, AZ; College: University of Iowa; Major: Psychology; Job: Seasonal/Transient Employee; Position on DAVID STARR JORDAN: Bird Observer; Years of experience: 30; Months at sea this year: 4; Memorable sighting: The first North American sighting of the Hornsby’s storm petrel off the DAVID STARR JORDAN last week! Concerns for seabirds: Loss of breeding habitat; Favorite species: Penguin; Continents visited: 7

 

 

Name: Candy Hall; Age: 29; Home: Cape Town, South African and York, England; College: University of Cape Town; Major: BSc Honors in Oceanography (working on masters); Job: Student; Position on DAVID STARR JORDAN: Oceanographer; Years of experience: 10; Months at sea this year: 4; Best part of job: Ship life; Memorable sighting: A pod of killer whales right next to zodiac–too close to get a photo (2001, Oregon coast); Concerns for oceans: Anthropogenic pollution and over population; Favorite species: Killer whale; Continents visited: 4

Philip Hertzog, August 9, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 9, 2005

Ensign Samuelson running RA 3’s positioning computer
Ensign Samuelson running RA 3’s positioning computer

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

We wrapped up our mapping in the Mitrofania Island area today.  Only one launch went out for the entire day and I got assigned to it. We took off from Cushing Bay and headed out to nearby Brothers Island and Long Beach for sonar mapping of the bottom.  A second launch went out for just a few hours and deployed SCUBA divers to chart the location of submerged rocks.  In the meantime, the RAINIER took off to map deep water approaches several miles to the east of Mitrofania Island and would pick us up at a rendezvous point in the late afternoon.

Some of the electronics I got to use.
Some of the electronics I got to use.

Ensign Nikki Samuelson served as our hydrographer in charge with Matt Boles’ assistance. Steve Foye handled the RA 3 launch. Ensign Samuelson has been on the RAINIER for around a year and also serves as chief medical officer.  She started out on the RAINIER by helping out the navigation officer and learning how to plot courses and determine the ship’s location.  She then gained experience in sonar mapping and now regularly goes out on the launches.  Ensign Samuelson likely will work on remote controlled submersible vehicles for NOAA in Rhode Island when she gets her land assignment in a year.

For most of the day our launch of four people saw no signs of other humans. Two Dahl porpoises charged over to our launch to ride our bow wave, but took off when they realized we cruised too slowly to make a satisfactory wake.  All day we saw the spray of Sei whales, but they kept their distance and only occasionally could we see a dorsal fin appear out of the water.

Technically, we had some challenges. In the morning, our CTD (conductivity, temperature and density) probe failed to work and we tried to fix it.  We concluded the battery had worn out and we exchanged ours with the divers before they headed back to the RAINIER. We then lost the Coast Guard transmission signal that corrects our global aboard. We tried several approaches with the radio receiver and finally corrected the problem.

I spent the day by helping on various tasks such as lowering the CTD probe, sitting on the bow to look for rocks, running the positioning computer and driving the boat. The water remained calm much of the day, but the sky turned gray and overcast.  What a contrast to the previous two days when we could see the glaciers on Mount Veniaminof under clear, blue skies. However, the cloud cover did give Mitrofania Bay a special beauty:

hertzog_log16b

At 4:30 pm we spotted a tiny dot approach us from the east that turned out to be the RAINIER returning to pick us up. Once aboard, the RAINIER resumed course to continue sonar work in the deep waters east of Mitrofania Island.  Our plan is to continue this work until 11:00 pm and then to set course to our final destination of Homer, Alaska where I’ll leave the ship on Saturday August 13. However, we’ll make a few stops for “biological sampling” (fishing) on the way and a couple of hours in Kodiak to pick up fuel.

Personal Log 

I felt melancholic today knowing our work in the Mitrofania area had come to an end and that the RAINIER would start heading towards my final stop in Homer.  I’ll especially miss seeing Sei whales almost every day and the great fishing off the fantail.

It didn’t help that I had a fantastic evening and stayed up until 1:00 am last night.  Four of us took a “short” fishing trip on the skiff to a nearby bay and each caught five large (8 pound range) salmon.  Our foursome often caught two or more salmon at a time that tangled our lines as the struggling fish crossed each other.  A fifth person on the skiff didn’t fish, but continuously netted the salmon for us.  Often we would have two salmon in queue while Ensign Nikki Samuelson struggled to get a third salmon out of the net and untangle the hook from the nylon fabric.  At one point Carl Verplanck just reached into the water and flipped a hooked salmon into the skiff.

The real work began when we returned to the RAINIER at 9:30 pm.  We cleaned processed, and vacuum sealed over 80 pounds of edible fish meat.  However, we also scrubbed all the fish scales off the fantail of the RAINIER.  We used bristle brooms and detergent to “swab the decks” and then Greg King blasted the deck using the fire hose to rinse it off. We had a fine evening of adventure to remember for a long time.

Question of the Day 

Why do Dahl porpoises like to ride bow waves? Explain your answer.

Greta Dykstra-Lyons, August 8, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 8, 2005

Science and Technology Log 

Choppy seas have made observations a bit challenging today.  Observers were able to spot a fin whale and calf this morning and another fin whale this afternoon.  The day ended with sperm whale sightings.  Our current position is increasing the number and variety of bird sightings.

 

Mike Laird, August 8, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 8, 2005

Weather Data

Latitude: 55° 53.3 ̍ N
Longitude: 158˚ 50.5 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 230˚
Wind Speed: 13kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 12.8˚ C
Sea Level Pressure: 1027.2 mb
Cloud Cover: Sky 0/8 covered

Science and Technology Log 

Today is probably the last day that I will be out on a launch, because tomorrow we will be running some survey lines using the ship’s sonar.  The launch I am assigned to (RA-2) is going out to collect bottom samples.  Bottom samples are primarily used to sample the ocean floor in areas that have been identified as potential anchor sites.  The information from the samples will be used to determine the locations of “good” anchor sites (sites that will provide a catch for the anchor, so it won’t just slide around).  These good anchor sites will then be included in the nautical information available for the area around Mitrofania.

A tool called a, clamshell sediment sampler, is used to retrieve the floor samples.  The clamshell is a metal tool about a foot-and-a-half long, weighing between ten and twenty pounds. It has a rounded head, really a set of spring-loaded jaws, mounted to a shaft that is seated on a circular metal plate (picture one half of a Q-tip that’s been cut in half with the cardboard shaft glued to an M&M and you’ll get an of what the sampler looks like).  The plate end of the tool is secured to a line and dropped head first over the side of the launch. When the sampler hits the seafloor, a lever activates the metal jaws (which were cocked open prior to the drop), they snap shut, and bingo a bottom sample.  On the launch, the line is threaded through an electronic pulley system and the sample is raised to the surface.  Most of the time this technique works well; however, sometimes the jaws fail to close, or they pinch shut on a rock allowing the sample to stream out on the way to the surface. In these cases, the procedure must be repeated.

Back on the launch, the sampler’s jaws are pried open and the contents are examined, and finally a record (including notations on the floor sample contents, latitude and longitude, and water depth) is created for the site. Once this is completed, the sampler is rinsed out, the boat moves to the next location, and the process is repeated.  Our team worked twenty-one sample sites and found some (not much) variety in our samples (shells only; shells and gravel; shells and silt; shells, silt and gravel; mud and gravel; and rock – determined after two casts returned with a closed, empty sampler).

Personal Log 

Today an unusual event – a bear sighting! The launch was moving to a new cast location when the coxswain, Carl, spotted three dots moving along a distant shoreline.  A closer look with the binoculars confirmed that the dots were bears (a sow and her two cubs).  The trio jogged along the shore as the cubs darted in and out of the surf frolicking and generally having a good time.  We eventually got too close and momma decided to head inland to the safety of the thick undergrowth.  Very cool!

Philip Hertzog, August 8, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 8, 2005

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Ensign Jennings at work
Ensign Jennings at work

Science and Technology Log 

I slept in an extra hour and set about doing my laundry and log entries since I stayed aboard the RAINIER today. Given a quiet day, I focused today’s entry on careers with NOAA to provide information to students wanting a life of adventure while helping the environment. Congress created NOAA (National Oceanic and Atmospheric Administration) in 1970 to bring together several agencies under one roof.  Congress recognized that the oceans of the world are closely tied to our atmosphere and we need to manage them through one organization. You best know NOAA through the National Weather Service which provides you with daily weather forecasts. However, NOAA has other branches that protect fish and marine wildlife; manage marine sanctuaries; observe changes in the environment; warn people about approaching tsunamis; respond to oil spills and disasters; and chart coastlines and bottom depths to protect vessels. On the RAINIER, we have two categories of jobs: civilian and commissioned officers. I will save the civilian jobs for another entry and we’ll look at the officers today.  The NOAA Officer Corps is a uniformed branch of the United States military.  Most officers spend two years assigned to a ship and then rotate to a land job for three years.  The rotation starts over again and you can retire with a pension after twenty years.  Ensign Andrew Halbach told me he could retire at age 43, though I believe he will stay with NOAA much longer and command his own ship someday.

At the computers
At the computers

You must apply to join the NOAA Officer Corps and only dedicated people get accepted.  Ensign Laurel Jennings told me you need a four year college degree with a major in math, engineering or science.  You also must be in good health, pass a physical exam and be 35 years old or younger. NOAA asks for four letters of recommendation from professional contacts and answers to several pages of questions.  You also need to pass a police background check and be interviewed by one of NOAA’s officers. Several ensigns told me this process takes from several months to half a year. Once accepted as an Officer Corps candidate, you go to the Kings Point Merchant Marine Academy located on Long Island, NY for three months of intensive training. The candidates train in safety, water rescue, navigation, CPR/first aid, ship fire fighting, knots, and ship handling. A few weeks before completing training, NOAA holds a formal ceremony to announce the ship assignment for the next two years.

Ensign Jennings told me she got on board the RAINIER in June and continues her training on the job. Her primary focus has been on ship duties such as bridge watch, navigation and ship operations. As she becomes confident on ship procedures, her training will shift to learning how to conduct hydrographic mapping and operating the computers.  Ensign Jennings has a Bachelor of Science degree in zoology from the University of Texas at Austin.  She worked as an intern at Disney World’s Living Seas exhibit in Florida where she scuba dived, fed the aquarium fish, scrubbed tanks, and talked to the public. She moved to Boston after graduation and found that a Bachelor’s degree was not enough to get a satisfying job. She wanted to work in science and with people, but not in a lab all day. Ensign Jennings said the NOAA Officer Corps was perfect for her.

Over the past two weeks, I have talked to several Ensigns about their next assignments.  Ensign Andrew Halbach will move to Washington, D.C. next year and work on remote sensing from airplanes.  He will travel 150 days a year to various locations throughout the United States.  In December Ensign Briana Welton will command her own skiff and crew on the east coast.  Whenever a hurricane hits, Ensign Welton will be one of the first people into the disaster area to chart how navigation channels have been affected by storm damage. In the past, other Ensigns have gone on to work on designing tsunami detection buoys and underwater vehicles. Many other opportunities exist both on land and at sea for young people seeking adventure.

In addition to exciting career opportunities, an Officer Corps member can advance in rank as he or she gains experience and the confidence of senior officers.  All Corps members start out at the rank of Ensign.  You then can be promoted in progression to Lt. Junior Grade, Lieutenant, Lt. Commander, Commander, Captain, and finally only one officer gets to be the Admiral.

Personal Log 

I wish I could be 35 or younger now! The NOAA Officer Corps has a lot of exciting opportunities that many young people don’t know about.  I think about the adventures I’ve missed because no teacher ever told me about NOAA.

Many exciting opportunities exist for young people if they get the right education and study hard in school. As a teacher I feel a responsibility to make sure students have the skills to take advantage of the careers and adventure that exist not only with NOAA, but with other organizations. Too often I see students playing video games or ignoring homework instead of preparing themselves for the future.  Hopefully they can learn to dedicate themselves to learning and preparation like the young ensigns on board the RAINIER.

Question of the Day 

Why is a well-rounded, college education important for today’s young adults?

Mike Laird, August 7, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 7, 2005

Weather Data

Time: 13:00
Latitude: 55° 53.4 ̍ N
Longitude: 158˚ 50.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 225˚
Wind Speed: 10kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: Sky 8/8 covered; Lower level: cumulus Mid-level: altostratus High level: cirrus

Science and Technology Log 

While running echo soundings on the launch one day, the topic of conversation turned to sailing superstitions.  Since that time, I have informally talked with several crewmembers about superstitions they have heard of or that they personally believe in.  Here is what I have discovered so far.

The most widely believed superstition is that it is bad luck for a ship to leave port and set sail on a Friday. No one I talked to knew the origin of this belief, but everyone I talked to thought it best to stay in port an extra day or two and not tempt fate.  One of the ensigns had even heard a tale of a non-believer trying to prove the superstition was a bunch of bunk. He began construction of a ship on Friday, christened the ship on a Friday, put the ship under the command of a Captain Friday, and began the maiden voyage on a Friday.  The ship was never heard from again, believe it or not!  In any case, most sailors will not happily set sail from port on a Friday.

Another common superstition, observed by most, is that one should not whistle.  I heard a couple of explanations for this. One version is that whistling is not allowed on the bridge, because it will “whistle up an ill wind.”  One coxswain, who has been around the sea and ships, including steamships, for many years, gave a different rational for the whistling ban. On steamships, a whistling noise was an indicator that there was steam escaping from one of the ship’s steam pipes – often a dangerous situation.  Whatever the reason, whistling is discouraged on the ship.  As one ensign said, “I don’t whistle, because it is annoying.”

Having a woman, minister (or other religious figure on board) was at one time considered to be bad luck. None of the people I talked to felt strongly about either of those.

Apparently, having bananas onboard is supposed to be bad luck for racing vessels and fishing boats – no one knew why.

Finally, one ensign who grew up in France shared that it is not good to say the word “rabbit” onboard. Instead, one should say “long ears.”  However, having mice—stuffed, carved, etc.—will keep the real thing away.

An interesting topic!  Remember to avoid sailing from port on Friday and to refrain from whistling while you work – and life should be good!

Personal Log 

Gorgeous weather again today – scattered clouds and lots of sunshine!  This afternoon we changed anchorage locations, moving from Sosbee Bay on the southern side of the island back to Cushing Bay on the northern side. During the transit we saw a sailboat off in the distance.  Haven’t seen much traffic while we’ve been here – two fishing boats motored by, and while on the southern side we saw three tugs pulling barges out in the gulf.  Mitrofania is a pretty peaceful and secluded spot.

Philip Hertzog, August 7, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 7, 2005

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

hertzog_log14fScience and Technology Log 

Today I actively participated as a full member of the launch crew conducting a new type of survey for me, sediment sampling.  The launches typically carry three crew members, one to handle the boat and two others to work the sonar and computer equipment. Generally Mike Laird (the other the teacher at sea) and I have gone along as a fourth person to observe. However, today we only had three people aboard launch RA 2, the smallest and lightest of the launches.  Survey Technician Dan Boles and Coxswain Erick Flickenger (Flick) co-led our survey mission.  Dan described to me today’s goal of collecting sediment samples from several locations around Mitrofania Island. Sediments are the material found on the bottom surface of water bodies. It includes materials like mud, silt, sand, clay, pebbles, rocks, shells or hard pan.

The nautical chart makers place sediment information on their maps so ship captains can determine if they have a safe location to set anchor. If the bottom is too rocky, the ship’s anchor may get stuck and trap the boat.  If the bottom is not firm enough, the anchor will drag across the bottom and the ship could end up drifting to a dangerous location like a reef or rocky shore. The sediments in an anchorage area also determine the type of anchor a captain chooses to use. Some types of anchor work better than others in certain sediment types.

I helped unhook the launch from the RAINIER’s crane and Flick got us underway. Dan immediately showed me how to work the sonar and computer equipment.  We used a Knudsen 320 M echo sounder to measure bottom depth at our sample locations.  Dan had me turn it on and I watched the sounder trace the depth on a roll of paper:

hertzog_log14

The sounder recorded a black line on a scale so we know or bottom depth at the sampling location. Dan also had me write the type of sediment we found on the same paper. I then entered the data into the computer.  We needed both an electronic and paper copy in case the computer crashes which sometimes happens when the launch bounces around. To the right a photo of Dan entering data while Flick watches in RA 2’s small cabin.

On the launch deck we used a “clam shell” sediment sampler.  The sampler is shaped like a large, round clam shell with two metal jaws held shut by a large spring. We pried open the two jaws and set a trigger to keep the jaws opened. It works like a bear track with the trigger lever on the side. We took great care setting the trigger because the jaws can break our fingers if it snaps shut on them. Once set, you then lower the sediment sampler over the side.  The sampler free falls through the water column and plunges into the bottom which triggers the jaws to snap tight and capture the sediment sample. You then winch the sample up to the surface, open the jaws and record the sediment type.  The following photos show the sediment sampling process:

hertzog_log14c

We found mostly fine black sand and pebbles of volcanic origin in our sediments around Mitrofania Island which matches the local geology.  As mentioned in previous logs, the explosion of an ancient volcano formed Sosbee Bay (a caldera) on the south side of the Mitrofania Island. To the north of the island, the shield volcano, Mount Veniaminof dominates the landscape:

hertzog_log14g

Our sediment sampling went well with one exception.  We transited out to a sample location far south of Mitrofania Island.  A combination of wind and tide suddenly hit us with two to three foot choppy waves as we took our sample.  Our light weight launch took two to three nose dives down the face of a three foot wave as Flick tried to hold our position in one spot for the sample.  Dan and I got knocked into the railings on the deck and the clam shell sampler almost snapped on my fingers as I tried to adjust it.  Inside the cabin, equipment flew off the shelves and onto the cabin floor.  Flick pronounced the sea conditions as too unsafe for us to work on the deck and yelled for us to get back inside the cabin.  We then made tail and headed back towards land getting bounced about until we entered the wind shadow created by the lee side of the island. Flick later told us he considered having us put the life raft out on the back deck of the launch as a safety precaution.

Dan and I talked about boat safety. Dan told me that anyone on board the launch can call for it to return due to unsafe conditions. In our case, we did the right thing by not trying to finish the sampling south of Mitrofania and quickly returning to calmer waters.  The rest of the day we worked on the protected side of the island and finished early.  We fished near Cushing Bay and waited for the RAINIER to arrive and pick us up.  The RAINIER again moved location to seek settler from the changing winds.  We will spend our few remaining nights in Cushing Bay, our first location when we arrived at Mitrofania about two weeks ago.

Peering over the control panel
Peering over the control panel

Personal Log 

I enjoyed the opportunity to work today as a full member of the launch team.  I appreciated Dan Boles putting me on the computer right away and the way we took turns collecting sediment samples out on deck.  I found Flick to be a master at handling the launch in rough conditions and ensuring our safety.

I have felt safe on the launches, but our situation south of Mitrofania proved a bit worrisome.  I’m glad Flick called off our work out there right away and brought us into a more protected area. While waiting for the Rainier, I got to fish and caught numerous sea bass near a kelp bed.  We also saw a “fish ball” go by. The fish ball consisted of a large school of small candlefish tightly grouped into a ball shape about 7 feet in diameter just below the surface. Seagulls hovered over the fish ball and snatched out tiny fish as tasty treats.  As the fish ball passed under the launch, we saw the outlines of large fish following the candlefish.

After supper we had another beach party out on the spit near the HorCon station.  We had a beautiful, clear evening and watched the sun set.  We again had a large bon fire and plenty of good conversation and company. I returned at 11:00 pm with an orange and deep blue dusky sky as a backdrop for our skiff ride from the beach.  The days have grown shorter since my arrival, but night still arrives after 11:30 pm.

Question of the Day 

What sediment bottom type do you think will best hold an anchor and keep a ship safe?

Philip Hertzog, August 6, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 6, 2005

The processing room
The processing room

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

I spent the afternoon in the plot room behind the bridge.  After collecting data on the launches, the hydrographic technicians need to process and make it usable before sending the information to map makers in Washington, D.C.  This processing takes place in the plot room.

The plot room has a large table in the middle with eight work stations crowded around the outer edge of the room.  Each work station has two computer screen monitors where the technician can pull up multiple windows. The room has a couple of portholes to provide light, though these can be shaded to make the monitors more visible. I observed the Ensigns and survey technicians concentrating on their work.  The plot room impressed me as the quietest location on the RAINIER with people clicking on their computer screens and checking their data for accuracy.  Once in a while one of the technicians got up to ask another for clarification on a problem.  The four people in the room all wore headphones to listen to CD or mp3 players.

Processing the data
Processing the data

The technicians processed data by first “cleaning” it up. The hydrographers put the sonar data up on the screen and looked for mistakes in the readings.  Mistakes can occur by the launch computer skipping measurements or missing a GPS satellite signal.  The plot room computers also adjust for the movement of the launches in several directions caused by buffeting seas. After cleaning data, the crew corrected the sonar readings for sound velocity by using the CTD probe readings taken from the launches. As noted previously, the speed of sound in water is affected by conductivity (a measurement of salt content), temperature and density). The CTD data is used to correct the sea bottom depth readings obtained from sonar. The technicians made one final correction to the sonar data by loading in tidal information to adjust for the height of the launch above mean lower low water.  With the corrected sonar data, three-dimensional maps can now be generated and the hydrographer gets a picture of the ocean bottom over a wide area.  Additional work will be done before the information is sent on to the chart makers off the ship.

After supper I went up to the plot room to get some photographs for this log entry.  To my surprise, Ensigns filled every work station and I saw them checking on today’s data.  The Ensigns discussed with Lt. Ben Evans the strategy for tomorrow’s mapping.  What dedication! It’s Saturday night, yet the work never stops for the hard working crew of the RAINIER. Too bad for them, I’m going fishing now!

The hydrographers highlight the incorrect data and click on it to remove it
The hydrographers highlight the incorrect data and click on it to remove it

Personal Log 

I had a very quiet day. The routine on a research vessel like the RAINIER is a mix of excitement and concentrated computer work.  The crew averages about one day of cleaning and processing data for each day of collecting data on the launch.  Though the computer work may seem tedious at first, think about the sense of accomplishment when you see your data become a three-D map of the ocean bottom and know that other people will use your work.

I hope my own students will recognize that hard work can pay off and provide a sense of accomplishment and purpose.  The crew of the RAINIER has provided me with examples to show my middle school students that they can balance exciting work with hard dedication to make a meaningful difference to society.

Question of the Day 

Why must the hydrographers carefully check their data for mistakes? What can happen if a mistake is made on a nautical chart?

Philip Hertzog, August 5, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Watching the computers
Watching the computers

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 5, 2005

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

I went out on launch RA 5 today to help survey more transect lines near the east entrance to Sosbee Bay and over by Spitz Island. Ensign Andrew Halbach led our survey with Greg King as the Survey Technician and Steve Foye as our coxswain.

Driving the launch
Driving the launch

Greg King, in his late twenties, has been on board the RAINIER for about a year and graduated from Pacific Lutheran University in Tacoma with a degree in geology.  Prior to NOAA, Greg worked for consulting firms conducting a variety of work including environmental assessment, mining geology and hazardous waste site investigations.  Greg and I know a lot of the same people from my own professional experiences prior to teaching. Greg became disillusioned with consulting and wanted to have a career where he could make a difference, help the environment and feel good about his work.  A friend told Greg about NOAA so he applied, got hired, and has been happy with the work he does. Greg plans to make a career with NOAA and the federal government.  Greg says most of the Survey Technicians tend to stay on the ships for a few years and then advance up into other jobs with NOAA onshore. Greg will become a father in October and NOAA will grant him several weeks of leave to spend with his new child and wife.

In the survival suit
In the survival suit

Greg’s duties on the RAINIER include running the sonar and data recording equipment on the launches.  He also puts data into the mainframe computer on board the RAINIER and looks for errors that need correction. The Survey Technicians tend to spend a few days in on the launches and then work on board the ship for a day or two processing data before going out on the water again. Above is a photo of Greg at work on the RA 5 launch.  Steve Foye, our coxswain, has been on the RAINIER for about 15 years and on NOAA ships for a total of twenty years. Mr. Foye is a crusty sailor with an earthy sense of humor.  Foye served in the Navy and became a meat cutter in south Seattle after finishing military service and getting married.  However, Mr. Foye missed the sea and the outdoors. NOAA gave him the opportunity to travel and see Alaska. Foye particularly enjoys driving a launch all day and watching the scenery while the technicians run the sonar. All of the crewmembers speak highly of Mr. Foye and he mentors the younger deck hands. Steve Foye serves as the RAINIER’s Boatswain’s Group Leader and is responsible for ensuring the proper handling and maintenance of all the launches. Foye has a merchant marine seaman’s card, which he renews every five years.  Steve takes classes and documents his sea time to renew his card.  Even sailors need to continually educate themselves and keep current on the latest technologies.  Many of my middle school students don’t realize that the skills they learn in school will serve them for a lifetime and they must continue to educate themselves.  Above is a photo of Mr. Foye handling launch RA 5.

The control screen on the computer.
The control screen on the computer.

After getting underway, Mr. Foye threw a buoy overboard and yelled “man overboard.”  Ensign Andrew Halbach quickly took over the helm and Greg grabbed a boat hook while I pointed at and kept my eyes on the buoy to make sure we don’t lose site of it in the rolling waves. The Ensign skillfully brought the launch around and as he approached the “victim,” turned the launch a hard left and reversed the engine.  The stern of the launch swerved to the right and the starboard side ended up next to the buoy where Greg scooped it out of the water with the boat hook. Mr. Foye repeated the “man overboard” two more times with Greg and I taking a turn at the helm.  Mr. Foye guided me in maneuvering the launch to the buoy, though it took me more than one try to reach our “victim.” Everyone on board the RAINIER needs these important rescue skills to ensure the safety of all crewmembers.  Even the coxswain can fall over board and one needs to be prepared to take over the helm in an emergency.

After the over board drill, I practiced putting on my bright orange survival suit.  I had donned it once on board the steady Rainier, but it proved challenging while rocking back and forth on the launch in the open ocean. Though the survival suit won’t keep me dry, it will allow me to live for many hours instead of a few minutes if we abandoned ship in the 50-degree waters of the Gulf of Alaska.  We spent a productive day running transects and collecting bottom depth data.  Ensign Halbach and Survey Tech Greg King showed me how the equipment works.  They even let me run the two computers.  I selected lines (transects) that we followed and then hit control “S” (for start) on the key board to write the sonar data to a computer file.  When we finished a transect, I hit control “E” for end and the computer stopped logging (writing) information.  We then repeated the process and the computer generated a separate file for each transect.

Catch of the day
Catch of the day

The Ensign and Greg also showed me how to control and fine-tune the sonar. A master window on the computer controls the sonar and allows you to set power, gain and depth.  The power controls the strength of the sound wave sent to the bottom.  The deeper the bottom, the stronger the signal required. The gain controls how sensitive the sonar receiver picks up the sound waves bounced off the bottom.  It’s like a volume control on your radio.  You want to set it so you eliminate static and “hear” the music at the right loudness and quality.  The depth control determines how far down the signal will go. The survey technician adjusts all three controls to account for bottom type (sandy, rocky, hard) and other factors that affect the quality of the sonar signal.

After a long day, the swell of the ocean increased and our ride on the launch became bumpy.  The RAINIER has moved a few miles to the west in Sosbee Bay to seek protection from the increasing north winds.  We returned to the RAINIER in time for supper and I fished out on the fantail (stern) without any luck.  The steady wind from the north made it one of the coldest evenings of the trip and I put on a jacket.  Around 9:30 pm a group of crewmembers returned from fishing in the launch with a catch of lingcod and rockfish (red snapper) to finish the evening.

Matt Boles, survey tech, lands the big fish of the day
Matt Boles, survey tech, lands the big fish of the day

Personal Log 

I really enjoyed today. Steve Foye gave me a great education on how to operate the launch. I also appreciated the way Ensign Andrew Halbach and Greg King patiently taught me how to run the sonar.  Using the technology gave me greater understanding about how all this works.

For supper, we had a cookout on the fantail. The stewards (cooks) had the propane barbeque grills fired up and made ribs, chicken, corn and an assortment of salads.  We all sat out on the deck, talked and ate.

Question of the Day 

If I wanted to pick an object out of the water to the right side of my boat, why would I turn the launch a hard left and put the motor in reverse? Explain your answer in words and include a diagram.

John Sammons, August 4, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 4, 2005

Screen shot 2014-02-02 at 10.26.11 PMWeather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Question of the Day: Last day at sea

Yesterday’s Answer: Scallops are categorized as invertebrates. Scallops belong to the animal kingdom.

Science and Technology Log

On Thursday, we got word that our ship would be back in port by early Friday morning between 4 and 7 a.m. Once we complete the last 20 or so stations, it will be time to clean up and prepare the ship for docking. A large spider crab was brought in at station 454.

The chart below shows a selected number of species and the total and average catch weights from July 25–August 3.

LOGGED_SPECIES_NAME

TOTAL # CAUGHT

TOTAL MASS (grams)

AVERAGE MASS (grams)

OBJECTS WITH SIMILAR MASS

HAGFISH ATLANTIC

41

3230

79

SPINY DOGFISH

1

1560

1560

BARNDOOR SKATE

31

35342

1140

WINTER SKATE

183

196116

1072

LITTLE SKATE

1,628

638483

392

SMOOTH SKATE

19

9517

501

THORNY SKATE

32

7739

242

ATLANTIC HERRING

3

402

134

SILVER HAKE

1,018

117103

115

COD

32

11498

359

HADDOCK

348

64742

186

WHITE HAKE

9

8180

909

RED HAKE

2,941

407185

138

SPOTTED HAKE

2

310

155

FOURBEARD ROCKLING

23

296

13

AMERICAN PLAICE

102

30261

297

FLUKE

18

28240

1569

FOURSPOT FLOUNDER

798

126633

159

YT FLOUNDER

463

111390

241

WINTER FLOUNDER

61

48560

796

WITCH FLOUNDER

47

18300

389

WINDOWPANE FLOUNDER

126

27576

219

GULF STREAM FLOUNDER

344

9189

27

BLACKBELLY ROSEFISH

1

8

8

SCULPIN UNCL

6

18

3

MOUSTACHE SCULPIN

31

33

1

LH SCULPIN

571

88391

155

SEA RAVEN

29

21468

740

ALLIGATORFISH

4

2

1

NORTHERN SEAROBIN

1

47

47

CUNNER

2

493

247

ROCK GUNNEL

18

75

4

NORTHERN SAND LANCE

26

37

1

OCEAN POUT

290

71883

248

FAWN CUSKEEL

11

382

35

GOOSEFISH

389

1046990

?

AMERICAN LOBSTER

22

34552

1571

CANCER CRAB UNCL UNSEXED

1,138

123203

108

STARFISH UNCL

78,925

161850

2

ASTERIAS BOREAL

36,851

243218

7

ASTROPECTEN SP

2,833

15623

6

ICELAND SCALLOP LIVE

18

447

25

SCALLOP ICELAND CLAPPER

3

56

19

CONGER EEL UNCL

1

200

200

SEA SCALLOP CLAPPER

1,980

227126

115

SEA SCALLOP LIVE

114,868

20960122

?

SNAKE EEL UNCL

5

59

12

ILLEX SQUID

12

1442

120

LOLIGO SQUID

3

186

62

SPOONARM OCTOPUS

8

201

25

SCORPIONFISH AND ROCKFISH

1

4

4

1) Use a calculator to find the average masses of the goosefish and sea scallops. You can find these averages by dividing the total mass by the total number caught.
2) Which species had the most average mass?
3) Which species had the least average mass?
4) Which two or three species have about the same mass?
5) Complete the last column in the table by finding everyday objects that have similar masses. Choose at least ten.
6) Select the top ten heaviest species and create a bar graph comparing their masses.

Personal Log

A Fond Farewell 

The time has come to say goodbye to all our friends for now,
The night watch worked from 12 til six, it’s time to take a bow.
Larry crunched the numbers and helped it make more sense,
Vic was the head scientist who made things seem less tense.
KB shared her knowledge in a very caring way,
While Lara measured up the scallops quickly every day.
Erin took the sign and camera to the pile to pose,
It was Kris who was in charge and kept us on our toes.
Nikolai had a funny way of helping us all learn,
And with that said I, John, must conclude, it’s over, let’s adjourn!

Ode to the ALBATROSS IV 

By John Sammons

Arrived on early Sunday eve to find the ship was docked,
Passing through the metal gate that I only thought was locked.
Resting from her recent trip, she makes a humming sound,
Waiting for her crew to board and get a look around.
The sun reflects and sparkles in the ever choppy sea,
I wonder what this exciting adventure will bring to me.

The waves come toward the ALBATROSS and into the lengthy side,
Feel the rocking back and forth, so hold on for the bumpy ride.
Prepare the dredge and send it forth to bring up another load,
Bring out the baskets and buckets and pads to get in a sorting mode.
Place the containers on the scale then measure the scallop’s shell,
Soon the shift will come to an end with only stories left to tell.

Steaming forward to the station that is just right up ahead,
Six hours is up, and our shift will end, so it’s time to go to bed.
Before I rest and take a nap, some chow I would like to eat,
It will be good to rest a little while and get off from my feet.
The food is great, so many choices that we are able to choose,
Just fill ‘er up and head to bed and settle for a snooze.

Time to muster and be alert for another shift begins,
Shells and starfish wait for us, along with things with fins.
Pull up a bucket and a pad to sample and to sort,
It’s been three days since ALBATROSS steamed from the distant port.
Ouch! I bellowed as a scallop clamped onto my finger,
Upon the deck you sort and scoop, but dare not stand and linger.

Let me stop and ponder now about the time I’ve spent,
It seems like days and nights have passed, they’ve come, they’ve gone, they went!
Zigging left and zigging right, we have sailed right out to sea,
It seems so wide and open, such an awesome sight for me.
There’s so much to learn from everyone who works upon this ship,
It’s hard to think that soon we’ll be halfway through our trip.

Stand in awe as the sun begins to finally set,
Awash in orange and red and yellow, it is hard to forget.
What a lasting beauty as the sky begins to glow,
Its splendor in the many colors that it will show.
Waiting for its lasting blaze of light to end the day,
Now I lay me down to sleep, I ask of Him, I pray

The heavy dredge is ready for another timely tow,
Expect to catch the scallops, to the surface they will go.
Dropping to the bottom where its 80 meters deep,
Spending fifteen minutes dragging and bringing in the keep.
Then they’re sorted on the surface while hiding in their shell,
The aging/growth ridges on their outside’s what they tell.

Working two shifts makes it hard to fully stay awake,
But ignoring the wakeup call could be a big mistake.
So much to choose from when it’s finally time for us to eat,
Better be there when it is your time to get a decent seat.
Take a minute or two to rest while the ship is on a steam,
When it’s time to go to bed, enjoy that time to dream.

Ten minutes to go before it’s time for another CTD,
When the crew will set and drop it down into the sea.
It only takes a moment for the thing to take a dash,
To the bottom it will go, watch that it doesn’t crash.
Then it’s time to drop the dredge and ready for the tow,
Soon you’ll hear them haul it in, and it’ll be time to go.

With just a few days left before we enter the home port,
We still continue to collect and sample and we sort.
The number of each species catch continues to go up,
We even brought a dogfish in that was only just a “pup”.
What more can we expect to find within the capture net,
From this station to the next one, we’ll take what we can get.

The time has come to say goodbye to all our friends for now,
The night watch worked from 12 til six, it’s time to take a bow.
Larry crunched the numbers and helped it make more sense,
Vic was the head scientist who made things seem less tense.
KB shared her knowledge in a very caring way,
While Lara measured up the scallops quickly every day.
Erin took the sign and camera to the pile to pose,
It was Kris who was in charge and kept us on our toes.
Nikolai had a funny way of helping us all learn,
And with that said I, John, must conclude, it’s over, let’s adjourn!

Mike Laird, August 4, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 4, 2005

Weather Data

Latitude: 55° 50.8 ̍ N
Longitude: 158˚ 50.0 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: Light Airs
Wind Speed: Light Airs
Sea Wave Height: 0΄
Swell Wave Height: 0΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1011.0 mb
Cloud Cover: Sky 0/8 covered

Science and Technology Log 

The day begins early with launches leaving at 7:00.  The reason for the early start is that two launches (RA1 and RA2) are doing shoreline work.  Shoreline work must be done at lower low tide (in an area in which there are diurnal tides – two flooding periods and two ebbing periods – the lower low tide is the lower of the two ebbing periods), and on this day, the tidal window for this tide period is from 7:10 to 12:30.  The work along the ocean/land transition is done when the water level is at its lowest point so there is increased confidence that all features are observed and accounted for.

I have been assigned to launch RA2 and will have an opportunity for the first time to observe exactly how the shoreline surveys are conducted.  The work entails confirming existing map data from three sources: 1) the cartographic features file which is composed of data collected from aerial surveys (the photographs are used to create a map on which the shoreline and off shore features are shown); 2) LIDAR – a relatively new technology in which an aerial survey is conducted using lasers; and 3) existing nautical charts.

Confirming the data entails running the shoreline and comparing the actual shoreline and buffer (the water in a zone of between thirty and fifty meters just offshore) to what appears on the map.  A feature confirmation requires a visual observation of the feature.  As features are observed, a notation is hand written on a hard copy of the map.  Later, the notations will be input into the ship’s computer.

In addition to noting known features, features not currently shown are recorded on the map along with their location and depth.  In some cases, features shown on the map cannot be located. In these situations, a notation is made and a reason (too much kelp, water to deep, etc) is given. This signals the sheet manager that further investigation is required. If the water in the area is safe (the original boat conducting the survey is equipped with a single beam sonar system and will determine the water depth and then scan the area running in a star pattern searching for obstructions), one of the launches equipped with a multibeam echo sounding system will be sent in to do a 100% floor scan to confirm the feature.  If the area is not safe, a dive team will be sent in to do the confirmation.  Shoreline work is a bit more dynamic than the deepwater work – the crew must constantly be aware of what is happening with the surf as rocks can suddenly appear!

Personal Log 

The food onboard the RAINIER is quite tasty with a wide range of options available at every meal.  Starting off the day with breakfast (served 0700-0730), the most important meal of the day, choices include: eggs to order, fried, scrambled, poached, or boiled; omelets: cheese, minced ham, or vegetarian; french toast; hot cakes; waffles; fresh fruit: cantaloupe, pineapple, honeydew melon, mango; some type of meat: ham, bacon, sausage, Spam; cold cereal, coffee, tea, juice, milk.

Selections for today’s lunch (served from 1200-1230) were: Entrées: homemade gumbo soup, grilled fillet of catfish/tartar sauce, hot roast beef sandwich, mushroom and cheese quesadillas. Side Dishes: diced brown potatoes, steamed rice, steamed fresh cauliflower.  Dessert: chilled jello/whip cream. Drinks: water, juice, milk, lemonade or grape flavored drink, coffee.

Today’s dinner (served from 1700-1730) is a fantail (kind of like the ship’s back porch) cookout. Salads: pasta, potato, and another salad I’m note sure what it was; Entrees: BBQ – steaks, ribs and sausage, fried chicken; Side dishes: egg rolls, french fries, and pot stickers; Drinks: water and assorted juices. A real feast!

Philip Hertzog, August 4, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 4, 2005

hertzog_log11Weather Data from Bridge

Latitude: 55˚ 50.8’N
Longitude: 158˚50.0’W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1011.5 mb
Cloud Cover: 2, stratocumulus, altocumulus

Science and Technology Log 

Four launches left early today (7:00 am) and I got up to watch the deck crew lower them into the water. Two launches took off to finish up mapping in the Fish Ranch Bay area while the other launches went across to Mitrofania Island to map shoreline and submerged rocks on aerial photographs.

hertzog_log11aWith our mapping work nearly completed in this area, the Commanding Officer moved the RAINIER to Sosbee Bay located on the south side of Mitrofania Island.  The RAINIER traveled along the north side of Mitrofania and made a left turn to skirt the southwestern shore and Spitz Rock before a second left turn into Sosbee Bay.  The move took approximately 2 hours.

Along the way, I saw at least two dozen Sei whales surface and blow spray in groups of up to four individuals.  As we approached each group of whales, they would submerge and then reappear several hundred yards behind the ship.  At one point the whales seemed to surround the RAINIER in a 270-degree arc: In my earlier log entries, I mistakenly called these creatures fin whales and provided the wrong life history. Sei (pronounced “say”) whales live in all ocean waters of the world.  They can reach up to 18 meters in length and have a small dorsal fin forming a 40 degree angle back with the body. The dorsal fin is located down about two thirds of their body length from the snout. A single ridge runs along on the top of their heads from the snout to the blow hole. Sei whales have black colored backs covered with oval scars that results in a shiny, metallic appearance. Lamprey bites cause the scars when the whales migrate into warmer waters.

Safety gear
Safety gear

Sei whales skim the water and remove tiny marine organisms called copepods for food with long, narrow plates (baleens) under their heads.  These whales tend to feed close to the surface and leave large swirls on the surface as they move their tails. I saw many of these swirls next to the RAINIER after whales had submerged in front of us.

I spotted the Sei whales by first seeing a black snout appear followed by an inverted cone shaped spray about 2 to 3 meters high.  A sleek long, shiny back then glides over the surface followed by the dorsal fin near the rear of the body.  The back then gracefully disappears without the fluke (tail) breaking the surface.  Once in a while the tail does appear as shown in the photo above.

Survey launch being lowered into the water
Survey launch being lowered into the water

After passing the whales, the ship practiced an emergency fire drill and we reported to our assigned stations. The RAINIER’s fire fighting crew donned bumper gear and oxygen tanks and pretended to put out a fire by spraying water from a pressurized hose over the side of the ship.  Within 30 minutes of the fire drill, we had an abandoned ship drill. We grabbed our survival suits and hurried to our stations.  During the drill an Ensign described how to deploy the life rafts by first tying off the canister (see photo below) and then yanking on a release cable. A sensor automatically opens the raft when it hits the water. A rope holds the raft to keep it from drifting a way, but each raft comes equipped with a sharp knife to cut the rope if the ship should sink into deep water: The ship conducts the emergency drills at least once every two weeks to ensure we remain sharp on these important safety skills.  In the event of a real emergency, we have no place to go except into cold water where one could survive for only a few minutes without protection. The RAINIER’s crew takes these drills seriously so we can solve problems (like putting out fires) and prevent the need to enter the water.

After the drills, the RAINIER slowly coasted into Sosbee Bay.  We entered a new environment.  An arc of steep cliffs rose out of the water and surrounded the bay.  We distinctly recognized the shape of a caldera, former volcano that exploded long ago and left a large crater now filled with ocean water.  Tonight, we will sleep on board the ship located inside the remains of a crater.

The Southwestern Alaskan Peninsula is part of the Pacific “ring of fire.”  A large tectonic plate located far beneath the surface of the Pacific Ocean slowly runs into the North American plate.  The meeting of the plates causes earth quakes and friction creates large chambers of magma (molten rock) that can form large volcanoes when it reaches the surface of the earth.  All around us, we have seen signs of past volcanic activity from the large shield volcano, Mount Veniaminof, to the north of Mitrofania to the small pieces of pumice found on the beaches.  However, Sosbee Bay provided a sober reminder of the power and destructiveness of nature. The rest of the day I spent reading and completing my documentation.

Personal Log 

I had another busy day on the RAINIER learning about Sei whales and practicing my photography. Again, the galley crew fed us well and I’m need of some exercise.  I’ll go hit the small gym below deck tonight to work off some calories.  On a ship I find it difficult to get sufficient exercise.  If I ever get permanently assigned to a ship, I’ll have to become disciplined in setting up an exercise routine.

Question of the Day 

What is the “ring of fire” and where is it located?

John Sammons, August 3, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 3, 2005

Weather Data from the Bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: In what group is the scallop categorized – vertebrates or invertebrates? What kingdom does the scallop belong – monerans, protests, fungi, plants, or animals?

(You may need to use a dictionary to look up these words before deciding the correct answer.)

Screen shot 2014-02-02 at 10.25.09 PM

Yesterday’s Answer: If the sea scallop population were to change drastically, then the population of starfish and crabs might change, too. Other organisms that are in the same community as the scallop are little skate, red hake, yellow tail flounder, and goosefish.

Science and Technology Log:

On Wednesday, the ALBATROSS IV began surveying the western edge of Georges Bank. Typically dense fog, cool temperatures, low visibility dominate the scene. We are currently about 55 miles offshore as we continue to meander between stations and conduct a sampling of the various strata. This morning we caught a dogfish shark in the dredge and took a photo opportunity. It is exciting when a new species (one we have not seen yet on this survey) appears in the dredge. The biggest excitement came when hagfish started to appear in the dredge. These snake-like fish tried to squirm their way off the deck. Several adjustments were made in the trackline (or stations we will visit) to account for time and problems with the tow.

The chart below shows a selected number of species and the total catch weights from July 25 – August 2.

Species Names

Catch Weight (grams)

HAGFISH ATLANTIC

3,230

SPINY DOGFISH

1,560

BARNDOOR SKATE

33,462

WINTER SKATE

152,976

LITTLE SKATE

608,663

SMOOTH SKATE

5,303

THORNY SKATE

6,199

ATLANTIC HERRING

402

SILVER HAKE

116,339

COD

11,498

HADDOCK

59,354

WHITE HAKE

7,140

RED HAKE

399,512

SPOTTED HAKE

310

FOURBEARD ROCKLING

191

AMERICAN PLAICE

30,250

FLUKE

27,660

FOURSPOT FLOUNDER

124,973

YT FLOUNDER

108,054

WINTER FLOUNDER

46,980

WITCH FLOUNDER

15,660

WINDOWPANE FLOUNDER

27,576

GULF STREAM FLOUNDER

9,189

BLACKBELLY ROSEFISH

8

SCULPIN UNCL

18

MOUSTACHE SCULPIN

33

LH SCULPIN

80,691

SEA RAVEN

21,468

ALLIGATORFISH

2

NORTHERN SEAROBIN

47

CUNNER

493

ROCK GUNNEL

75

NORTHERN SAND LANCE

40

OCEAN POUT

68

FAWN CUSKEEL

382

GOOSEFISH

933,330

AMERICAN LOBSTER MALE

34,550

CANCER CRAB UNCL UNSEXED

122,684

STARFISH UNCL

161,477

ASTERIAS BOREAL

242,902

ASTROPECTEN SP

15,623

ICELAND SCALLOP LIVE

450

SCALLOP ICELAND CLAPPER

56

CONGER EEL UNCL

200

SEA SCALLOP CLAPPER

222,600

SEA SCALLOP LIVE

19,863,690

SNAKE EEL UNCL

59

ILLEX SQUID

1,313

OCTOPUS SPOONARM

109

SPOONARM OCTOPUS

200

SCORPIONFISH AND ROCKFISH UNCL

4

UNKNOWN 01

19

1) Order the 10 highest amounts from greatest to least.
2) Order the 10 lowest amounts from least to greatest.
3) Which species has a total with a 9 in the millions place?
4) Which species has a total with a 6 in the ten thousands place?
5) Which species has a total with a 9 in the hundred thousands place?
6) Choose a species to research. Why do you think their numbers are higher or lower than the others are?

Personal Log

A Few Days Left 

With just a few days left before we enter the home port,
We still continue to collect and sample and we sort.
The number of each species catch continues to go up,
We even brought a dogfish in that was only just a “pup”.
What more can we expect to find within the capture net,
From this station to the next one, we’ll take what we can get.

Mike Laird, August 3, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 3, 2005

Weather Data

Time: 13:00
Latitude: 55° 53.4 ̍ N
Longitude: 158˚ 50.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 225˚
Wind Speed: 10kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: Sky 8/8 covered; Lower level: cumulus Mid-level: altostratus High level: cirrus

Deck Crew for a Day – Part II 

Previously in this log (see Day 10: Tuesday, August 2) I left you having just assisted the deck crew (of which I am a member for a day) in getting the survey launches prepped, lowered to the water, and cast off for their day of echo sounding.  All that done, and the day is just beginning.

As it turns out, the deck crew is currently running through some training exercises for some of its newer members – a perfect opportunity for me to learn a lot of new and interesting things. However before the training begins, the junior deck hands have daily cleaning responsibilities (bathrooms, trash, mopping floors, etc.) that must be taken care of. Somehow I luck out and avoid latrine duty, and Erick Davis, my mentor for the day, takes me to the bow of the ship where I am instructed on the operation of the forward cranes. These cranes are used primarily for lifting and moving the gangways (the walkways between the ship and the pier when the ship is in port) and to load stores and cargo onto the ship.

After an introduction to the crane and the hand signals used to communicate between the operator and the deck chief, I have a chance to operate the crane for a few minutes.  By this time, the rest of the group has rejoined us and the focus turns to proper mooring and anchoring techniques.

Members of the deck crew are responsible for getting the mooring lines ashore as the ship is arriving in port and retrieving and storing the lines when the ship is putting out to sea.  The RAINIER most often uses four lines (each line is assigned a number) when mooring: a bowline (line #1), an aft leading spring line (line #2), a for leading spring line (line #3), and a stern line (line #4). The sequence in which these lines are cast ashore is intended to increase the ease of docking the ship and is dependant on the docking situation.

In a routine mooring the lines will be cast in the following order: 1) aft leading spring line, 2) stern line, 3) bowline, and 4) for leading stern line.  There are aids both mechanical (capstans) and fixed on the deck (chucks and bits) that help as crew members release and take in line as the ship is being positioned alongside the pier or preparing to leave port.  These aids have taken the place of hand cranking and reduce the amount of physical effort required to manipulate mooring lines that can get quite heavy when dealing with extensive lengths (especially when wet) of line.

In addition to mooring, the deck crew is highly involved in anchoring the ship.  Once a location (chosen by the commanding officer or in some instances the officer of the deck) has been chosen to anchor, the crew prepares to drop anchor.  The flow of the anchor chain when releasing and retracting the anchor is controlled by a piece of equipment called the anchor windlass. When setting anchor, the windlass must allow chain to flow smoothly as it follows the anchor to the seafloor.

The windlass has a three-tiered system used to hold the chain in place while the ship is in transit and when anchored. First, there is a huge drum brake (much like those found on cars, but much larger); there is also a large metal latch, called the “devil’s claw” that fits through, grabs, and holds onto a chain link; finally the “cat’s paw” is a metal arm that lays on top of the chain pinching it down to prevent movement.  Each of these must be disengaged to allow release of chain. As the chain is being released, the deck chief signals to the bridge how much chain has been let out.  The chain length is measured in units called shots. Each shot is ninety feet (the RAINIER carries twelve shots of chain for each of its two anchors – 1080feet of chain per anchor) and is indicated by a section of painted chain four or five links long.

Once the anchor hits bottom, additional chain (called scope) is released to allow for fluctuations in water level caused by the tide and wave action.  The additional chain also provides additional weight to help secure the ship.  The amount of scope depends on the conditions and judgment of the officer in charge, but a general rule is to let out a total chain length of one third (distance to the bottom) plus two thirds (length of scope).  For example, if the anchor hits bottom at 27 fathoms (a fathom is six feet; 27 fathoms equals 162 feet) three hundred twenty-four more feet (or about three and one half shots) of chain would be released for scope.

Having completed the tutorial on anchoring, we turned to another aspect of the life of a deck crewmember — the operation of the small boats (launches and skiffs) on board ship.  The remainder of the afternoon is spent practicing the operation and maneuvering of a skiff. The group I am with practices basic operations: starting, stopping, smooth acceleration and deceleration, and moving in a straight line while in reverse.

Having demonstrated these skills, we go to man overboard rescue situations and practice moving the skiff into proper rescue position alongside the victim (without running them over).

Then it’s on to anchoring the skiff: choosing an acceptable location and orientation, releasing the anchor and proper amount of scope, and making sure the anchor is set to keep the skiff safely and securely positioned.

The last maneuver we practice is beach landings: choosing a location onshore that will allow personnel and equipment to move from the boat to land safely and efficiently, properly orienting the skiff for beach approach, and finally the smooth, spot-on landing.

Finally, it’s back to the RAINIER to await the return of the launches, so they can be raised by the davits back into their storage hangars.  Thus ends my day with the deck crew.

Personal Log 

While on a skiff doing shoreline work, I saw some sea lions yesterday.  Until we came along, they were peacefully napping on a rock outcrop enjoying the late morning sunshine. Our arrival caused a ruckus with a great amount of bellowing, grunting, and tussling among themselves.  Ensign Briana Welton was telling us about an article she read saying that human intrusion into breeding sea lion communities causes the sea lions stress and has interfered with their reproductive habits causing a population decline in some areas.  Our presence certainly caused this bunch a bit of stress if their behavior was any indication. They were fun to watch (make sure to be up wind – they have a terrible stench), but I hope we did not overly stress them.

Philip Hertzog, August 3, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 3, 2005

The launch, at work
The launch, at work

Weather Data from Bridge

Latitude: 56˚ 00.3’ N
Longitude: 158˚ 45.7’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

Mike Laird (the other Teacher at Sea) and I had been assigned to stay on the RAINIER today so we slept in an extra hour. However, as I returned from breakfast, Lt. Evans asked me to take his place on R8 skiff and go out to the HorCon station.  I quickly said yes, grabbed my gear, and jumped on board R8 within 5 minutes.

HorCon stands for Horizontal Control where we broadcast global position satellite (GPS) signal corrections to help the mapping launches accurately locate their positions.  In essence, the radio signals allow the launches to control their horizontal position so they have correct latitude and longitude readings. In past log entries I referred to the HorCon station as the transmitter station.  HorCon stations are also called flyaway stations when set up on temporary basis.

Ensigns Andrew Halbach and Olivia Hauser led our mission with assistance from Matt Foss. Jonathon Anderson drove the skiff under the watchful eye of his trainer, Able Seaman Erick Davis.  AB Davis has been on the RAINIER for one year and prior to that served in Iraq with the Army Reserve.  AB Davis also served on other NOAA ships for two years before going to Iraq.

Uploading data
Uploading data

As we left the protected waters of Fish Ranch Bay, the skiff bucks and slams hard into waves as we enter the open waters between the southwest Alaskan peninsula and Mitrofania Island. The HorCon site now lies 8 miles from the RAINIER.  We held on tight to the hand rails of the skiff while salt water splashed onto our faces and soaked our orange, bulky float jackets. Once in a while our feet lifted off from the deck of the skiff as we crested a wave and then slammed our feet down hard when the boat dropped into a trough. Everyone on the skiff had smiles on their faces as we raced toward our destination. As I noted in yesterday’s log, the HorCon station’s computer crashed and the batteries drained their electrical charge.  Upon arriving at the station, we hauled the computer and six large, 12 volt deep cycle batteries up to the transmitter.  We timed our unloading of the skiff to avoid sea swells washing up the beach and soaking our feet.

Ensign Halbach and Matt Foss went to work installing the new batteries and computer, while Ensign Hauser and I hopped into the skiff and traveled over to the tide gauge station a mile away.  As mentioned in previous logs, the tide station provides vertical control (up and down) so the launch crews can correct the sonar for the rise and fall of the tides and make the nautical charts to show water depth from mean lower low water.

The tide station works by sending pressurized nitrogen gas through a tube that goes from a sensor into the water at a set location. As the tide rises and falls, the ocean water presses against the nitrogen gas in the tube and the computer sensor uses this information to measure sea level height.  The computer then transmits the sea level height to a satellite which routes the information to the main mapping office in Washington, D.C.

Ensign Hauser set up the tide station three weeks ago and it now needed a new nitrogen bottle. I carried the heavy, three-foot long metal bottle off the skiff and up a short steep slope. We hooked up the new nitrogen tank and Ensign Hauser operated a computer to make sure the station works correctly.  In the mean time, Jonathon practices his skiff landings with advice from AB Davis.

We returned to the HorCon station and joined Ensign Halbach and Technician Matt Foss.  They changed out the batteries and plugged in the reprogrammed computer.  The computer indicated that it was transmitting data, but Ensign Halbach saw only binary (zeros and ones) code on the screen instead of latitude and longitude readings.  A radio check with the launches determined they can pick up our transmission, but Ensign Halbach may need to make another trip out to the HorCon station to ensure the problem has been fixed.

We loaded up the old batteries and jumped into the skiff for a wild eight-mile ride back to the RAINIER and arrived with plenty of time before supper.

Personal Log 

After a late night of fishing, I found the “salt water bath” during our skiff crossing to Mitrofania Island refreshing and invigorating. I never felt tired for the rest of the day.  I enjoyed working with Ensign Hauser who patiently showed me how the tide gauge station computer logs data. I also got my work out by carrying the heavy batteries and nitrogen bottle.

The salt water bath left me with an interesting problem. Salt crystals flaked off my hair and face onto my clothes.  It looked like I had a major case of dandruff. My next stop after finishing this log entry is to hit the shower and get rid of the saline grime.

Hopefully the HorCon station’s problems were fixed and no more major work will be needed. In science, you run into these problems in the field and it can prove frustrating.  However, problem solving is part of the challenge of working out in remote locations.  In my classroom and Tacoma Public Schools, we try to teach students important problem solving skills.  No matter how much students memorize, it all boils down to using knowledge to creatively trouble shoot problems.

Question of the Day 

Here is a problem for my Electronics students.  The HorCon station runs off six, 12 volt batteries. The 12 volt batteries are recharged with a set of five solar panels.  Should you set up the batteries in series, in parallel or a combination of both? Should you set up the solar panels in series, parallel, or combination of both?  Write out a schematic for your design and explain your thinking.

Greta Dykstra-Lyons, August 2, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 2, 2005

Science and Technology Log 

Due to a backlog of scheduled repairs, the JORDAN did not depart from its homeport, San Diego on July 30th as scheduled. On Monday August 1st, the ship headed into San Diego Bay so that adjustments could be made to its acoustic backscatter (somewhat like an echo sounder). While this was being done, cruise members not trained in small-boat operations were given a brief training.  After which, the Zodiacs were lowered into the bay and we spent part of the afternoon putting our training to use zipping around the bay.  Anchors were hoisted and the JORDAN left the bay about 5:00 p.m. Sightings since we left San Diego include the following: bottle nose dolphins, Risso’s dolphins, short beaked common dolphins (which surrounded the boat by the 100s), two separate blue whale sightings, two separate sperm whale sightings (multiple animals each sighting),and a fin whale. Small boats were launched for the first blue whale and sperm whale sightings, and this allowed for photo identification and biopsies.  The two bird identifiers on board were thrilled to spot and photograph a Hornsby’s storm petrel.  This is the only documented North American sighting.

John Sammons, August 2, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 2, 2005

Weather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: Explain what might happen if the sea scallop population were to change drastically. What other organisms are in the same community as the scallop?

(You may want to look at the Day 8 food web and the graph below.)

Yesterday’s Answer:

Scallops are predators because they eat something else, that is phytoplankton and zooplankton. They are primarily herbivores. Scallops are mostly prey to, or eaten by, sea stars and crabs.

Science and Technology Log

Screen shot 2014-02-02 at 10.24.04 PM*CTD = Conductivity, Temperature, Depth instrument is used to measure salinity, temperature, and depth at selected stations. This is important because different species of marine animals (including the sea scallop) have tolerances for certain temperatures and depths.

On Tuesday, the ALBATROSS IV continued surveying the northern edge of Georges Bank as it makes its way west toward Woods Hole. The weather has been very cooperative with a ridge of high pressure overhead, despite the routine early dense fog. Scallop counts are very low while other newer species are being observed, including various species of sea stars and the hagfish. The chart below shows a selected number of species and the stations in which they were found.

Sea Scallop Survey Leg II: Stations Where Species Were Found

Screen shot 2014-02-02 at 10.24.16 PM

Questions:

1) Which of these species was caught at the most stations?

2) Which of these species was caught at the least number of stations?

3) At how many more stations were the sea scallops caught than the red hake?

4) What might explain why sea scallops were found at the most number of stations on this survey?

5) What is the difference between the number of stations that the yellow tail flounder were located and the sea scallop?

Personal Log

Measuring Up 

Ten minutes to go before it’s time for another CTD,
When the crew will set and drop it down into the waiting sea.
It only takes a moment for the thing to take a dash,
To the bottom it will go, but watch that it don’t crash.
Then it’s time to drop the dredge and ready for the tow,
Soon you’ll hear them haul it in, and it’ll be time to go.

 

Mike Laird, August 2, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 2, 2005

Weather Data

Time: 13:00
Latitude: 55° 53.4 ̍ N
Longitude: 158˚ 50.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 225˚
Wind Speed: 10kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: Sky 8/8 covered; Lower level: cumulus Mid-level: altostratus High level: cirrus

Deck Crew for a Day – Part I 

One evening late last week, I checked the Plan of the Day (POD) — a schedule listing the following day’s launch assignments and ship movements.  I found that I was scheduled for an on-ship day. Teacher at Sea participants onboard the RAINIER generally follow a routine alternating between fieldwork out in the launches and days onboard the ship.  The on-ship days are intended to give us time to interview crewmembers, research areas of interest, and prepare logs detailing our experiences and learning.

So when I saw that I would be onboard the following day, I made arrangements with Jim Kruger the Deck Chief to be a member of the deck crew for a day.  While anchored in the work area, the deck crew’s typical day begins with the responsibility of getting all launches scheduled for fieldwork prepared and deployed.  For each boat going out this entails:

  • removal of the tie-downs securing the launch in its berth
  • lowering the launch (done with a piece of equipment called a gravity davit – a system of pulleys, cables, and hooks operated by a motor)
  • securing the launch for the safe loading of:
      1. personnel,
      2. equipment: the CTD sensor used in taking a cast of the water column (see log for Day 3, Wednesday, July 27) and personal gear,
      3. and – maybe most important – the food and drinks prepared by the galley for lunch and snacks
  • releasing the launch from the hooks (one on the bow – “For clear!” and one on the stern – “Aft clear!”) used to raise and lower it with the gravity davit
  • starting the boat’s motor
  • and finally, releasing the launch’s bow and stern lines, so the coxswain can  radio in and declare, “We are away!”

The deck crew must work as a team to ensure that all of this happens safely, quickly, and efficiently.  It is pretty impressive to see four to five launches mobilized and away from the ship in less than thirty minutes!  On my first day (actually my only day) on the job, I was given the job of manning the stern line.  Of course I had a “real” deck crewmember by my side giving me instructions and pointers and ready to step in if things reached a crisis point.

The stern line actually serves two purposes: 1) to make sure the launch does not swing back and forth too much while it is being lowered into the water, and 2) to work with the bowline to hold the boat securely alongside the RAINIER until it is ready to cast off. It takes quick, nimble hands (along with a few pointers on useful techniques from my partner and the Captain) to quickly release and secure the lines to the cleats along the ship’s railing. It is also encouraged that one perform these tasks without getting hands and fingers caught or getting the line all tangled up.  I preformed my duties as a rookie would and successfully helped get all the launches on their way!  It seems like we have done a lot already this morning it must be getting late.  What?  It’s only 8:27!

To be continued.

Personal Log 

Hey all you sun junkies out there! Alaska in the summer is the place to be!  We are currently enjoying almost seventeen hours of sunlight a day – sunrise 6:43 and sunset

10:38. This provides a lot of time for outdoor activities – we were out fishing at 10:30 last night. Finally had to turn the deck lights on at about 11:30, so we could finish cleaning our fish. Of course, all this fun in the sun depends on cooperation from the weather. Heavy clouds, fog and rain – not uncommon in our current location – tend to put a damper on the sunshine.  So we’ll live large and enjoy every moment we have for as long as it lasts!

Philip Hertzog, August 2, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

hertzog_log9Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 2, 2005

Weather Data from Bridge

Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.8 ˚ C
Sea Level Pressure: 1002.5 mb
Cloud Cover: 8, stratocumulus

Science and Technology Log 

I got the day off from the launches so I could catch up on my paper work and study up on onboard life. I slept in an extra hour, but as I emerged from my cabin for a late breakfast, Lt. Ben Evans asked me to accompany him over to the radio transmitter site.

Solar panels
Solar panels

I grabbed my backpack and within three minutes I sped across Cushing Bay in an open Zodiac pushed by a 115 horse motor.  The wind had strengthened over night and we had more waves on our side of Mitrofania Island. We bounced over the waves and quickly reached the landing site. Our coxswain carefully eased the Zodiac towards shore and as a swell moved away from the beach we jumped out into ankle deep surf.  The coxswain quickly backed up the Zodiac before the next swell could push it on to the beach.

Lt. Evans and I walked up to the transmitter site located in a grassy meadow about 150 feet from the water’s edge.  Lt. Evans pulled out a volt meter and soon determined that the transmitter computer failed to turn off last night and drained the batteries.  The station had stopped transmitting yesterday afternoon due to a software problem.  Normally a set of solar panels recharge the transmitter station’s four batteries when the computer operates correctly. The following pictures show the troublesome computer and the solar panels: Lt. Evans decided to take the computer back to the RAINIER to reload the software and figure out the system problem.  A crew plans to return tonight with the computer and a fresh set of 12 volt batteries. Just as we had landed at the site, we quickly boarded the Zodiac in between swells to prevent the boat from beaching or knocking against us. We returned to the RAINIER just in time to catch her set sail for a new work location.

Mitrofania Island
Mitrofania Island

Around 11:30 am, the RAINIER weighed anchor and sailed 7 miles north to Fish Ranch Bay adjacent to the southwestern Alaskan peninsula.  The new location will protect us from the strong north east winds that started to rock the ship yesterday.  As we crossed over to the new location, the RAINIER rocked side to side as 2-foot waves blown in from the Gulf of Alaska hit our starboard side. We entered the calm waters of Fish Ranch Bay and saw a large, pyramid shaped peak to the north, green colored mountains on the east and west, and a view of Mitrofania Island 7 miles to the south across open water.  The survey launches crossed earlier and passed us while mapping the harbor we’ve entered. I spent the rest of the afternoon looking at our new surroundings and finishing up my paper work. In the evening, Mike Laird and I went out with four other crew members in a skiff to try out the fishing.

Personal Log 

I had a relaxed day and felt good about completing my paper work.  I enjoyed seeing how the transmitter site had change since my last visit.  The crew had added a battery bank, solar panels and electronics to the site that I had not seen before.

Our biggest adventure of the day started after supper with a fishing expedition.  Carl Verplank and Mike Riley took Mike Laird, Matt Boles and Josh Riley (Mike R.’s cousin) out in the R8 open boat to teach us how to fish Alaskan waters.  We drifted over by a small bank and soon caught fish.  I caught my second “keeper” halibut just on an 8 pound test line and a cheap $ 30 pole. My line broke just as Carl netted my halibut. Both Mike R. and Carl reeled in decent halibuts and then Mike L. surprised everyone when he landed a salmon off the bottom using halibut gear.

After a couple hours, we motored over to a steep embankment below the old town site of Mitrofania. Drifting along, we suddenly had fish on three lines and started hauling in sea bass. Sea bass tend to school and go into a feeding frenzy when one fish finds food.  The bass weighed from 1 to 3 pounds and measured 6 inches to one foot in length. We saw sea bass rise up from under our skiff and watched two or three fish go after one lure. We released the smaller fish and kept the larger ones.

We headed back to the RAINIER at 10:15 pm in the evening light with sunset still a half an hour away. On the back of the RAINIER we cleaned and cut up our fish with guidance from Mike Riley while Carl carefully cleaned R8 and the deck as the dusk became night.  I clean and cut up my first halibut and helped Mike Laird with his fish.  We finally finished the last fish and stored our catch in the reefer (boat language for refrigerator) at 1:00 am.  It will be tough to get up in the morning, but I won’t forget this evening for a long time.

Question of the Day 

Why do sea bass school? Is this an advantage or disadvantage to their survival as a species?

Greta Dykstra-Lyons, August 1, 2005

NOAA Teacher at Sea
Greta Dykstra-Lyons
Onboard NOAA Ship David Starr Jordan
August 1 – 20, 2005

Mission: Cetacean Abundance Survey
Geographical Area: U.S. West Coast
Date: August 1, 2005

David Starr Jordan
NOAA Ship David Starr Jordan

Cruise Information and Background 

The name of this west-coast cruise is Collaborative Survey of Cetacean (marine mammals) Abundance and the Pelagic (ocean) Ecosystem (CSCAPE). It is a collaboration between the Southwest Fisheries Science Center and the National Marine Sanctuaries Program. In addition to counting marine mammals, scientist hope to add to photo-identification stocks, collect biopsies, observe cetacean behavior, collect oceanographic-related data for ecosystems analysis, contribute to the leatherback turtle prey study, and collect data from sonobuoys.  There are a total of seven cruise legs, which will take the DAVID STARR JORDAN the length of the west coast and 300 miles off shore.  The ship will be following a predetermined grid pattern.  Each leg lasts 20 days. After the 20 days at sea the JORDAN will rest at various ports along the west coast for four days.

Scanning for marine mammals
Scanning for marine mammals

The boat has a regular staff of 16: four NOAA Corps officers, five engineers, five deck crew, and two cooks. For this cruise an additional 13 scientists take the total number to 29. The scientists fall under the command of the cruise leader.  She is responsible for directing nine animal observers, two oceanographers, and one Teacher at Sea. The mammal observers are on the flying bridge from sunrise (6:50) until sunset (8:45). The six observers rotate across three stations on the flying bridge, spending 40 minutes at each station.  During their watch two of the observers are scanning the waters with mega-binoculars referred to as big eyes (both on the port and starboard side of the ship), while the third observer mans a computer and enters in mammal data in the event a mammal is spotted. In addition to the three mammal observers, the two bird observers alternate in two-hour shifts. Last, but not least, each leg of the cruise has an independent observer.

Bongo nets sampling for chlorophyll
Bongo nets sampling for chlorophyll

The oceanographers spend the majority of their day sleeping–only because they are busy with operations before sunrise and deep into the evening hours. Daily, there are water samples taken before and after sunrise up to 1000 meters.  These samples allow the oceanographers to collect data about chlorophyll content, salt content, nutrient content, and primary productivity.  On a regular basis throughout the day they also collect surface-water samples for chlorophyll analysis and conduct regular water temperature tests.  Most nights after the sun has set, they also collect plankton in a bongo net tow.

When the members of the JORDAN are not working there is a lot of emailing friends and family, reading, sharing stories, watching one of 500+ movies, preparing professional reports, studying, working out and catching tuna off the aft deck.

Catch of the day!
Catch of the day!

John Sammons, August 1, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: August 1, 2005

Weather Data from the bridge

Latitude: 42° 5’ N
Longitude: 67° 28’ W
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure:  1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Questions of the Day: What makes a scallop a predator? Is a scallop a carnivore, herbivore, or omnivore?  What is the scallop prey to?

Screen shot 2014-02-02 at 10.23.14 PM

Yesterday’s Answer:

Scallop Answers

Science and Technology Log

Facts About Sea Scallops* 

  • Largest wild scallop fishery in the world
  • Most valuable fishery in Northeast US
  • 2004 landings were about 28,000 meats (63 million lbs) worth over $300 million
  • Most landings come from about 300 vessels with “limited access” permits
  • Principal ports are New Bedford MA, Cape May NJ, Hampton Roads VA
  • Typical vessel is 70-90’ and uses two 15’ dredges
  • Most fishing occurs in the Mid-Atlantic area (Virginia to Long Island) and on Georges Bank
  • Sea scallops have an upper temperature tolerance of about 21 C.
  • Most important scallop predators are: sea stars, crabs and other decapods
  • Because they are filter-feeders, their main source of food is phytoplankton in the floor to surface water column.

*Thanks to Dvora Hart, Northeast Fisheries Science Center, for supplying the scallop information. 

On Monday, the ALBATROSS IV began surveying more open areas. Sunday’s 6 – midnight watch experienced very large catches as they sampled the closed areas from the Canada line westward. I got an opportunity to operate on a Goosefish in order to take a vertebrate sample. This will be used to determine the age of the fish. The catches are significantly small since we entered an open area for fishing.  With beautiful weather ahead of us, we should be able to continue to enjoy the sorting time as well as time on deck to relax. The weekly fire and abandon ship drills were held today.

Personal Log

Life at Sea 

Working two shifts makes it hard to fully stay awake,
But ignoring the wakeup call could be a big mistake.
So much to choose from when it’s finally time to eat,
Better be there when it is your time to get a decent seat.
Take a minute or two to rest while the ship is on a steam,
When it’s time to go to bed, enjoy that time to dream.

Cary Atwood, August 1, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: August 1, 2005

Weather from the Bridge
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure: 1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Question of the Day

Does the temperature of ocean waters change depending upon its depth?

Answer to yesterday’s question

Bilateral symmetry is the drawing of a line through an object and having it be the same on both sides as a mirror image, such as sea stars and mud stars.

Science and Technology Journal

Aside from the major science mission of the scallop survey a few other scientific investigations are taking place on the Albatross.  One such project is the CTD measurements.  C for conductivity, T for temperature and D for depth.  I will elaborate on this in tomorrow’s journal.  Another smaller project is the mapping of habitat using acoustic sounders.

Although the scallop watch crews are labeled as scientists aboard ship, with many us with our master’s degrees in a particular science specialty, only a few are fully engaged in that role for this leg. Vic Nordahl, Chief Scientist, Dvora Hart and Avis Sosa.

Vic is ultimately responsible for collecting and reporting accurate numbers of all scallops and other marine species we have documented.  The watch chiefs report the data to him, but they must audit the data before a full report is made.

Dvora, while on watch, depending upon the tow number will randomly check numbers of starfish, crabs and the weight of scallop meat and gonads.  We are collecting numeric quantities to help better determine the age and growth of scallops in different sampling areas.

Avis Sosa moonlights on these scallop survey crews during her summer vacation from teaching.  Currently she is teaching advanced placement chemistry in a large international school in Jakarta, Indonesia. She is an amazing woman with a huge supply unique life experiences from all over the world under her belt.  For the past 14 years, Avis has been working on various NOAA ships, first as a volunteer, now as a contract employee.  Over the years, she has become a source of expertise in her knowledge of marine mollusks.  While sorting through the pile, she will identify anything in it and give you not only the common name, but the scientific name as well.  Currently she is collecting specimens for the collection in the museum at the Marine Fisheries Lab. She is my role model as the quintessential independent, worldly woman!

Personal Log 

Another day of calm seas and perfect weather.  Even though I hate getting up every morning at 5 a.m., when I arrive on the fantail after breakfast, the fresh salt air and sunrises always makes the early hours worth the struggle of waking my body up.  After donning my rubber boots and “Hellies”, I take a few moments to scan the horizon, note the texture of the water, lean over the deck to watch the shape of the boat wake and breathe in the air of a brand new day.

Mike Laird, August 1, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: August 1, 2005

Weather Data

Time: 13:00
Latitude: 55° 53.4 ̍ N
Longitude: 158˚ 50.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 225˚
Wind Speed: 10kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: Sky 8/8 covered; Lower level: cumulus Mid-level: altostratus High level: cirrus

Science and Technology Log 

Operating the RAINIER in port—as she transits from site to site, and as she lies at anchor acting as home base for the survey operations—requires that each of the ship’s “departments” functions efficiently with a small margin for error.  When things do go wrong, they must be handled using the resources available on the ship so that operations continue with as little down time as possible.  Perhaps the greatest resource onboard the RAINIER is her personnel.  Situations, like those listed below, continually arise and require those involved to demonstrate patience, innovation, problem solving abilities and determination:

  • A cable getting caught in one of the pulleys on a gravity davit just after it has been used to lower a survey launch at 8:00 to begin its day of echo sounding. The cable must be replaced and the davit operational by the time the launch returns at 16:30.
  • A crack in the hull of a launch (welded and “fixed” while the RAINIER was in port for three days in Kodiak) is allowing water into the launch at the rate of about a gallon an hour. The engineering people use some magic red goop to temporarily stop the leak until a permanent solution can be devised.
  • Electronic equipment is very temperamental (cables jiggle loose during transits through rough seas, components can overheat, software glitches rear their heads, etc.) and continually requires TLC to keep it happy and functioning.
  • Established, recognized Differential Global Positioning Systems (latitude and longitude data) and primary control stations (tide data) may not provide data that meets required specifications (because of their distance from the work area, topographic features, etc) necessitating the installation of temporary DGPS and tide station sites.

As a crew member, you never know what is going to come up and must always be willing and prepared to meet unforeseen challenges!

Personal Log 

Last night, after a day of recording data on one of the survey launches, six of us had a chance to take one of the skiffs and go do a little fishing.  Our primary target was halibut.  We motored out to a site scouted earlier in the day during our survey ops, dropped our lines and began jigging right on the bottom.  It wasn’t long before I felt a tugging on my line, began reeling in, and pulled up a baby halibut (or “but” as my companions more versed in these matters call them).  Not wanting to be accused as a cradle robber, I released it. I dropped my line again and after a few minutes of jigging, felt the tug, and reeled in a larger halibut (maybe a 15 pounder – I know technically still a baby).  I released it also, because my companions assure me, “It’s still early you’ll get a bigger one.” I didn’t – of course. However, I did have success (a silver salmon, and four sea cod – I kept these). I also hooked a pea cod, an Irish Lord and two other small halibut – I didn’t keep these. Fun times!

Philip Hertzog, August 1, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: August 1, 2005

The CTD
The CTD

Weather Data from Bridge

Latitude: 55˚ 53.4’N
Longitude: 158˚ 50.4’W
Visibility:  10 nm
Wind Direction: 103˚
Wind Speed: 10kts
Sea Wave Height: 0-1 feet
Sea Water Temperature:  11.7˚ C
Sea Level Pressure: 1006.0 mb
Cloud Cover: 8, cumulonimbus

Science and Technology Log 

I woke up to gray skies and a 10 knot wind. The wind blew waves to around 1 foot high and rocked the RAINIER gently in Cushman Bay.  We have been lucky in that no rain has fallen in the eight days since we left Kodiak and the seas have been remained calm Mitrofania Island. The deck crew lowered the launches an hour earlier at 7:00 am and I joined launch RA-4 led by Ensign Andrew Halbach with assistance from Survey Tech Dan Boles.  Coxswain Carl Verplank guided the RA-4 towards the south western side of Mitrofania Island near Spitz Rock.

Lowering the CTD
Lowering the CTD

As we rounded the corner of the island, one to three foot swells driven by a north east wind hit us and knocked the launch around and splashed water over our bow and up onto the windows. This made for roughest conditions I have seen so far on the trip, but not rough enough to affect our sonar mapping. Carl told me that the Rainier crew has mapped ocean bottom depth in worst conditions. We stopped the launch and Ensign Halbach let me lower the SEACAT CTD (conductivity, temperature, and density) probe to the bottom 200 meters down so we can collect data to correct our sonar data.  As mentioned in previous log entries; temperature, conductivity (amount of salt in the water) and pressure changes how fast sound moves in water and the CTD probe gives the computer information to correct the sonar for these factors. The CTD data changes over the day and by location so we took measurement every four hours for a total of three times. Here is a close up of SEACAT CTD probe and Dan Boles lowering it the later in the day: After the probe returned to the launch, Ensign Halbach turned on the Reson Radar which has good resolution and works the best in shallow, near-shore waters and around rocks.  Our first transects took us close to the shore and Dan sat on the bow and held on tight to look for submerged rocks that could damage the launch hull and sonar probe.  Dan got knocked around and splashed with water, but we quickly returned to our dry cabin as we moved further off shore:

The transect traversing nearshore areas
The transect traversing nearshore areas

We “mowed the lawn” following long transects that took about half an hour each to complete before turning around and moving over 100 meters to start the next transect.  On transects heading into the wind, our launch traveled at 7 knots per hour and hit each wave hard with a thump and splash over the bow.  On transects following the wind, the waves picked us up and we “surfed” down the backsides of two to three foot swells.  The following seas pushed the launch around and Carl first turned the steering wheel hard left and then hard right to keep us on a straight line.  Later in the day, I drove the launch for over an hour and learned how to set a rhythm for completing these left and right turns for each wave. At first, the launch crew remained quiet as we fought some minor motion sickness.  After eating and drinking coffee and soda, most of us perked up and started talking.  Carl told us about finding brown bear tracks while fishing on the main land last night near the abounded village site of Mitrofania.  Dan, Carl and I told each other bear stories and eventually shifted the conversation to education. Carl and Dan both have mothers that work in public schools and told me how their parents put in long hours during the school year.

Cooking dinner!
Cooking dinner!

Carl, a young man in his twenties, is from Fort Wayne, Indiana and worked on the RAINIER the past four years.  Carl’s Dad is an attorney and he has some younger sisters that will meet him in Homer for a visit at the end of our current leg.  Carl also completed underwater dive school this past spring and can now help install tide gauge stations or inspect the RAINIER’s hull.  Carl plans to stay on the RAINIER for at least another year.

Dan Boles is slightly older than Carl and has a Bachelor’s degree in geology and French.  Dan grew up in Tennessee and at one point his mom raised horses on a farm.  Dan has been on board for almost a year and talked his younger brother (Matt) into joining the RAINIER. Can you imagine sharing a tiny bunk bed room and working with your brother all day long?  From what I saw, Dan and Matt get along well.

Taking a quick snooze
Taking a quick snooze

After 5 hours, Carl pulled the launch behind Spitz Island that provided us protection from the wind and waves, but filled the air with the foul smell of sea gull dung from the thousands of birds nesting near by. The RAINIER crew gets a half hour lunch break whether on the ship or out in a launch. Ensign Halbach, who had been up late and working on our radio transmitter site, took a nap.  Dan set up his Coleman stove and cooked up some salmon fillets he brought along.  The salmon tasted good after a long morning out on the water. Carl and I fished off the launch and I landed a sea bass on my first cast. I actually caught three on my first cast, but the first two fell off the hook before the third set the line. I could see several sea bass fighting for my hook.  Here are some photos from lunch: After lunch we continued or mapping till around 4:30 pm.  The ride back became calmer after we moved past the corner and on to the north side of Mitrofania Island which blocked the wind. We had nice views of the mountains and the RAINIER as we approached the ship. In the evening, I went out on the fan deck (very back of the ship) and fished off the side.  Everyone told me the fish weren’t biting, but I tried anyway.  I quickly caught a small halibut and hauled it on board with help from other crew.  After carefully removing the hook, I threw it back into the water so it could grow bigger before the next fisherman comes along.  I fished a little longer and caught a second halibut.

Rainier from the launch
Rainier from the launch

I decided to keep this one and Mike Riley, an oiler from Engineering, showed me how to bleed and fillet the fish. Halibut are more difficult to clean than other fish because they are flat, almost pancake shaped on their sides and a back bone that runs down the middle of their body. They also swim side ways with the flat side facing up and look the surface with their two eyes located on the same side of their head.

After cleaning the halibut, Mike showed me how to vacuum pack the fish and how to store it in our big freezer.  Mike is in his early twenties with a shaved head and several piercings in his ears, lips and nose.  Mike looks almost like a pirate or punk rocker, but the crew respects him for his fishing and filleting abilities.

The evening ended well and I retired to my bunk for a well deserved sleep.

A beautiful evening
A beautiful evening

Personal Log 

I had a busy day today getting up at 5:50 am and readying myself for the launch. I really had to keep my balance on the launch today as we bounced around, but I didn’t get sea sick like some people did in the other boat.  Driving the launch was the best part of my day as I skipped over waves and learned how to handle it in following seas.  I learned how to focus on a point far away and to use a rhythm in steering to keep a straight course in rough seas.

Catching the sea bass and two halibuts was a real treat as many people did not catch anything today in the windy conditions. I felt a bit sorry for the fish as we cut it up, but I look forward to eating the meat upon returning from the trip.

Question of the Day 

What are three factors that would make waves high out in the ocean?

John Sammons, July 31, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 31, 2005

Weather Data from the Bridge

Latitude: 41° 26’ N
Longitude: 66° 34’ W
Visibility: <1 mile
Wind direction: NW (306 degrees)
Wind speed: 7 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 15°C
Sea level pressure: 1023.3 millibars
Cloud cover: 90% fog, haze, dust

Screen shot 2014-03-01 at 8.35.50 AM

Question of the Day: Predict the mass and size of each scallop pictured above. Match them with the masses and lengths shown below.

Scallops Masses and Lengths

Yesterday’s Answer: Answers may be different.

  1. flat body allows it to lay camouflaged on the bottom
  2. tail fin allows it to move through the water
  3. spiny back and tail protect it from predators
  4. long, slender body allows it to move faster through the water
  5. strong muscle allows it to close the shell to keep out predators
  6. strong arms allow it to pry open shells for food

Science and Technology Log

“Scallops are a family of bivalve mollusks; there are several hundred species of scallops, found in marine environments all over the world.  Like most other bivalves, they consume phytoplankton and other small particles by filter-feeding. Unlike many bivalves (e.g., clams, which bury in the sediments), they live on the bottom surface, and can move by swimming. Atlantic sea scallops (Placopecten magellanicus, also known giant scallops or deep sea scallops) live only in the northwest Atlantic from Cape Hatteras to Newfoundland and the Gulf of St. Lawrence. Sea scallops usually spawn in late summer or early fall, though spring spawning may also occur. After hatching, larvae stay in the water column for 4-6 weeks. At settlement, they attach to a hard object by means of byssal threads produced by a gland at the end of their foot.”

*Thanks to Dvora Hart, Northeast Fisheries Science Center, for supplying the scallop information. 

On Sunday, I was able to operate the Conductivity, Temperature, and Depth instrument by myself. This instrument is lowered into the water at every third designated stations. Data is collected as the instrument descends to the bottom. This data includes salinity (saltiness), temperature, and depth of the water. This is important since various marine animals require ideal temperatures to survive. Today’s CTD went down to 80 meters (think 80 meter sticks deep) and recorded a temperature of about 5 °C. That ‘s cold!

Personal Log

Scallop Catch 

The heavy dredge is ready for another timely tow,
Expect to catch the scallops, to the surface they will go.
Dropping to the bottom where its 80 meters deep,
Spending fifteen minutes dragging and bringing in the keep.
Then they’re sorted on the surface while hiding in their shell,
The aging/growth ridges on their outside’s what they tell.

 

Cary Atwood, July 31, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 31, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day 

What is bilateral symmetry?

Answer to yesterday’s question: The Hermit Crab

Science and Technology Log

As we comb through our dredge piles, intent on finding scallops, one of the most prolific creatures I notice is the Hermit Crab of the family Pagurus.  Hermit crabs are common on every coast of the United States and like many people, I am drawn to their special ability to take up residence in cast off mollusk shells. Just as we grow out of shoes when our feet grow, so must they find new homes as they age.  When seen without their shell, their abdomen is coiled, soft and very pink.  They carry their shell with them, and when threatened or attacked are able to retreat quickly for protection.  Hermit crabs are highly adapted to  carry around their permanent burden of a home because they have special appendages on their midsection segment for clinging to the spiral support of a marine snail shell. Their long antennae and large socketless eyes give them a distinct, non-threatening but whimsical  look….and it makes me want to take one home-but of course I couldn’t offer it the same kind of home it already has.

Personal Log

The six hour shifts for the scallop survey are taking its toll on my sleep needs. Every day I feel I am further behind and will never catch up.  This morning I truly did not feel awake until about 10am, even though my watch began at 6 a.m.  My daily schedule consists of the basics: eat, work, eat, relax, sleep, eat and work.  I don’t know how the crew can adjust to this kind of schedule for months on end as they go to sea.  It takes a very special person to adjust to the physical demands, let alone the demands of leaving family behind to come to sea.  However, some of the guys on board have been doing it for 20+years!

Coming to sea has a magnetic pull for some….is it the vast water and open horizons? Is it the need to assert some sort of independence? Is it the opportunity to be a part of something so much larger than one’s self?  As I speak to some of the deck hands, they are generally happy to be working for NOAA and away from the uncertainty of fishing or lobstering. In part it’s having steady work not influenced by the vagaries of what is caught at sea. These days, with the Atlantic fishery recovering, the catch is more consistent. Of the two deck hands I have come to know, both have a far away look in their eye—missing some of the action on a fishing boat, but still in love with the sea.

Mike Laird, July 31, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 31, 2005

Weather Data

Time: 13:00
Latitude: 55° 53.4 ̍ N
Longitude: 158˚ 50.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 225˚
Wind Speed: 10kts
Sea Wave Height: 0-1΄
Swell Wave Height: 0-1΄
Sea Water Temperature: 11.7˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: Sky 8/8 covered; Lower level: cumulus Mid-level: altostratus High level: cirrus

Science and Technology Log 

The RAINIER’s crew of forty-nine (men (40) and women (9)) is divided into six work groups:

I) Officers and junior officers:  Responsible for overall ship operations including: navigation, horizontal and vertical control, damage control (ship safety), medical services, field  operations, etc.

II) Survey operations: Responsibilities include: data collection and analysis

III) Deck operations:  Responsibilities include: launch and de-launch of small boats (launches and skiffs), operation of the small boats, manning equipment and lines used during anchoring and mooring of the ship, maintenance (cleaning, rust removal, painting) and operation of the deck and deck equipment (cranes, gravity davits, hydraulic davit, the anchor windlass), etc.

IV) Engineering operations: Responsibilities include: maintenance and operation of the ships electrical and mechanical systems

V) Yeoman and Electronics: Yeoman – responsibilities similar to those of a business manager  (personnel, payroll, ship’s budget, etc.).  This position is slowly being  eliminated from the ships in NOAA’s fleet.

Electronics – responsible for the maintenance and operation of the electronic equipment onboard ship (computers, radios, GPS units, etc).

VI) Steward: Responsibilities include: operation of the galley, preparing three meals a day for the crew, preparing snacks for the morning and afternoon breaks, and preparing a picnic lunch and drinks to send with the three to four launch crews who are sent out on survey assignments.

I was able to work with the deck crew the other day, and I’ll share the experience in a future log!

Personal Log 

Today I did a lot of housekeeping kind of stuff.  I was getting pretty low on clean clothes, so I went down and used the ship’s laundry – three washing machines and three driers.  The only difficulty is trying to find open machines.  Either I hit it on a busy day or 49 crewmembers and four guests keep the machines busy.  I also caught up on my logs and did some background reading on tides and tidal datum.  Think I will try a little fishing tonight – still haven’t managed to pull one over the ship’s side.  Last night Jon, one of the crew, somehow caught a skate (looks like a ray).  He hooked it in one of the fins. We pulled it up took a look at it and then released it back over the side.  Very interesting!

Philip Hertzog, July 31, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 31, 2005

The laundry room
The laundry room

Weather Data from Bridge

Latitude: 55˚53.4’ N
Longitude: 158˚ 50.4’ W
Visibility:  10 nm
Wind Direction: 180˚
Wind Speed: 2 kts
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: 1, cumulus, altocumulus

Science and Technology Log 

Today I took care of tasks that come with living aboard a ship as a crew member. I’ve been on board the RAINIER for almost 9 days now and my laundry started to attract sea gulls outside my room’s porthole.  Even the Sei Whales turn and swim away when they approach my side of the ship. On shore, many of my students’ moms or dads do the laundry, but on a ship this becomes your responsibility. Washing clothes at sea poses special problems because we have no sewers to dispose of waste water, only the ocean. We have to use special soap that won’t harm sea creatures and limit the amount of water used for washing. The RAINIER has a full laundry with water saving washers and energy saving dryers as you can see in this photo.

Ship quarters
Ship quarters

After laundry, I cleaned my room.  The Captain expects everyone to keep a clean room and make up their beds everyday. He can even enter your room at any time for an inspection. I share a room with the other teacher at sea, Mike Laird.  The room has two bunks, two closets, a head (known on land as a bathroom) and a desk with a computer as you can see here: Mike and I lucked out by getting an officer’s room, because many crewmembers share rooms with up to four people and only have gym lockers to store their gear.

Cleaning our bathroom
Cleaning our bathroom

Once I cleaned my room and vacuumed the floor, I tackled the big job of cleaning the head. Again, you can’t bring a parent along to clean the bathroom for you and this job falls on everyone on the ship. The RAINIER does its best to protect the environment by using special cleaning products that kill mold and germs, but not aquatic life that live in the water where our wastes end up. I used three different types of cleaners: one for the tub, one for the toilet, and one for everything else.  I kneeled down on my hands and knees to scrub everything from top to bottom to ensure the germs die and won’t make us sick miles from the nearest doctor.  My mom and students would be proud of me!  The rest of the day I caught up on my paper work and read, but tomorrow I will have a big day out on the launch.

Personal Log 

I enjoyed a day off the launches to get caught up on all my house work and work on my photography. My cabin had gotten messy after spending eight nights in it and I look forward to sleeping on clean sheets tonight. I met with Larry Wooten, Chief Electronics Technician, and learned how to transfer my photos over the ship’s file server. The ship’s crew is one big family and share many things. Several people have put their photos on the main server so others can enjoy and download pictures. Everyone trusts each other on the ship.  We leave our doors unlocked and you can leave your wallet out on the table without a worry.  I wish our society back on shore could be just as trusting. Well, I’m off to find some salmon off the back end of the ship.

Question of the Day 

Why is it important to keep a ship at sea so clean?  What happens if someone on a ship becomes sick?

John Sammons, July 30, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 30, 2005

Weather Data from the Bridge

Latitude: 41° 26’ N
Longitude: 66° 34’ W
Visibility: <1 mile
Wind direction: NW (306 degrees)
Wind speed: 7 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 15°C
Sea level pressure: 1023.3 millibars
Cloud cover: 90% fog, haze, dust

Question of the Day: What physical adaptations help the animals pictured in numbers 1 – 6 above survive in their environment? Give at least three.

 

Screen shot 2014-03-01 at 8.32.02 AM
Photos 7, 8, 9: Evening Sunset

 

Yesterday’s Answer: The cloud types shown in yesterday’s pictures are: 1) cirrus and stratus 2) stratus (fog) 3) cirrus 4) cirrus 5) cumulus 6) cirrus and stratus 7) stratus (fog)  8) stratus 9) cumulus (alto-or cirro-cumulus) There were no cumulonimbus (thunderstorm) clouds (which is a good thing). The crew on the Albatross IV was experiencing FAIR weather.

Science and Technology Log

Animal adaptations fall into two general categories – behavioral and physical. The physical adaptations are the structures on the animal that help in survive, while the behavioral adaptations are the actions the animal takes in order to survive. The structures may include fins, body shape, beaks, mouth parts, legs, gills, etc. that are important to the animal’s ability to endure within the habitat. For example, scallops have a hard shell that helps them survive by keeping out predators. The actions that animals may take in order to survive include playing dead, showing teeth, and licking your face. For example, scallops squirt water in order to push themselves away from their predators.

On Saturday we moved into Canadian waters and are now operating in an open area. We essentially have the same tasks to perform at each station, including taking a picture of the catch before it is sorted, weighing and measuring selected species, tagging and bagging requested species, cleaning the workstations after each station, and operating the CTD. More information about the Conductivity, Temperature, and Depth instrument will be shared in tomorrow’s log. Several whales, dolphins, sharks, and porpoises have been spotted. They are difficult to photograph because I never have a camera ready, and they are breaking the surface at unpredictable time.

The table below shows the amount of some of the marine species collected since our survey began.

Sammons Day 6 Table

  1. Can you tell which species was the most populated in the areas surveyed?
  2. Which species was the least populated?
  3. Are there any that have the same or close to the same amount?
  4. What’s the difference between the number of the most and least populated totals?

Personal Log

Ocean Sunset 

Stand in awe as the sun begins to finally set,
Awash in orange and red and yellow, it is hard to forget.
What a lasting beauty as the sky begins to glow,
Its splendor in the many colors that it will show.
Waiting for its lasting blaze of light to end the day,
Now I lay me down to sleep. . ., I ask of Him, I pray.

Cary Atwood, July 30, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 30, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

What kind of crab makes its home in an abandoned snail shell?

Answer to yesterday’s question: Lines- a word used on a ship meaning ropes; Bosun- a very old word derived from “Boat Swain”- meaning the lead fisherman; Steam- the distance to be traveled on a ship from one destination to the next; Swell- wave action –when the action is greater, the difference between the tip of the wave and the trough represents the swell.

Science and Technology Log 

In the past few days, pods of humpback whales have been sighted near our ship.  I grab my binoculars and watch their show.  They are very acrobatic whales, breaching (jumping above the water), slapping their flippers and lobtailing—meaning they dive below the surface leaving only their large tail fluke showing as they wave it in the air.  If you are lucky enough to get close to a humpback whale, you might be able to see the distinctive markings on the underside of their flukes.  These markings are used to identify individual whales. It is hard to imagine the immense size of this mammal as they reach from 36 to 52 feet in length and weigh up to 40 tons

Humpbacks can be found worldwide and in the winter they migrate south to the Caribbean. Their summer feeding grounds are the Gulf of Maine to Iceland.  Humpbacks were commercially fished almost to the brink of extinction in the 1800’s as whaling ships plied their trade all along the Atlantic coastline, making many fisherman and coastal communities very wealthy. Once they were listed on the endangered species list in 1966 it protected them from commercial harvest.  Their numbers have recovered and it is estimated that 8000-10,000 live and feed in the waters of the North Atlantic.  Seeing these whales is a truly special experience

Personal Log– a poem for humpbacks

Humpbacks
On dark waters
You rise
And reach for the sky
Your fluke
Like a signature
Tells all who are near
This is my playground
Too I have returned from the
Brink of extinction.
Atlantic waters
Give me life
Help them remember
I could have been
A ghostly memory
Of times past.
Now, I inspire awe and hope
For the future.

Mike Laird, July 30, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 30, 2005

Weather Data

Latitude: 55°37.1̍ N
Longitude: 156˚46.6 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 140˚
Wind Speed: 5 kts
Sea Wave Height: 0-1΄
Swell Wave Height: 2΄
Sea Water Temperature: 12.2˚ C
Sea Level Pressure: 1009.8 mb
Cloud Cover: Stratus

Science and Technology Log 

I would like to add some clarifying information to my log entry, Mike Laird, July 29, 2005.  In that entry, I discussed setting up two horizontal control-data collection stations, and in reading the entry, it appears that the purpose for both stations is to support the “fly-away” Differential Global Positioning System (DGPS).  This is not accurate.  Only the station we established on the point will be used to determine the exact location of the DGPS.

The purpose of the other station is to verify the accuracy of the existing benchmark at that site, so a tidal datum (“…a base elevation used as a reference from which to reckon heights or depths”) can be established for the tide station located there.  I mentioned in the previous log that the horizontal control team is responsible for establishing accurate latitude and longitude coordinates for each sounding taken by the RAINIER and the launches. In addition, the soundings are taken throughout the day at different stages of the tide, which means that water depth will vary.

It is the responsibility of the vertical control team to provide precise tide data for corrections that have to be applied to the soundings so that they meet NOAA’s Mean Lower Low Water (MLLW) guideline (ensures minimum water depth is charted).  Mean Lower Low Water means that an average is taken of the tide level at the lower of the two ebb periods in a semi-diurnal (two flood periods and two ebb periods every day) tidal day. The National Water Level Observation maintains primary control stations in many locations around the United States. These stations determine a tidal datum based on the average of observations over a nineteen-year period.

In many survey areas, the tidal datum received from a primary control station can be used to make the necessary corrections to the soundings.  However, the nearest station to the RAINIER’s current work area is located in Sand Point – a significant distance away.  Therefore, the vertical control team established the tertiary tidal station (one in operation for at least thirty consecutive days but less than a year) here in Cushing Bay, so that data more indicative of the local conditions can be collected and compared to the primary datum.  During this analysis, a decision will be made about any adjustments that need to be made to the primary datum before it is used to make corrections to the survey soundings.

Personal Log 

Our good fortune continues to hold – the weather is incredible.  Sun is shining brightly, temperature in the low 70’s.  We had been hearing whispers since lunch of a beach party tonight. The rumors were confirmed by an announcement following dinner that a skiff would be ferrying people to the shore and back from 18:30 until 23:30.  It was a time for the crew and guests to relax and hang out, enjoy a big driftwood bonfire, do a little beachcombing (the captain found a large whalebone – rib maybe), have some sodas and listen to a little music.  A lot of fun!

Philip Hertzog, July 30, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 30, 2005

Reson’s sonar output that generates a map of the ocean bottom near Spitz Island.
Reson’s sonar output that generates a map of the ocean bottom near Spitz Island.

Weather Data from Bridge

Latitude: 55˚53.4’ N
Longitude: 158˚ 50.4’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1012.5 mb
Cloud Cover: 7, cumulus, stratocumulus, altocumulus

Science and Technology Log 

I went boating into new territory today. We took launch RA-4 and headed to the western end of Mitrofania Island to map the bottom around Spitz Island and several rocks.  I got to learn more about the RAINIER crew, saw a new type of sonar, met some sea lions and even drove the launch. Ensign Brianna Welton led our launch with assistance from Lorraine Roubidoux.  Ensign Welton is an expert in sonar technology and I watched other crew members seek out her help when problems crop up. Ms. Roubidoux goes to school at the University of New Hampshire where she’s earning a Masters Degree.  She joined the RAINIER for a month to get experience with sonar systems.  Ms Roubidoux conducts research on sonar “background scatter.” Background scatter occurs when sonar signals bounce around more than once and give false readings of ocean bottom depth.  Ms. Roubidoux’s research will hopefully result in better sonar for future ships.

Driving the launch
Driving the launch

Women play an important role on NOAA ships. They serve as officers like Ensign Welton and scientists like Ms. Robidoux.  Women also play key leadership roles on the RAINIER like our ship’s XO (Executive Officer), Commander Julia Neander, who takes command of our ship when the Captain leaves. I hope my students will learn that many cool opportunities exist for women in the sciences and they should not be discouraged from taking math and science classes.  Above is a photo of Ms. Robidoux running the sonar on our launch.

Coxswain (official name for a sailor who drives small boats), Corey Mussey, carefully maneuvered the launch as we approached Spitz Island. Underwater rocks make this type of mapping more dangerous and Seaman Mussey moved the launch slowly and carefully to avoid ripping off the half million dollar sonar sensor from the hull.  Because we moved into shallow water, Ensign Welton turned on a different type of Sonar Sensor called the Reson SeaBat 8101. The Reson works in water depths of 4 to 150 meters and gives a sharp, clear image of the bottom. The other sonar I saw before, the Elac, operates in deeper waters ranging from 40 to 400 meters, but does not give a clear image of the bottom. Corey told me you can actually see ship wrecks in full detail with the Reson sonar.

As we mapped, I occasionally stood on the bow of the launch and looked out for rocks as we moved close into shore. We passed over underwater “forests” of bull kelp and I saw 25 to 30 feet below the surface where a long, single whip like strand moves toward the surface and attaches to a floating round bulb.  Out of the bulb comes half a dozen flat fronds about 5 to 10 feet in length and four inches wide that make the bull kelp look almost like underwater palm trees.  Suddenly I saw a salmon dart quickly underwater and then 40 to 50 fish appear under the launch and move just as quickly out of view to our port (left) side.

As we moved back and forth in our “mowing the lawn” mapping pattern, we saw two groups of Steller Sea Lions. Four males sat on a small rocky island while two dozen or more females beach themselves on Spitz Island three hundred yards away.  Each time we passed, the Sea Lions sat up and barked at us.  We may be the first humans they have seen in this remote part of the Southwestern Alaskan peninsula.  As you can see, the one male challenged me with its open mouth while another sat calmly with his seagull friend.

At the end of the day, Corey let me drive the launch and run one of the transect lines for the sonar mapping.  As you can see in the photos below, I looked at a computer screen that showed our boat as a red torpedo along a line on the computer screen.  I had to keep the black marker on the red and green bar at the bottom of the screen exactly in between the two colors or we would miss our mapping area.  This proved difficult because just as one gets lined up a wave pushes the launch off course so you constantly correct the boat’s position. I found using the computer screen to drive the launch similar to a video game except you could wreck the boat and get hurt for real if one makes a mistake. I had a great day and returned to the ship to await another adventurous day.

Personal Log 

I had a fantastic day. I got to see some interesting technology and talked to professional people. Being out on the bow of the launch scared me a bit.  If we had hit a rock I failed to spot, the damage to the sonar system could equal a half a million dollars.  The bow also requires a lot of balance and strength.  Each time a wave rocked the launch, I risked falling into the cold Alaskan water and had to really pay attention.

Sonar output
Sonar output

Though the crew of the RAINIER works hard and long hours, they do get a chance to relax and Saturday nights are special. After supper, we loaded up into the open skiff and rode about mile to a wide open, gravelly beach for a party.  A few people started a large bon fire and we had soda drinks and music playing.  The skiff could only carry eight people at a time, but the party grew larger and noisier each time it arrived on the beach.  People talked, told jokes, found whale bones, and caught salmon all evening long.  The party lasted until 11:30 pm and we rode back to the RAINIER just as the Alaskan sky started to turn dark.

After returning to the ship, I joined some of the crew in the Wardroom (ship’s lounge) and watched the video, “Napoleon Dynamite,” about a high school student.  We all laughed and talked about our own high school experiences.  Tomorrow we all will be tired, but ready for another two weeks of work.

Question of the Day 

How large can Stellar Sea Lions get? Where do we find Stellar Sea Lions and what are their life’s history.

A male Steller sea lion
A male Steller sea lion

Cary Atwood, July 29, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 29, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

Define these terms used aboard the ALBATROSS IV:  lines, bosun, steam, swell

Yesterday’s answer: Pelagic means “of the sea.”  Lesser shearwaters are part of a larger group of pelagic birds who spend their entire adult lives out in the open ocean.  They rest, sleep, feed and mate on the water.  The only time they return to land is to lay a brood of eggs in the same geographic location where they were born and fledged before they left for the open waters of adulthood.

Science and Technology Log  

Today’s topic is ALBATROSS IV Geography: a mini guide to the important places on the ship.

Fantail—Another name for the stern of the ship.  Since this is a ship on which scientific missions are completed, this section of the boat has space to accommodate the gantry and boom, which pulls up the dredge, as well as a full wet lab to process scallops and other groundfish species. Wet Lab—The area in the fantail with touch computer screens and magnetically activated measuring boards and scales to document scallop survey data. Bridge—The enclosed area where navigation and sighting is done by the captain and crewmembers.  A full complement of computers is used to assess position, direction and locations of ships and buoys.

Computer Room—Located on the middle deck, it contains computers with e-mail access, FSCS computers and computer servers.  In every main area of the ship, a computer monitor with a closed circuit view of the fantail can be seen.  This is so the scientists, engineers, and captain can know the status of the fantail area at all times. Galley—Another name for the kitchen area.  Food for the crew is prepared here by Jerome Nelson and served buffet style by Keith.  The menu is posted daily and always includes a wide assortment of meats, breads and vegetables, as well as that all-important treat: ice cream! Hurricane Deck—AKA “Steel Beach”- a small deck above the fantail used for sunbathing and relaxation. Engine Room—Noisy room down in the bulkhead where the engineering crew keeps the two diesel engines running smoothly. Boom and Gantry—Found on the aft deck (otherwise known as the fantail), these are the all-essential components needed to tow the eight-foot net.  The gantry is the large metal A-frame and the boom is the moveable arm or crane, which uses large cables and a pulley system to bring up the net each time. Cabin or stateroom—Sleeping quarters for two or three persons.  It has portholes, bunks and a shared bathroom.

Personal Log 

Today the ocean waters have calmed a bit.  Thursday’s wave action gave new meaning to the term “rock the boat,” which is exactly what we did.  The swells, up to three feet in height, were the distant result of Tropical Storm Franklin as it made its way up into the waters of New England. A good safety rule we learned during our brief introductory meeting was to make sure you gave “one hand to the boat” at all times.  This was especially good advice as my footing placement became increasingly unpredictable.  Ships are built to withstand the high seas, and fortunately, there are plenty of places to put a firm grip as one makes their way around the ship.

John Sammons, July 29, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 29, 2005

Weather Data from the bridge

Latitude: 41° 02’ N
Longitude: 69° 15’ W
Visibility: 0
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Sea water temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

What cloud types are shown in below in the photographs (cirrus, cumulus, stratus, cumulonimbus)? What kind of weather would the crew on the ALBATROSS IV be experiencing (fair, rainy, stormy)?

Screen shot 2014-02-10 at 9.55.10 PM

Yesterday’s Answer: The ALBATROSS IV is currently located northeast of Virginia.

Science and Technology Log

Weather has a big influence on the decisions made at sea. Using instruments like the ones described in the Day 1 Log, the crew can determine whether conditions are safe and whether to change course. However, decisions about where to go can be affected by the types of clouds that are observed. One cloud formation that influences these choices is the stratus cloud on the ground, more easily known as fog. If it were not for the RADAR and other navigation instruments, dense fog could put an end to the trip. Other cloud types like cirrus clouds could indicate the edge of an approaching storm. With such warning, the ship could navigate around cumulonimbus, or storm, clouds or ride it out. An observant person on watch can make life-saving decisions using weather and cloud types.

The Friday morning watch (midnight – six) consisted of relatively uniform samples, because the tow moved through a restricted closed area of Georges Bank. It seems like this practice is working, since the scallop counts in the restricted and nonrestricted areas vary greatly.

Sampling of Sea Scallops on Georges Bank

The seas have settled a bit and are lower than two feet by the noon – six watch. The sky is almost clear with only a few distance clouds on the horizon. The water is a beautiful marine blue color, unlike the murky brown water near the coast.

Personal Log

Zig-Zagging 

Let me stop and ponder now about the time I’ve spent,
It seems like days and nights have passed, they’ve come, they’ve gone, they went!
Zigging left and zagging right, we have sailed right out to sea,
It seems so wide and open, such an awesome sight for me.
There’s so much to learn from everyone who works upon this ship,
It’s hard to think that soon we’ll be halfway through our trip.

 

Mike Laird, July 29, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 29, 2005

Weather Data

Latitude: 55° 53.36 ̍ N
Longitude: 158˚ 58.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: Light Airs
Wind Speed: Light Airs
Sea Wave Height: 0΄
Swell Wave Height: 0΄
Sea Water Temperature: 12.2˚ C
Sea Level Pressure: 1013.5 mb
Cloud Cover: Sky 8/8 covered;
Lower-level: cumulus, stratocumulus
Mid-level: altostratus

Science and Technology Log 

Today I am on a team that is going ashore to set up two horizontal control-data collection stations. The horizontal control team is responsible for establishing accurate latitude and longitude coordinates for the location of the survey soundings. The RAINIER uses a Differential Global Positioning System (DGPS) to acquire precise readings for every collected depth sounding. The remote location of the Mitrofania Island work area has introduced an infrequently encountered challenge for the horizontal control team.  The two Coast Guard operated DGPS Beacon Stations that are closest to the work area (one on Kodiak Island and one in Cold Bay) are too far away (we are on the outer fringe of their transmitting capability) for the signal to reach the launches in some of the more isolated, shielded areas. As a result, we are out setting up the horizontal control data collection stations.

The first station is set up over an existing benchmark and will record data transmitted directly from a GPS satellite.  The receiver will record readings for six hours, shut down for twenty-four hours, and resume recording for a final six-hour time period. Finished with the first station, we travel across the bay to a point that extends out into the ocean. We will set up the second horizontal control data collection station at this location. However, there is not an existing benchmark, so we must establish one.  First, we drive three-foot sections of metal rod into the ground (normally benchmarks are fixed in rock but there is none at this site).  We sink two sections and decide that is enough to hold the benchmark in place for the two months that it will be in use (for a permanent benchmark the rod is driven until it can go no further).  The brass cap is then stamped with a name (SPIT) and date (2005) and affixed to the top of the rod.  We are now able to set up the second station. The receiver will follow the same collection pattern: collecting signals for six hours, resting for twenty-four hours, and collecting for another six hours.

At the end of the collection period, the data from the sensors will be uploaded to an onboard computer and transmitted to the National Geodetic Survey in Washington D.C. where corrections to account for error introduced by things such as the atmosphere are applied. The corrected data, returned to the ship, will establish very accurately (within cm) the latitude and longitude for the site.  One final correction is made to the data before the site can be used. This error source is the satellite itself and comes from the satellite’s perceived position (where it thinks it is in the sky) as compared to its actual position.  The precise location is monitored by the United States Air Force.  Final corrections using this information will provide pinpoint accuracy (within mm) of the benchmark’s location. A temporary, or “fly-away”, DGPS station can now be placed at this benchmark and transmit signals easily received by the launches.

Personal Log 

Yet another beautiful day! Once on shore the mosquitoes were terrible – swarming in clouds around our heads.  A little bug dope, the warm sun, and cool breeze soon took care of this problem.  A great day to be out working!

Philip Hertzog, July 29, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 29, 2005

Tide gauge equipment
Tide gauge equipment

Weather Data from Bridge

Latitude: 58˚ 53.36’ N
Longitude: 158˚ 50.4’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height:  0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1013.5 mb
Cloud Cover: 8, cumulus, stratocumulus, altocumulus

Science and Technology Log 

Today I worked on what the hydrographic map makers call “vertical control” and “horizontal control.” When NOAA makes maps showing how deep the water is, they have a problem in that the depth changes when the tides come in and go out. If a rock exists in the water, there may be no problem at high tide, but ships can run into the same rock at low tide.

hertzog_log5To overcome this problem, NOAA measures bottom depths on their charts starting at a constant elevation called mean lower low water.  Low tide occurs twice a day, but one low tide is always lower than the other.  By keeping track of all the lowest, low tides of the day and averaging their elevations over many years, scientists can come up with an elevation for mean lower low water (MLLW).  You want to start measuring from your lowest tide level to ensure that ship captains can trust the chart to protect them from danger even during low tide. All of the ocean bottom charts are based on depth below MLLW.  However, when you collect sonar data, your height above MLLW constantly changes with the tide in a vertical position (up and down). Hence the term “vertical control” because the chart maker needs to know how to correct the sonar data so the maps are based on MLLW, not the current tide height. In remote areas like Alaska, limited tide data exists so the RAINIER crew installed a device called a tide gauge to measure and record the rise and fall of the tide in the mapping area.  The information from the tide gauge will help us to correct the sonar data so we can make the charts based on MLLW.

Working with the equipment
Working with the equipment

The RAINIER crew installed a tide gauge on Mitrofania Island 1.5 weeks ago before I got on board. Today I rode in an open boat to help the crew check the tide gauge.  Ensign Andrew Halbach led our mission with assistance from Survey Technician Matt Foss and Ensign Laurel Jennings. Mike Laird, the other Teacher at Sea also joined our group. Carl Verplank, Ordinary Seaman, drove the skiff and stayed off shore after dropping us off to ensure the boat won’t get stuck when the tide goes out.  Carl had the best job because he fished for salmon until we needed a pick up. I hope he shares some fish with us tonight!

Upon reaching shore, Matt Foss and I walked over to the tide gauge station to check it out. Matt carried “bear repellant” with him which is pressurized pepper put into a spray can. If a grizzly bear should approach and attack us, the pepper spray might keep the bear from eating us.  On the other hand, maybe bears like to have a little pepper on their steaks. In any event, we need to stay alert in bear country.

GPS work
GPS work

We found the tide gauge in good working order.  Matt told me that Scuba Divers helped to put the gauge in and that it sends tide information via satellite back to Washington, DC for further analysis.  Now that our vertical control (up and down movement) has been taken care of, Matt and I hiked over to join Ensign Halbach and Ensign Jennings who are working on “horizontal control” or side-to-side motion.

Normally, the crew of the RAINIER knows its horizontal position through the use of global positioning satellite (GPS). As discussed in previous log entries, GPS works by using signals from several satellites to locate your horizontal position on the Earth in terms of latitude and longitude.  The chart makers combine sonar data with GPS data to create accurate maps of ocean bottom depth.  Atmospheric conditions can affect the satellite signals so scientists calculate correction factors. Special radio stations transmit these factors which allow the launch crews to correct the GPS data. These corrections are called “horizontal control.”

Unfortunately, the remoteness and steep mountains of the Mitrofania Island area prevent the RAINIER from receiving good radio signals.  We need to set up our own radio transmission and GPS base station to get good control.  This task took up the rest of our day.

Matt and I found the others busily setting up the GPS station and taking measurements to ensure good location information.  Ensign Halbach carefully leveled the GPS antenna and oriented it towards north. After setting up the GPS station, Carl picked us up and drove the open boat to another location about a mile away where we repeated the process and set up a second GPS station. However, constructing the radio transmitter tower proved to be our big challenge. Nobody in our group ever set up a tower before so we worked as a team to figure it out. We returned to the RAINIER and hit the machine shop where we measured out metal, drilled boltholes and scavenged any thing to help us build the tower.

We carefully load the skiff and quickly motored back the mile across the water to the transmitter site located on a sand bar that sticks out into Mitrofania Bay.  Ensign Halbach led us in constructing the tower and it went up faster than planned.  Two people hold the tower straight up and balance it while the other three string guy ropes to metal stakes pounded in the ground. The tower made us proud of our team work, but no one dares to climb it.  Maybe some of you students reading this log entry would like to come to Alaska and try to climb it.  We returned to the RAINIER and could see our tower on the horizon where it will transmit horizontal control data to all the launches conducting sonar work over the next two weeks.

Personal Log 

This was the most physical day yet on the research vessel.  I actively participated in setting up the tower instead of just observing.  I really enjoyed working in a team today and helping to solve problems.  I also had a good physical workout by carrying heavy equipment to the GPS and radio transmitter sites.  The work out really helped because the food on board the RAINIER is delicious and plentiful with three large cooked meals a day.  I need to watch my weight on this trip.

The tower project showed me you need both technical training and practical construction skills when out in a remote area like Alaska.  My students tend to be either hands-on or all academic, but you need a balance of both these skills to be successful upon graduation. Many of the crew on the RAINIER learned their jobs while on the boat and had to solve difficult problems without any outside help. Hopefully my students can use the RAINIER’s crew as an example on the importance of seeking balance in their lives. Speaking of balance, it’s time for me to catch a salmon.  Here I am ready to go. See you tomorrow.

Question of the Day 

What causes the tide to rise and fall and how does it change over the course of an entire month?

Cary Atwood, July 28, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 28, 2005

Weather from the Bridge
Visibility: undetermined
Wind direction: SSW (217 degrees)
Wind speed:  11 knots
Sea wave height: 0.4’
Swell wave height: 1.4’
Seawater temperature: 18°C
Sea level pressure: 1013.3 millibars
Cloud cover: Obscure, Fog, Haze, Dust

Question of the Day: 

Lesser Shearwaters are common pelagic birds we often sea in great numbers near our ship. What does pelagic mean?

Answer to yesterday’s question: Astropectin species (sea stars) prey primarily on young scallops.  Asteria vulgaris, another kind of sea star will prey upon adult scallops by wrapping themselves around the bivalves and tiring out their muscle.  Once that is done, they will use their mouth to suck out and make a tasty meal of the scallop’s soft, fleshy parts.  Other scallop predators include crabs, lobsters, and some flounder species that eat small scallops.  Wolf fish eat scallops as well.

Science and Technology Log 

I am so pleased to have Dr. Dvora Hart on our cruise.  She has given me a great deal of context regarding the scallop survey conducted aboard the Albatross IV.  As an official operations research analyst, Dr. Hart is responsible for taking the raw data from the yearly scallop surveys and creating mathematical models of past and current surveys and projecting those numbers for future management decisions of the scallop fishery.  Because the fishery is worth about $300 million annually to fishermen, and more than a billion dollars in retail, it is as valuable a fishery resource as the lobster industry.  Together they represent the two most valuable fisheries on the New England coast.

Dr. Hart has worked for the Northeast Fisheries Science Center for over six years now.  Having a strong math and statistics background has put her in a unique position to develop tools and models that help biologists understand the distribution of surf invertebrates. Every three years, stock assessments are reported to local and regional fishery boards with recommendations for the management of scallops.  Needless to say, the messenger is not always a popular person, especially when areas show diminishing populations and should be closed. However, armed with so much longitudinal data can be a benefit, too, in that areas in the past that have been overfished, if left alone, can, over the course of time, recover.  In order to make the scallop fishery a sustainable industry for all who depend on it for their livelihood, a person like Dvora has pioneered the mathematical modeling on scallops’ fishery management.  Her devotion and passion to this endeavor is clear, and one hopes that these management recommendations will enable fishermen to sustain their livelihood for years to come.

John Sammons, July 28, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 28, 2005

Weather Data from the Bridge

Latitude: 40° 58’ N
Longitude: 67° 13’ W
Visibility: undetermined
Wind direction: SSW (217 degrees)
Wind speed:  11 knots
Sea wave height: 0.4’
Swell wave height: 1.4’
Sea water temperature: 18°C
Sea level pressure: 1013.3 millibars
Cloud cover: Obscure, Fog, Haze, Dust

Question of the Day: In which direction is the ALBATROSS IV relative to Virginia (north, south, east, west, northeast, northwest, southeast, southwest)?  Use the latitude and longitude points in today’s log or refer to the “Location” link shown on the webpage.

Yesterday’s Answer: Some scallops use camouflage and countershading to help protect themselves from their predators by blending into the ocean bottom (light to dark brown as seen from above) and blending into the sky (white as seen from below). Because there are two different colors, this is called countershading, which is a form of camouflage and is a physical adaptation.

Science and Technology Log

Proper navigation is an important component of the ALBATROSS IV’s ability to correctly manage the station locations. Without it, the ship would be lost, and there would be no way to accurately measure station samples over time. First, an electronic course map is generated that has the predetermined route and survey station. Course adjustments are made as the ship approaches a station so that it passes within one mile of the station and over it on its way to the next station. Since the dredge stays in the water for fifteen minutes, it requires accurate course and ship positioning. Second, RADAR is used to keep track of other ship traffic. Radios and an automated tracking system are used to keep a safe distance from other ships like freighters and container ships. Third, visual observations from the bridge enable the watch person to determine visibility and weather conditions that may effect navigating the ship. Of course, when there is dense fog like the ship has experienced on the present cruise, the other two components become critical. While it may seem like a glorious job to be up on the bridge of the ship, it certainly requires a person who is able to perform several operations at once and take the blame for things that go wrong.

Screen shot 2014-02-10 at 9.49.05 PM

Thursday has been spent sorting and sampling the catch, which has included flounder (flat and slimy), goosefish (mean and toothy), hake (slender and colorful), crab (determined and crusty), skate (mysterious and smooth) and of course, scallops (graceful and tough). As we sample each station’s catch, we have to check over a list provided by land-based scientists in order to save what they need for their research. Two of those scientists are traveling with us and are very knowledgeable about scallops. Dvora Hart is quantifying the abundance of calico scallops, aging sea scallops, and assessing meat quality in certain areas. Avis Sosa is making a reference collection of shells commonly caught during the clam and scallop surveys, including clappers. Clappers are scallops that are still hinged or connected, but contain no internal organs.

The seas at 40°N and 66°W are affected by Tropical Storm Franklin in the distance. The swells are estimated to be 8 – 10 feet and are rocking the boat constantly. It is difficult to walk straight or stand still, but it is still safe to be here.

You have to also make sure everything is attached, or it will slide right unto the floor.

Personal Log

Sort, Sort, Sort 

Time to muster and be alert for another shift begins,
Shells and starfish wait for us, along with things with fins.
Pull up a bucket and a pad to sample and to sort,
It’s been three days since ALBATROSS steamed from the distant port.
Ouch! I bellowed as a scallop clamped onto my finger,
Upon the deck you sort and scoop, no time to stand and linger.

 

Mike Laird, July 28, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 28, 2005

Weather Data

Latitude: 55°37.1̍ N
Longitude: 156˚46.6 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 140˚
Wind Speed: 5 kts
Sea Wave Height: 0-1΄
Swell Wave Height: 2΄
Sea Water Temperature: 12.2˚ C
Sea Level Pressure: 1009.8 mb
Cloud Cover: Stratus

Science and Technology Log 

Another beautiful day in the Gulf of Alaska – partially cloudy with lots of sun!  Today I remained aboard the RAINIER and had an opportunity to talk with Ensign Olivia Hauser about the map sheets.  The sheets are prepared to guide the launches on their echo sounding runs. The whole area to be mapped on this leg of the mission is subdivided into zones called sheets.  At the beginning of the workday, each launch is assigned a sheet for the crew to follow for that day. However prior to distribution to the launch crews, the sheets must be developed.

Each sheet (there are six sheets for our current assignment) is the responsibility of a single sheet manager who takes care of the initial preparation of the sheet, sheet revisions, and the beginning phases of data analysis.  In developing the sheet, the manager attempts to achieve 100% coverage of the seafloor.  This means that the manager attempts to determine the optimum distance between the lines the launch will follow during its sounding runs. In areas like the waters around Mitrofania where there is little or no existing data, the first run of a sheet is a best guess plot.  In essence, the launches are conducting reconnaissance runs.

The data collected during these runs, may reveal some error in the initial line plots.  One problem is called a “holiday” which is a gap between the lines (unsounded seafloor).  This happens when the lines are spaced too far apart for the depth of the water (the water is shallower than expected), and the footprint scanned becomes too narrow leaving a gap between it and the footprint of the neighboring line(s).  A second type of problem is excessive noise in the scan results. In reconnaissance work, this is often the result of a greater than expected water depth in a launch not equipped to handle soundings at that depth. When these types of errors are identified, the sheet manager will revise the sheet plotting a new set of lines to be run. If necessary, a different launch (one with appropriate echo sounding equipment) will be assigned to run the new lines.  Once a complete set of good lines is established for a sheet and seafloor data for the entire sheet is collected, initial analysis begins. Computer programs take cast data (conductivity, pressure, and temperature), tide information, GPS readings (corrected for error), data accounting for the pitch and roll of the launch and process the soundings.  The result is a first look at the bottom!  Subtle changes in shading reveal changes in floor depth and other bottom features. The soundings run by the RA5 launch so far have indicated a mostly flat floor with a few rock outcroppings and small ridges.

Personal Log 

The day was fantastic warm and sunny!  One of the crew caught a halibut, which the galley cooked–a special treat for dinner tonight!

Philip Hertzog, July 28, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 28, 2005

Launch lowering into the water
Launch lowering into the water

Weather Data from Bridge

Latitude: 55˚ 53.36’N
Longitude: 158˚ 58.4’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.8˚ C
Sea Level Pressure: 1013.2 mb
Cloud Cover: 5, cumulus, altocumulus

Science and Technology Log 

I awoke to a beautiful sunrise and partly cloudy skies.  The waters of Cushman Bay calmly rock the RAINIER gently back and forth.  I could see pink salmon jump near the ship and seabirds feeding in the water. Mike Laird (the other Teacher at Sea) and I stayed on board the RAINIER today to catch up on our log entries and to see what the rest of the crew does.  We had a quiet day of writing, talking to the crew, and taking photographs.

At 8:00 am I watched the deck crew lower the launches for the mapping teams.  Lowering the launches can be dangerous work and the deck crew does it carefully while wearing hard hats. Two winches move each launch out over the water as shown here (left and right) and then survey crew board the vessel and load gear.  After the survey crew loads the launch, they work with the deck crew to disconnect the cables and hooks from the launch. The launch then speeds off to start a busy day of mapping the waters of Mitrofania Bay.

Launch in the water
Launch in the water

Once the launches left, the deck crew worked on other tasks.  I saw crew washing decks and maintaining machinery.  Other crew members used a crane to move one of the smaller boats (called skiffs) into the water: Other crew members went about the ship conducting other tasks such as preparing meals, keeping the engines running, contacting the launches to help solve problems, and conducting bridge watch. In later log entries, I will try to describe the different departments on board the RAINIER.

Personal Log 

I had a very quiet day and spent it catching up on paper work and cleaning up my digital photos. After looking at my photos and talking with XO Julia Neander, we decided that our whales from the other day are not fin, but Sei (pronounced “say”) whales.  We saw white spots on the whales back and a prominent ridge on the whale’s forehead which are give away signs for Sei. I spent the evening fishing for salmon off the fan deck (located at the rear of the ship).  Several other crew members also fished of the stern, but only Raul, one of our cooks, caught salmon. He pulled in four cohos weighing around 7-8 pounds each. Will he share and surprise us for supper tomorrow night? I can’t wait to find out.

Securing the lines
Securing the lines

Question of the Day 

The RAINIER is like a small community made up of 50 people.  What kinds of jobs does this community need in order to sustain it for 3 weeks at sea without any outside help?

The launch in action
The launch in action

Cary Atwood, July 27, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 27, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day: What might be the major predators of Atlantic scallops?

Yesterday’s Answer 

According to Dr. Dvora Hart, probably the world’s expert on Atlantic scallops, who just happens to be on our cruise and is a part of my watch crew, the elements listed below are essential to the survival of these scallops

  • Water temperatures in the range of 0 degrees Celsius –17 Celsius.  Above this point they will die.
  • Firm sand or pebbly gravel needed for attachment as it grows
  • A good supply of phytoplankton and similar sized micro and protozoa and diatoms and detritus to feed upon

Science and Technology Log 

This morning after my watch, I interviewed Captain Michael Abbott who is captaining the ALBATROSS during this cruise. We stood up on the bridge while he demonstrated some of the navigation equipment.  I like spending time on the bridge because the open view from the bow is fabulous, and there are rarely any people up there.  I’ll write about navigation in another entry.

I talked with him about his career in the NOAA officer corps.  He joined the Corp about 21 years ago making it a career when he heard about it on his college campus.  At that time he was completing a degree in geology and hydrology at the University of New Hampshire.  After a three month officer training at the Merchant Marine Academy in King’s Point, New York he became a uniformed officer in the NOAA Corps.  It is the smallest branch of the uniformed non-military service, with less than 300 officers operating ships and aircraft for scientific research purposes.

According to Captain Abbott, his major responsibilities aboard the ALBATROSS IV are the safety of the crew, a successful completion of the scallop survey mission and making the cruise enjoyable for all on board. The crew includes 5 uniformed NOAA officers, scientists and ship crew–all together, about 25 people. Being at sea gives Mike great pleasure in that he is able to contribute to NOAA’s mission and play an active part in stewardship towards the environment.

Personal Log 

A poem today…

Ocean water Glassy smooth
Rippling velvet
Sunset shimmering
Fog rainbows dancing
Ship rocking
Sun glimmering
Shearwaters circling
Teacher adjusting
To daily rhythms
Of the cruise

Tamil Maldonado, July 27, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 27, 2005

Science and Technology Log

During the day I talked with the captain about boat stability.  Stability is defined as the ability of a vessel to return to its original condition or position after it has been disturbed by an outside force. Anyone who has been at sea and felt the vessel roll, for example, and then right itself (only to roll in the opposite direction and right itself again) has seen stability in action.

Outside forces include wind seas, adding/removing weight, and free surface.  The six Motions of a Vessel in waves are rolling, pitching, yawing, heaving, swaying, and surging. Rolling is the motion about the vessel’s longitudinal axis.  Pitching is the motion about the vessel’s transverse axis.  Yawing is the motion about the vessel’s vertical axis.  Heaving is the vertical bodily motion of the vessel (whole vessel moves up and down together). Swaying is lateral (side to side) bodily motion.  Surging is the longitudinal (fore and aft) bodily motion.  All or most of the motions can occur simultaneously and have their effect on the efficient operation of a vessel.  While the ship’s officer cannot completely control these motions, there is much that can be done to diminish or alleviate their effects.

Motions of the Vessel and Governing Stabilities include:  Roll- Transverse Stability, Pitch- Longitudinal Stability, Yaw- Directional Stability, Heave – Positional Motion Stability, Surge – Stability in motion Ahead or Astern, Sway – Lateral Motion Stability. The way a vessel rolls is a direct indication of her stability.

The condition of a vessel is determined almost solely by the location of two points: the Center of Gravity (G) and the Center of Buoyancy (B).  G is the point at which all vertically downward forces of the vessel can be considered to act.  In other words, the ship will behave as though all of its weight were acting downward through this point.  B is the point at which all the vertically upward forces of support (buoyancy) can be considered to act, or, the center of volume of the underwater portion of the vessel.  In other words, the ship will behave as if all of its support is acting up through this point. There are a lot of mathematical concepts and processes to compute stability.  Theory of Moments, Inclining formula, Trigonometry, Change in Mean Draft are also implied in vessel stability.

During the afternoon I worked on the computer, and I put all my pictures on the FAIRWEATHER’s computer network.

We also had the drills: 1) Men on Board, 2)  Abandon Ship, and 3) Fire and Emergency.

John Sammons, July 27, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 27, 2005

Weather Data from the Bridge

Latitude: 40° 31’ N Longitude: 68° 49’ W
Visibility: undetermined
Wind direction: SSW
Wind speed: 16 knots
Sea wave height: 0
Swell wave height: 0
Sea water temperature: 18°C
Sea level pressure: 1012.6 millibars
Cloud cover: Clear

 

Question of the Day: How do scallops use camouflage and countershading to help protect themselves from their predators? (See pictures 5 and 6.) Is this a physical or behavioral adaptation?

Yesterday’s Answer:

1. pulley         2. inclined plane   3. lever
4. pulley         5. pulley                6. inclined plane
7. lever           8. pulley                9. wheel and axle.
Answers will vary on the second part of the question.

Science and Technology Log

The purpose of this scallop survey is to study the “basic biology and distribution of “ scallops and to study the “population dynamics of the species.” Historically, scallop populations have increased and decreased at alarming rates. Overfishing and natural predators have lead to a significant decline of scallops in the Atlantic Ocean. Conversely, scallop populations have flourished in areas that are closed to fishing, thus allowing scallops to mature more. While this is by far the most important reason why there are fewer scallops, scallops have natural adaptations that also help them survive.

One structural adaptation is their color. Notice in the pictures above that some scallops are dark on top and lighter on the bottom. This allows the scallop to blend into the sandy bottom as seen from above and the bright surface as seen from below. A behavioral adaptation that the scallop has is to shoot water as a way to propel itself from a predator. However, these adaptations are not always strong enough to protect themselves from predators and humans.

On Wednesday, we continued to collect scallops. The shells will be used for determining the age of the scallops. In addition, the meat and gonad weights will be used to estimate shell height/meat weight relationships and annual mating cycles. Some other sea life that is coming up in the dredge are different species of flounder, hake, crabs, skate, goosefish, hermit crabs, and starfish. There are many knowledgeable people on board who have provided mini-lessons for me on fish identification, scallop shucking, data entry, and population dynamics.

Screen shot 2014-02-10 at 9.44.56 PM

Personal Log

Sleepless on the Atlantic 

Steaming forward to the station that is just right up ahead,
Six hours is up, and our shift will end, so it is time to go to bed.
Before I rest and take a nap, some chow I would like to eat,
It will be good to rest a little while and get off of my feet.
The food is great, so many choices that we are able to choose,
Just fill ‘er up and head to bed and settle for a snooze. 

Philip Hertzog, July 27, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 27, 2005

Securing the launch
Securing the launch

Weather Data from Bridge

Latitude: 55˚ 53.3’ N
Longitude: 158˚ 58.4’ W
Visibility:  10 nm
Wind Direction: light
Wind Speed: airs
Sea Wave Height: 0 feet
Sea Water Temperature:  12.2˚ C
Sea Level Pressure: 1012 mb
Cloud Cover: 2, cumulus

Science and Technology Log 

The RAINIER is now anchored for the next several days in Cushman Bay on the north side of Mitrofania Island. Today the ship’s crew began their first full day of mapping the bottom of the waters surrounding the island.  The Captain assigned me to observe operations on board one of the RAINIER’s six survey launches.  The launches are small craft equipped with sonar and computer equipment to collect bottom data as seen in the following photographs:

Each launch has a crew of three and four launches go out at a time.  On my launch, Ensign Brianna Welton serves as the hydrographer in charge with Matt Boles as the Assistant Survey Technician. Able Body Seaman Corey Mussey drives the launch and makes sure it stays on course using a computer screen directs him where to go.

A winch lowered our launch into the water. We jumped about two feet from the side of the ship to get into the launch. We carried no equipment in our hands or on our backs and wore life jackets to ensure we safely crossed the deep water.

Screen shot 2013-04-09 at 9.42.37 AM

Once underway, Ensign Welton turned on the Differential Global Positioning System (DGPS). The DGPS uses satellite signals to determine our location and even can tell our direction and speed. Unfortunately, our DGPS did not work correctly and Ensign Welton and Matt Boles struggled over the next 2 hours to trouble shoot the problem.  When out at sea and hundreds of miles from the nearest repair shop, the crew of the RAINIER has to become creative to solve problems in order to achieve their mapping mission.  The DGPS problem finally got fixed after the antenna was taken apart and the connecting cables cleaned. Matt told me that whenever one starts a new field survey, you commonly find problems that must be fixed due to the difficulties of working in the harsh environments found at sea and in Alaska.

Screen shot 2013-04-12 at 9.05.01 PMWith the DGPS fixed, the crew sent a SEACAT probe through the water column to the bottom to collect temperature, salinity and pressure data.  Sonar mapping works by bouncing sound waves off the bottom and measuring how fast the waves return to the ship. Sound travels through salt water at 1435 meters per second, but its speed can be changed by temperature, salinity or pressure.  The computer takes the data from the SEACAT and makes corrections to the sonar data so we have a better measurement of the bottom depth.

Sunset over the bow
Sunset over the bow

We spent the rest of the day running transects to map the bottom. Transects are long, parallel lines that are spaced to ensure we cover the entire bottom of the area being mapped with some overlap. To better understand what “running a transect” means, think about mowing your lawn.  When you mow the lawn, you run the mower in parallel lines, but you always go over part of the path you mowed before in the previous line. Just like mowing, the sonar is able to map the entire bottom of the map area by using a transect pattern.

Around 4:30 pm we returned to the RAINIER and the deck crew winched the launch back on board. I handled the stern line and threw it to a deck hand on the ship. I also attached the hook from the winch onto the launch, but I didn’t do it correctly on my first try. You have to be careful because the launch weighs 14,000 pounds and the seas can bounce it around. I got too close to the block and tackle on the winch, but Ensign Welton pulled me back and showed me how to properly connect the cables.  To the right here is a picture of Ensign Welton correctly hooking up the launch.

Once the launch returned to the RAINIER, the mapping crew’s duties were not f inished. After supper, the crew down loaded the launch’s computers onto the ship’s main frame and “cleaned up” the data.  Clean up consisted of looking at the data and matching it with maps on the main frame computer.  The survey technician also had to correct the data with tidal information and look for false sonar signals to remove from the data set. Upon finishing clean up, an officer checked the work for quality.  Here is a picture of Dan Boles, Matt’s older brother, cleaning up some data.

Personal Log 

I had a great time today going out on the launch and learning what the survey crews do.  The landscape overwhelms one with large open areas of water surrounded by mountains covered in green, low lying vegetation.  Mount Veniaminof dominates the background with its glacier covered dome that rises 7,075 feet above sea level.

As we traveled in the launch, I could see whales blowing spray out their blow holes in the distance and pink salmon jumping out of the water.  At the end of work, we took 10 minutes to fish off the launch and Matt caught a ling cod while I had one on the hook that got away.

I enjoyed talking to Matt Boles and learning about how he ended up on the RAINIER with his brother Dan. Matt has a two year college degree in computers and Dan has a Bachelors degree in geology and French. I see a lot of potential for my own students to get jobs aboard ships like the RAINIER and to have a great time exploring wild places like Matt and Dan.

Question of the Day 

Why do temperature, salinity and pressure change the speed of sound in water?

Cary Atwood, July 26, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 26, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day 

What do scallops need in order to survive within their habitat?

Yesterday’s Answer 

The scientific name of the Atlantic Sea Scallop is Lacopectin magellanicus.  Lacopectin means “smooth scallop.

Science and Technology Log 

The real work of the ALBATROSS IV mission is accomplished during the four six-hour shifts with a crew of six workers each.  On my watch, they are Sean, watch chief, Bill, Avis, Dvora, Noelle and myself. Working as a team, we accomplish great things in each tow, which takes about 30 minutes to process.  Here’s how it unfolds.  The eight-foot dredge basket is specially designed to capture all sizes and ages of scallops for research.  It is dredged from a depth up to 100 meters to the surface for a fifteen-minute time period.

After each tow comes out of the water, fishermen release it from the cable and it’s deposited on the fantail, also known as the back deck of the ship.  The fantail is a huge open area complete with a non-skid surface–very important when the boat is on an intense rock and roll session. With our “Helly’s” on (the yellow and orange storm gear you see in the pictures) and tall rubber boots, I take a picture of the mound, along with Bill, who holds up a whiteboard indicating the catch number, the tow and the strata (level) where we do the dredging. Once that is done, orange baskets, white buckets and kneepads are hauled to it. On our hands and knees we look for what might seem like buried treasure; sifting through the debris of the sea.  We toss scallops and many varieties of fish, into the baskets until we have combed through every inch of them.  Once the sort is done, we all move into the covered lab area for a variety of assessments, including the weight and length measurements of each scallop, as well as any ground fish that are caught.  Even though some of the work is manual, computers play a very important role in accurate capture of the data. One instrument we use is a long, flatbed magnetically charged scanner. Once we put a scallop shell on the bed and hold a magnetized wand against it, it reads out the measurement onto a touch computer screen.  Computers such as this one have relieved some of the tedium of the work, making it more accurate and faster.  The same is done with fish, and depending upon the tow, we will keep crabs and starfish out.

All of this data is uploaded into the FSCS – Fisheries Scientific Computer System which compiles the data from the survey.  This valuable data is used to assess populations and biomass for the scallop fishery and then make management decisions for present and future fishery use. The watch crews and scientists love it because it has saved so much time, and compilation of the data is considerably easier and less time consuming in the long run.

Personal Log 

Sleep of any length of time is longed for, but never received.  Due to our 6 hour on, 6 hour off shifts, at best we can manage 5 hours.  Today I am feeling very zombie like as my body adjusts to this schedule. I rarely see John, my other TAS compadre since he works opposing shifts from mine.  When we do meet, we share notes and commiserate about the work and our need for sleep!

One of my favorite haunts on board in my free time is the bridge and the upper bow.  It is a quiet, calm place with great views–and a really strong pair of binoculars and field guides. The ever shifting texture of the water always captures my attention when I am outside; from the glossy velvet of early mornings, thick fog during the day, complete with fog rainbows!-and the ethereal brightness of sunset through the fog.

Another constant is the “ocean motion”.  We are in a constant state of rocking–at times delicate and other times, the swells are deep and we will roll with them.  I am very glad I have an ear patch to mitigate the possibility of seasickness….now I can just enjoy the ride!

Tamil Maldonado, July 26, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic/FOCI Survey
Geographical Area: North Pacific
Date: July 26, 2005

Science and Technology Log

We are underway in the Gulf of Alaska, Southeast of Sitkinak Island.  This is our last day of doing FOCI survey. We used the Bongo Tow and CTD throughout day.

At 5:00 p.m. we were done with survey and transiting to Dutch Harbor, AK

At night I interviewed Chief Scientist, Janet Duffy-Anderson, one more time.  We talked about how to know fish ages and how fast they are growing.  It is because of their rings— the number of rings a larvae has will give the days they are alive.  Also, you can know their age by how far apart those rings are, which gives you the information of how fast they are growing.

Furthermore we talked about atmospheric changes and how this is affecting the ecosystem.  The target of FOCI is to get biological as well as physical data on the changes in the ocean and how those changes interact with the biota.  They wanted to do this research in Alaska because you can see changes more rapidly at the poles of the planet. We have seen phenomena like El Nino, La Nina and others increasing in frequency and duration. The rate between phenomena is increasing—they are happening  more frequently for the last decade.

I will be able to get fisheries raw data in time series done by FOCI and will continue doing some research back home in this area.

At night we did an acoustic hydrographic survey, and by changing depth target we got different data, all related. Changing the depth target changes how deep the beams go through the water and come back.  We worked with Hips & Sips Computer Software.  This program also corrects in real time the error estimates for each contributing sensor.  These entries are necessary for the computation of the Total Propagated Error.  The Vessel Configuration File (VCF) contains information about the different sensors installed on the survey vessel and their relationship to each other.  The information in the file is applied to logged, converted data files, and when the final sounding positions are calculated, the data is merged.  The entries in the VCF are time tagged and multiple time tags can be defined for each sensor.  This allows the user to update sensor information during the course of a survey.  This may occur if a piece of equipment has been moved.

In order to define the new fields in the VCF it is essential to understand standard deviation. The standard deviation is a statistic that explains how tightly various examples are clustered around the mean in a set of data.  When the data is tightly bunched together the bell-shaped curve is steep and the standard deviation is small.  When the data is spread apart, the bell curve is relatively flat indicating a larger standard deviation.

The vessel information will be displayed in the Vessel Editor.  The sensor positions are represented by colored dots. The VCF can be updated if a sensor changes position, and a unique time stamp ensures that the correct offsets are applied to data recorded at a certain time.  Each time the sensor information is changed, the drop down list above the 3-D vessel model will be updated to include the new time stamps.  The data grid below the 3D vessel contains all the offset information for the vessel.

Tomorrow… we will talk about the stability of the ship, and how its is done (so we do not sink!).

John Sammons, July 26, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 26, 2005

Weather Data from the bridge

Latitude: 40.31 N
Longitude:  69.05 W
Visibility: unknown
Wind direction: S (193 degrees)
Wind speed: 19.6 knots
Sea wave height: 1’
Swell wave height: 1’
Sea water temperature: 17.7°C
Sea level pressure: 1013.0 millibars
Cloud cover: 00 Clear

Question of the Day: Identify and classify the simple machines that make up machines found around the ship. Match the pictures above with the six simple machines-inclined plane, wedge, wheel and axle, screw, wedge, and pulley. Choose one of the machines shown in the pictures, and explain how it makes work easier to do. (Send your answer to one of the e-mails listed below.)

Screen shot 2014-02-10 at 9.40.32 PM

Yesterday’s Answer: The weather instruments located on the ALBATROSS IV that measure wind speed and direction are the anemometer and wind vane. They are combined into one instrument, and it looks like an airplane without wings.

Science and Technology Log

Machines serve an important job on the ALBATROSS IV and any other ship. The six simple machines in of themselves can make work easier to do. For example, a round doorknob handle on a ship’s door is not as common as a lever handle. On a ship, you are often unable to turn a doorknob because your hands may be wet or you may be carrying something. Also, door levers make it easier to tighten hatches securely. Some of these simple machines are combined to make compound machines. On the ship, you will find many examples of both simple and compound machines, all of which make work easier and safer to do.

One way in which machines make the scallop survey easier and safer is the use of a crane with many pulleys. The eight-foot wide dredge is lowered as the ship slows to 3.8 knots. When the dredge reaches the bottom, it is towed for 15 minutes. This allows the dredge to drag and fill the netted and chained device. This device resembles a large purse overfilled with goodies when full. Then the catch or load is dropped and released onto the deck. The large pulley system on one of the cranes allows for a cable that can handle a large weight. Likewise, the boom of the crane supports the weight of the towing dredge. One improvement that would help this compound machine would be to create some kind of conveyor system to bring the load back toward the sampling and measuring area without having to drag loaded baskets and buckets. Coincidentally, this is part of the design of the new ship that will replace the ALBATROSS IV, and as a result make work even easier.

Here is a graph showing the total number of scallops brought in at each of the stations so far. Some areas in which the tow was made are closed to scallop harvesting. As a result, larger and more developed scallops were caught. In tomorrow’s log, you will learn a little more about scallop adaptations that have helped them survive despite negative human influences.

*Numbers 1 – 18 corresponds to stations 0227 – 0244.
*Numbers 1 – 18 corresponds to stations 0227 – 0244.


Personal Log

Sea Duty 

The waves come toward the ALBATROSS and into the lengthy side,
Feel the rocking back and forth, so hold on for the bumpy ride.
Prepare the dredge and send it forth to bring up another load,
Bring out the baskets and buckets and pads to get in a sorting mode.
Place the containers on the scale then measure the scallop’s shell,
Soon the shift will come to an end with only stories left to tell.

 

Mike Laird, July 26, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 26, 2005

Watching the monitors
Watching the monitors

Weather Data

Latitude: 55°53.3̍ N
Longitude: 158˚58.4 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 235˚
Wind Speed: 6 kts
Sea Wave Height: 0΄
Swell Wave Height: 0΄
Sea Water Temperature: 11.1˚ C
Sea Level Pressure: 1013.5 mb
Cloud Cover: Sky 7/8 covered, Cumulonimbus

Science and Technology Log 

Operations for the day begin at 8:00 with crews of four launches assembling on the fantail for a pre-launch briefing giving final details of the day’s assignments and a review of safety procedures. Each launch crew is composed of three members: an Officer in Charge (OIC) who has overall responsibility of the launch, a coxswain who is responsible for the physical operation of the launch, and a survey crew member who assists in data collection in the assigned survey area.  Some crews carry a fourth member who is frequently a Teacher at Sea or other visitor on the ship.

Once the briefing is completed, each crew assembles in their launch-loading zone and boards the launch as it is lowered into the water.  I have been assigned to launch RA5 (RAINIER launch 5) and will be working with Ensign Mike Stevenson (the OIC), Carl Verplank the (coxswain), and Greg King (the survey technician).  Our assignment is to work in conjunction with launch RA3 to collect seafloor data in Mitrofania Bay, an area to the northwest of the RAINIER’s anchor location.  The area has been designated as Sheet AW.  The area around Mitrofania Island has been divided into several sheet areas.  Each sheet is composed of a map of the area overlaid by a set of parallel lines or tracks that the launch or ship will follow as it is recording data.  During the two weeks we are working in the region, data will be collected for as many of those sheets as possible.

Having reached the target area, a “cast” must be taken before the actual scanning of the bottom can begin.  The purpose of the cast is to gather information about the behavior of the water column we are working in.  The waters’ conductivity, temperature, and pressure will all affect the velocity of sound traveling through the column, and will be factored into the processing of the collected data.  The cast is conducted by lowering a CTD sensor, called a SEACAT, to the floor of the ocean.  When the cylinder is raised back to the surface, the data is uploaded to the launch computers and we are ready to go.  Launch RA5 is equipped with a Reson SeaBat 8101, a hull mounted extended echo sounder system.  This system is used to record seafloor information in water depths not exceeding approximately 110 meters.  This sonar system is a multi-beam system using 101 beams.  Each beam is composed of pings emitted from the sounder.  One beam drops vertically below the launch and fifty beams each fan out to the port and starboard sides.

To help picture this, imagine a set of right triangles below the launch.  Each triangle originates with the junction of the vertical beam and seafloor where two opposed right angles are formed.  The hypotenuse of each triangle is one of the fifty beams to the left or right of the vertical beam, and the seafloor forms the base of the triangle. Collectively the bases are referred to as the footprint (area covered by the sounding).  This footprint increases in size as the depth of the water increases.  As the size of the footprint grows, additional “noise” or interference is introduced into the sound wave pattern in those beams further from center.  This less accurate data will usually be eliminated during data analysis.

We spend the day transiting the lines designated on our sheet as the sonar feeds seafloor data to the launch computers.  At the end of the day, the launch nested safely back on the RAINIER, the data is downloaded from the launch to the ship.  Now begins the next phase analysis and “cleaning” of the raw data.  However, that is for another day!

Note: This is my understanding of the information I received.  If there are errors or inaccuracies,  I apologize.

Personal Log 

We have been very fortunate so far – the weather has been great since we arrived in Mitrofania. Partially cloudy but lots of sun!  The salmon (pinks and silvers) are constantly rolling and jumping. I tried my hand at a little salmon fishing yesterday with mixed results.  I hooked two! Key word there hooked. I didn’t land them – both shook the hook. Pretty lame, but I’ll get them next time!  Other crew members have tried some halibut fishing, but so for have only brought up what they call Irish Lords (“An ugly, junk fish.”) The fish is unique – a tan, brown and black with bulging eyes and poisonous spines that apparently cause pain and discomfort if you are cut or poked.

Philip Hertzog, July 26, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 26, 2005

Fin whales
Fin whales

Weather Data from Bridge

Latitude: 55˚ 44.95’ N
Longitude: 158˚ 47.42’ W
Visibility:  10 nm
Wind Direction: 065˚
Wind Speed: 7 kts
Sea Wave Height: 2 feet
Sea Water Temperature:  13.3˚C
Sea Level Pressure: 1011 mb
Cloud Cover: 8, stratus, cirrocumulus

Science and Technology Log 

Today the RAINIER continues its journey from Kodiak Island to Mitrofania Island where our mapping work will start.  I awoke and found the ship off the coast of Kodiak Island in the Shelikof Strait that separates Kodiak Island with the southwestern Alaskan peninsula. A straight is a long stretch of water where the wind can travel great distances without being blocked and build up large waves. The waves in the Strait are between 1 and 2 feet high, but it is enough to rock the ship back and forth. I have to be careful not to spill any food or drinks in the cafeteria and it takes a while to get use to the rocking back and forth.

Breathing fin whales
Breathing fin whales

Though we are traveling today, our ship’s crew is already working and mapping the bottom of the Shelikof Strait.  I attended a meeting lead by Lt. Ben Evans and listened to him explain our plan for the next several days.  Today we are using the ship’s sonar to map the main portion of the Shelikof Strait and to look for anything that could harm ship traffic. The sonar sends beams of energy in the form of sound waves to the bottom which then bounce back to the ship. By measuring how long it takes for the sound to return to the ship, a computer can determine how deep the channel is. Behind the bridge is the plot room where the mapping action takes place.  The plot room has a big table in the middle to lay out charts and several computer stations line the walls around the table. Each computer station has two monitors hooked together so the hydrographer (a person who maps the ocean bottom) can put up sonar images and compare it to maps and other information.  Today we had one of the computer stations working to show the data being collected for the Shelikof Strait.  The bottom is around 400 meters deep and relatively flat.  The computer monitor shows us a colorful image of the bottom depths as we move along the straight.

In the late afternoon, we enter into a large bay and circle around to the back side of Mitrofania Island. Suddenly, I see four sprays of water in the air, one right after another, about half a mile from the ship.  As we move farther into the bay, we see more sprays and soon see curved, dark backs surface and then glide along the surface in an arch before disappearing below the surface. As we move closer we can make out a tiny fin on these large creatures toward the rear of their backs and realize these are fin whales.

Fin whales are one of the largest whales found in the world and can reach 24 meters in size. All around us we see spray being blown out by the fin whales as they surface and mill about with each other.  One whale surfaces right in front of the RAINIER and the Captain had to back off on the engine to avoid a collision.  The whale moved to the side of our ship as we slowed down and I could see it staying in the same place for 3-5 seconds looking up at us before moving away below the surface.

After our greeting by the fin whales, the Captain anchored the RAINIER in a quiet bay off Mitrofania and the crew prepared for a busy day of mapping tomorrow.

Personal Log 

Though I find I am excited to be on the RAINIER, I found myself dizzy with a little bit of motion sickness from the rocking of the ship in Shelikof Strait.  Taking the advice from books and several of the crew members, I kept myself from becoming sicker by getting fresh air on the deck and looking at the horizon.  I also drank plenty of fluids and ate all of my meals. After a couple of hours and a nap, I felt much better.

The high point of the day came when we entered Mitrofania Bay and saw the fin whales. We also saw salmon jumping throughout the bay and several of the crewmembers fished off the back of the RAINIER after they had finished their duties for the day.

Question of the Day 

What do fin whales eat and where do they spend the winter?

Cary Atwood, July 25, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 25, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day 

What is the scientific name of the Atlantic sea scallop, and what does the Latin name mean?

This question will be answered in tomorrow’s log.

Science and Technology Log 

Day one: the adventure begins! I arrived last night from Boston into Wood’s Hole–what a cool respite from the heat of western Colorado! A short walk later, I was in front of the ALBATROSS IV, the ship that would be my home for the next 11 days.  Tony, the lead fisherman, welcomed me aboard and showed me to my stateroom.  Soon after, Kris, the watch chief for our other work shift, and Noelle, who is working on her master’s thesis showed up. I took the remaining top bunk and moved my gear in.  Our room has two portholes. The most exciting porthole is the one in the shower stall; my eyes are almost dead even with the water line outside….it almost feels like I live in an aquarium!

The mission of the ship on this cruise is the sampling of Atlantic sea scallops.  Why are scallops being sampled?  The scientific work revolves around the close monitoring of scallop populations up and down the New England coastline from Cape Hatteras in the south, to the outer extremes of Georges Bank to the north.

Over the past 30 years, unregulated commercial fishing of scallops has had a huge negative impact on scallop populations.  Because this area holds the largest wild scallop fishery in the world, it has great economic importance not only to the fishermen who dredge to make their living, but also to the economies up and down the coastline.  Historically, commercial fishing could be done by anyone who had a seaworthy vessel and the ability to dredge. Prior to the early 1970’s not much data had been gathered about numbers and locations of scallops, hence the need for surveys to acquire data and impose limits to prevent total decimation of this species.  In my next entry I will explain more about the nitty gritty work that must be accomplished each day by watch crews.

Personal Log 

Old ship sits in port
hiding new technology beneath its decks
Salt spray and seagull call
Grey clapboard houses rest close to water’s edge
As whitecaps signal a change in weather
We are on our way!

Until next time,
Ms. Atwood

Tamil Maldonado, July 25, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 25, 2005

Personal Log

We sailed through Sitkalidok Strait, southeast of Aliulik, Kodiak Island.  I got up seasick at 1:30 a.m. and stayed awake till 4:30 in the morning.  I went back to sleep and after lunch I took a seasick pill to feel better.  It just made me sleepy.

In the afternoon I interviewed one of the student scientists, Dylan Righi.  He is a programmer and his work deals with wavelets using drifters to recollect data.  He also “cleans” the data, since there is always some noise to be corrected.  He graphs the path of different types of drifters into the water and does some numerical analysis.  He runs a FORTRAN code on a UNIX system parallel to a computer back in Seattle.  His data analyses are from the North East Pacific regions.  The resolution of the wavelets is approximately 9 km, 520 points.  Anyone interested on the code or data could get it from FOCI website.

Sick 1:30 a.m.gt Sleep Talked with a programmer scientist about wavelets

John Sammons, July 25, 2005

NOAA Teacher at Sea
John Sammons
Onboard NOAA Ship Albatross IV
July 25 – August 4, 2005

Mission: Ecosystem Survey
Geographic Region: Northeast U.S.
Date: July 25, 2005

Weather Data from the bridge

Latitude: 41° 02’ N
Longitude: 69° 15’ W
Visibility: 0
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Sea water temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

What weather instruments located on the ALBATROSS IV measure wind speed and direction? (See picture 5.) (Send your answer to my e-mail listed below.)

Science and Technology Log

Weather and other instrumentation play an important part on the ALBATROSS IV. The ship uses a somewhat automated guidance system to take the ship to the predetermined dredging stations. That system also helped us navigate to where we are currently. With the dense fog on our current heading, it was a good thing they do not have to sail by sight only.

Monday morning, we had many people to meet and many things to learn. The fantail, or back area of the ship, was a gathering point for large discussions as well as our “Abandon ship!” drill. In picture 12 I had to don my “”Gumby suit” for a practice “just in case we have to leave the ship” drill. Of course, it was only a practice one that we hope we will never have to use.

Monday afternoon was a busy one getting the ship ready for departure. There has been lots of training and people to meet. While underway our training continued as we learned about safety drills, scallop sorting and measuring, and water sampling. The water sampling is done using a Conductivity Temperature Depth (CTD) device that determines the salinity (saltiness) and temperature at various levels to the bottom.

On Tuesday evening, we used the Fisheries Scientific Computer Systems (FSCS) to take measurements on scallop sizes and weights. This electronically accepts data automatically when the scallop baskets are placed on the scale. Using what looks like a cutting board, the scallops’ length, gender, and meat mass is determined.

I am on watch (which means I am working) from 12 – 6 in the afternoon and from midnight – 6 in the morning.  I am sure to get some photos for the next day or two to show how this survey is done.

Personal Log

Early Arrival 

I arrived on early Sunday eve to find the ship was docked,
Passing through the metal gate that I only thought was locked.
Resting from her recent trip, she makes a humming sound,
Waiting for her crew to board and get a look around.
The sun reflects and sparkles in the ever choppy sea,
I wonder what this exciting adventure will bring to me.

Mike Laird, July 25, 2005

NOAA Teacher at Sea
Mike Laird
Onboard NOAA Ship Rainier
July 24 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 25, 2005

Mike Laird, Teacher at Sea
Mike Laird, Teacher at Sea

Weather Data

Latitude: 55°37.1̍ N
Longitude: 156˚46.6 ̍ W
Visibility: 10 nautical miles (nm)
Wind Direction: 140˚
Wind Speed: 5 kts
Sea Wave Height: 0-1΄
Swell Wave Height: 2΄
Sea Water Temperature: 12.2˚ C
Sea Level Pressure: 1009.8 mb
Cloud Cover: Stratus

Science and Technology Log 

My name is Mike Laird, and I am a 5th and 6th grade Science and Math teacher from Flagstaff, AZ. I am onboard the NOAA ship RAINIER participating in a three-week hydrographic research cruise. The primary objective of the scientists and crew of the RAINIER is to gather data that can be used to create accurate maps of the ocean floor and coastline. I joined the team in Kodiak, AK.

We put to sea Monday afternoon after completing repairs on one of the six survey launches carried by the RAINIER.  Our destination is Mitrofania Island, a small island southwest of Kodiak. This location has been selected for data collection, because there is little information available on current nautical charts.  Our route took us through Shelikof Strait (between the Alaska Peninsula and Kodiak Island).

We then tracked south between the Semidi Islands and Chirikof Island.  As we transited this track, the RAINIER used its onboard sonar to gather ocean depth information for this location. As other NOAA hydrographic ships follow this course, they will also gather data. Over time and using all the data collected by the various ships, an accurate nautical map of this area will be constructed.

Having completed this pass, we headed northwest toward Mitrofania.  We sailed around the southern tip of the island and head for Cushing Bay, where we anchored for the initial phases of the data collection work.  As we neared Cushing Bay, a small work team was deployed in one of the ship’s skiffs to check a temporary (in place for thirty days or less) tide station. The station must be checked to insure that it is operating correctly and transmitting accurate information back to the RAINIER.  Data from the temporary tide station will be compared to data from the nearest official Coast Guard Tide Station and accurate tidal information for the area around Mitrofania Island can be derived.  Accurate tidal information is critical, since it is used in the processing of the collected data.  In addition to checking the tide station, the work crew will attempt to locate a spot on the shore to install a temporary GPS system.  The closest land-based GPS systems are a distance away and could introduce error of up to three meters in the collected data.  The successful installation of a closer, more reliable GPS would help increase the reliability of the data the team collects.

The end of the day has come.  We are anchored in Cushing Bay, and I eagerly await tomorrow’s arrival as I will be joining the launch 5 survey team.

Philip Hertzog, July 25, 2005

NOAA Teacher at Sea
Philip Hertzog
Onboard NOAA Ship Rainier
July 25 – August 13, 2005

Mission: Hydrographic Survey
Geographical Area: Aleutian Islands, AK
Date: July 25, 2005

Weather Data from Bridge

TAS Philip Hertzog in his safety gear
TAS Philip Hertzog in his safety gear

Visibility: 10 nm (nautical miles)
Wind Direction: 127˚
Wind Speed: 12 kts
Sea Wave Height: 1-2 feet
Sea Water Temperature: 12.8˚ C
Sea Level Pressure: 1009.5 mb
Cloud Cover: 8

Introduction 

Welcome to my Teacher at Sea Log.  Over the next three weeks, I will document my experiences on board the NOAA Vessel RAINIER as part of the Teacher at Sea (TAS) program.  NOAA established the TAS program about 15 years ago as a means to educate the public about its mission through the use of classroom teachers.  Over 400 teachers have participated in the TAS program and have used their NOAA experience to bring marine research and mapping into the classroom for thousands of students.

I currently teach 7th Grade Science to students at Hunt Middle School located in Tacoma, Washington. Hunt Middle School is located about a mile and a half from Puget Sound and many of our students play in parks next to estuarine waters.  I hope to use my experience with NOAA to enhance my classroom curriculum and to provide other teachers in my school district with enhancements to our adopted program.

I have taught for six years and prior to that I worked for government in the field of natural resources management.  Some of my work included hazardous waste cleanup in the aquatic environment and near shore aquatic habitat mapping.

Science and Technology Log 

Today we begin our journey from Kodiak, Alaska to Mitrofania Island on board the NOAA vessel RAINIER. Kodiak is an island located in southwestern Alaska about 250 miles by air plane from Anchorage.  Mitrofania Island is located along the southwestern Alaskan peninsula about half way between Kodiak and Dutch Harbor.  Our trip will take a day and a half to reach Mitrofania.

The RAINIER is a hydrographic ship that measures 231 feet long and displaces 1800 tons of water. Hydrography is the science of using sonar and other complicated devices to bounce sound waves off the bottom of the ocean that can be used to identify hazards (like rocks) that could sink passing ships. The information gathered by the RAINIER is used to update maps of the ocean bottoms and coastlines.  Ships’ captains call these special maps charts.  The charts help keep ships safe and away from shallow waters, lurking rocks and jagged coastlines.

The waters around Mitrofania are remote and have not been mapped in years.  Fisherman, large ships and the Alaska State Ferry use these waters and pass the island on occasion.  Our job will be to gather information to update the charts for the waters around Mitrofania Island to help increase the safety of passing ships.

I spent the morning watching the ships’ crew prepare the RAINIER for its three-week journey. The crew made repairs on small cracks, moved mooring lines and loaded supplies onto the ship. Two trucks full of food drove up to the ship and I helped carry boxes of milk, fruit and vegetables up the gangway and into the narrow passages of the ship for storage.

Prior to our 2:00 pm departure, the ship’s safety officer gathered me and other new members of the crew for safety training.  Working and living on a ship can be exciting, but one needs to be extremely careful to avoid accidents and learn how to live with 49 other people. I spent most of today attending safety classes.

My first class was to learn how to stay afloat in water that is 56 º F.  The answer is simple, wear a life vest!  However, the answer isn’t really that simple.  I got issued 4 different types of life vests. If I work inside a small boat, I get to wear a vest that blows up with a carbon dioxide cartridge. If I work outside on the deck of a small boat or handle lines at the pier, I have to wear a “Mustang” float jacket that doesn’t need to be blown up. If I have to abandon ship, I must put on a survival suit that consists of thick foam and covers my body entirely.  The survival suit makes a person look like the cartoon character “Gumby” and hence gets the nickname “Gumby Suit.”  To make matters more interesting, I am also issued a standard life vest that most people are familiar with.  I am now ready to float for any occasion, formal or informal!

After my floatation class, I learned where to go in the event of an emergency on the ship.  We have three main types of emergencies: fire/general emergency, man overboard, and abandon ship. For each type, I am assigned a different station to report to and given specific duties.  For example, I will serve as a look out in the event someone should fall off the ship and if we need to abandon our vessel I need to bring extra blankets for the life raft. Each type of emergency has its own signal on the ship’s whistle.  Three long blasts means a person fell overboard, six short blasts followed by a long one means we need to abandon ship, and a continuous ringing means fire.  Everybody on board the RAINIER is well trained and given a job to do during an emergency.

After the emergency training, we got to watch the RAINIER “film festival” in the ship’s Wardroom, which is like a lounge on land.  The “film festival” consisted of a series of three safety videos on how to use an air respirator, avoid hazardous materials and general safety on board a ship. I then finished the day by taking two more safety classes through the ship’s computer that also gave me a test.  Luckily I passed the tests and now feel ready to go forward in safety.

Though it may seem like a lot of time, all of the training is important and will help me to save myself and help others around me in the event of an emergency.  Students should be aware that learning doesn’t stop when you graduate from school, but continues for a lifetime as one meets new challenges and experiences.

Personal Log 

Despite a full day of safety training, I managed to spend several hours on the flying bridge to watch the Alaskan scenery pass by as we made our way out of Port.  The flying bridge is the deck above the Captain’s bridge and is the highest point on the ship. You can look out from the flying bridge in all directions and see for miles.

We passed through a narrow passage between Kodiak and Afognak Island where the mountains rose out of the water as the RAINIER carefully made its way with a series of turns and maneuvers.  At one point, we passed 10 sea otters floating by the ship on their backs that looked at us and seemed to wonder what we were up to. We constantly saw puffins vigorously flapping their wings in a struggle to avoid hitting the ship.  Often the fat puffins could not take flight, but always avoided our ship at the last minute

A real highlight of today was seeing several Minke whales blow spray and surface gracefully near the ship.  You first spot a spray of water at the surface followed by a sleek, dark back arching over the water that finishes with the appearance of a small fin that then disappears below the surface.

Question of the Day 

How is safety training on the RAINIER like safety training at school? How is it different?

Tamil Maldonado, July 24, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 24, 2005

Science and Technology Log

I started today on a night shift. I got up at 2:00 a.m. and worked with scientists that were doing a 24:00 – 12:00 (noon) shift. We used the bongo and tucker nets, plus the CTD to collect samples of water.  The CTD has 11 fiver-liter spaces that are opened electronically in different sea columns.  This gives a good idea of what is going on in terms of salinity, temperature, pressure, and food for fish throughout the ocean (vertically).  The other nets just take surveys as a hole or by only two regions of columns.

At 5:00 a.m. I stayed on the bridge and on watch till 7:00 a.m. and tried to make the boat steady. After breakfast I went to sleep.  After lunch I went to the engineering department and learned about engines, and how the boat actually works.  Some of the engines work with oil, some with seawater, and other ones with fresh water.  It was incredible for me to see all the machinery behind a boat’s work.  The engineer explained about the maintenance and equipment.  We also went to the refrigeration room to see how the system works with compression and condensation, how AC gets to our rooms, and how the boats use all the engines for energy, movement, and stability.

The sea weather today was awful—big waves coming in during afternoon and at night.  Many people got seasick today.

Thomas Nassif, July 24, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 24, 2005

The SCUBA invention has extended the reaches of human exploration from land to the deep-sea.
The SCUBA invention has extended the reaches of human exploration from land to the deep-sea.

Weather Data

Latitude: 34°10’N
Longitude: 76°39’W
Visibility: 10 nautical miles (nm)
Wind direction: 34°
Wind speed: 13 kts
Sea wave height: 2′
Swell wave height: 2-3′
Sea water temperature: 30°C (86°F)
Sea level pressure: 1016.5 mb
Cloud cover: 2/8, cumulus, cirrus

Science and Technology Log 

The last dive of the research cruise couldn’t have been more exhilarating. Unfazed by the gusty winds, choppy seas, and ripping ocean currents, the divers explored one last shipwreck on the ocean floor. The Naeco was a U.S. tanker that was destroyed by a Nazi U-boat during WWII. The torpedo shattered the Naeco’s bow and stern into two pieces, sinking them to the ocean bottom nearly 7 miles apart. The divers returned to the surface with stories about the stern (back) of the Naeco and thrilling reports of lionfish of every size and number.

The more I think about my experiences aboard the Invasive Lionfish Cruise, the more I begin to see two parallel themes here: the deep-sea diver and the lionfish. Human action led to the introduction of lionfish into a foreign habitat, but at the same time, one person invented the SCUBA, which introduced humans to the mysteries of the deep-sea.

Thomas Nassif interviews Casey Coy on the dive deck for his video documentary on lionfish and deep-sea divers.
Thomas Nassif interviews Casey Coy on the dive deck for his video documentary on lionfish and deep-sea divers.

Lionfish can only swim so far north of their tropical paradise in the southeastern Atlantic before the temperature becomes too cold, whereas humans can only dive so deep before the pressure of the sea becomes too great. Lionfish have scales for protection, fins for locomotion, gills for respiration, and swim bladders for buoyancy. SCUBA gear makes it possible for humans to be like fish, even if it adds 200 lbs to your body! They include a BCD (buoyancy compensator device) to control buoyancy, wet suits for protection and insulation, fins for underwater movement, and regulators attached to tanks for respiration. But lionfish are different from most fish because of their venomous spines that make  them the “ultimate survivors” in their new habitat. Similarly, SCUBA divers are equipped with high-tech gear that may not be familiar to most people, yet it helps humans to survive and explore the underwater environment.

“The bow of the ship left traces of beautiful pigments on the sky’s canvas, an eternal embrace between the first ember of light and a lucid sky.”
“The bow of the ship left traces of beautiful pigments on the sky’s canvas, an eternal embrace between the first ember of light and a lucid sky.”

Yet there is one difference between lionfish and humans that became most apparent over the course of my cruise. Whereas lionfish may harm the local ecosystem by lowering the number and diversity of native fish in the Atlantic, deep-sea divers are in a unique position to help our society by increasing our knowledge and creating a better understanding of the importance of preserving native habitats.

Reflections…

On the final morning of the cruise my eyes met a resplendent sunrise that shot stars across the shimmering waters of an endless sea. As we headed to the east I grew quiet within… the bow of the ship almost seemed to leave traces of beautiful pigments on the sky’s canvas, an eternal embrace between the first ember of light and a lucid sky. Land  is but hours away, but the memories of this journey will never leave my mind.

Who could forget such a fascinating, diverse group of personalities; Paula the lionfish enthusiast, Doug underwater photographer extraordinaire, Jay and the underwater hunt, Casey and the underwater flex, Christine the lion queen, Roldan king of transect, and last but certainly not least, Joe and the quest for Choco-tacos.

Kimberly Pratt, July 23, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 23, 2005

Peter Pyle
Peter Pyle

Crew Interviews

Another successful scientist is Peter Pyle.  Peter became interested in Ornithology while helping his dad, a meteorologist, band birds in their backyard in Oahu, Hawaii.  Peter attended Swarthmore College and received his BA in Biology.  Peter who loves field work lived on the Farallon Islands for 24 years as a field biologist. When Peter is not  doing field work, he is busily writing scientific papers and manuals to compliment field guides for Ornithologists.  His manuals help age/sex determination, species ID, and are written for “bird in hand” observations.  Peter’s favorite bird is a Bristle-thighed Curlew, which is a rare bird that breeds in Alaska and winters in Hawaii and the tropical Pacific. Peter likes it because it acts like a goofball. Peter, who is married, has an understanding and independent wife. Peter’s advice to someone who would like to be an Ornithologist is to be a field person. In the field you get dirty, have to be patient; you may spend hours in cold blinds waiting.  You have to have a passion for biology really be successful. Lastly, Peter advises that if your heart is in the right place, you’ll be a successful biologist.

Rich Pagen (back), Tim O'Toole
Rich Pagen (back), Tim O’Toole

Another Ornithologist on this mission is Rich Pagen. Rich, who did his undergrad work in Environmental Studies, received his MA in Wildlife Biology.  Currently he lives in Minnesota, but in the past he lived on Catalina Island. He also taught an outdoor science class in Pasadena. During a Sea Bird meeting, he met Lisa Ballance who got him interested in the CSCAPE project. Previously, Rich has done shark satellite tagging, and has gone to Antarctica as a naturalist on a passenger ship. Rich will be completing this cruise as a Bird Observer.

If this group of scientists could have an action figure, it would be Juan Carlos Salinas.  Juan is in charge of tissue biopsy of the whales and dolphins. He is able to obtain these biopsies in very difficult circumstances. Juan who lives in Mexico City was hand picked  for these missions because of his talent for obtaining biopsy’s and his knowledge of marine mammals.  Juan learned biopsy sampling while in Baja in 1991 when studying humpback whales.

 Juan Carlos Salinas
Juan Carlos Salinas

Juan has had extensive field work experience and will be going to Hawaii with the McARTHUR II until November 30th.  He’s excited about his mission to Hawaii because you always see something different.  The Hawaiian waters are just being studied and what’s out there is relatively unknown. During the mission in Hawaii, he will do species ID, population studies, determine the health of the animals and finally learn about their genetics. Juan states that the field of biology is much more specialized than before with genetics being the big thing today. Another marine mammal observer that is talented in tissue biopsy is Ernesto Vasquez. Ernesto, who is married with a family, does field work cruises about once per year. He currently works at the National  Resource Ministry as a Marine Biologist in LaPaz, Mexico. He’s been with the government for 3 years.  He graduated school in 1998 with his degrees in Marine Biology.  While away, he e-mails his wife and family and he likes getting close to the animals, and getting tissue samples to.

Currently being trained in biopsy operations is marine biologist Tim O’Toole. Tim graduated from San Diego State University and did his post graduate work in Australia. An avid surfer, Tim enjoys the ocean and having the opportunity to gain further field experience working with marine mammals. While on this research cruise, he’s gaining experience from other scientists as well as reading, and learning Spanish. He does, however miss friends and family and likes to stay in touch.

Ernesto Vasquez
Ernesto Vasquez

Tamil Maldonado, July 23, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 23, 2005

Science and Technology Log

Today I interviewed the Electrical Technician about satellites on the ship, server computers, connections among rooms, computer labs, processes of e-mails, phone communications, and digital vs. analog communication.  He showed and explained all equipment they have in the computer rooms,  how systems talk to each other, how the e-mail codes and compresses data, and how they are stored in lines and by priorities.  He also showed me how they keep information in different places in the boat in case there is a fire in regions where they have the servers.  Moreover, he explained the different satellites and which ones are being used all the time for navigation.  It was really interesting to see all the systems working together.

I studied more about sonars and how they actually work undersea.  I read about the sonar setup, vessel operation, data analysis, and how noise is reduced on these sonars by the speed of the ship. For example, in a SeaBat 8160 sonar the best vessel speed while doing the survey is at 10 knots. There are exciting papers of Noise Analysis explaining the type of sonars they use.

At the end of the day I did some laundry and saved pictures on disks.

Kimberly Pratt, July 22, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Humpback breaching
Humpback breaching

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 22, 2005

Weather Data from Bridge

Latitude:  3614.084N
Longitude: 12213.868W
Visibility: <1 mile
Wind Direction: 340 Wind Speed:  22 knots
Sea Wave Height: 5-6 feet
Sea Level Pressure: 1014.6
Cloud Cover: Foggy, Drizzle
Temperature:  14.8

Scientific Log 

Again we are seeing up to 80 marine mammals per day, and are doing well on our track lines.  The wind picked up, making it more difficult to do observations, but we are moving right along to get finished by Sunday. Some of the regulars are humpbacks, blue whales, Dall’s porpoise, fin whales, pacific-white sided dolphins, Risso’s dolphins and pinnipeds. I’ve attached photos of breaching humpbacks that we’ve seen. Hopefully through my logs and interviews you’ve learned about marine mammals, sea birds and ship operations.  To learn more about this mission go to the NOAA Fisheries Southwest Science Center website.  Look under “What’s new in the sanctuary.”

Completing the dive
Completing the dive

Personal Log

Upon reflecting on my adventure, I’ve found that the trip fully exceeded my expectations.  I expected to feel intimidated by the scientists and science, and to my relief was accepted and welcomed by all the scientists on board and they were most eager to teach me what  I needed to know. I’ve learned that to be a good scientist you must have good observational skills, computer skills, and be knowledgeable about data and statistics.  I’ve also learned that science takes time, is very exact, and requires you to be detail orientated.   Additionally, I’ve learned that to get along with others on a ship, you need to have a good sense of humor and be flexible. As the cruise comes to an end I’m really looking forward to getting home, doing further reflection on my experience and translating it into rich and meaningful curriculum for my students. Again, thanks to Karin, all the scientists, and the crew on board the McARTHUR II, this has been a wonderful experience.

As of this post, we have now finished all of our tracklines.   Tomorrow – Saturday we’ll be spending the day in Monterey Bay doing grab samples and additional small boat operations.  We will then head into port in San Francisco on Sunday as scheduled.

Tamil Maldonado, July 22, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 22, 2005

Science and Technology Log

FOCI… Today I have been working hand in hand with scientists, throwing nets, collecting depth, pressure, temperature, and chlorophyll data.  We have also been washing nets, getting survey of larvae, writing it down in sheets database, labeling, freezing larvae and chlorophyll samples.  We analyze some graphs we were getting from the experiments.

Here are some questions I have… how is global warming affecting ecosystems? How do fish overcome these changes?  Do they go up or down in the ocean columns?  Are they changing their nursery places?  How is their behavior in comparison to other years? Which parameters affect them most: salinity or temperature?  Some of these questions are being answered by the scientists, and others are still unanswered for which we are trying to find the answers. It seems that Alaskan fish can adapt easily to salinity changes.  Remember that glaciers are melting more continuously than before and fresh water (since it is less dense than seawater) stays in the surface, which means there is a change in salinity and temperature in the ocean.  Therefore there could be changes in fish behavior and in their ecosystem.  It seems the larvae and fish will be affected by temperatures.  They could be moving from ocean columns to get to the right temperature.  But they also need food like plankton that maybe stays at a different column of seawater.  That will be a survival problem.

Scientists are focusing their work on commercial fish such as Pollock and Pacific Halibut. It is the first time they have done this survey during summer.  They want to have a template for next year to compare data with.  Later we could do some statistical models, and mathematical models to compare in terms of years or data columns.

Navigation… This afternoon I as actually sailing the boat…  I had the power on my hands.  I needed to be really focused and follow instructions at all times.  We also calculated times for some positions, stations where we were going to do survey.  I also calculated True Speed, which depends on relative speed, wind speed, angles and locations of the boat.

I had the chance to see whales, little fish and a jelly fish of the size of my 4 fingers.

I also did some hydrographic studies of the region,  got some data, pictures and depths of the ocean.

We had problems with the coaxial cable again and I got some other information about sonars that I started to read.  I even worked out today!

Thomas Nassif, July 22, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 22, 2005

A lionfish and two lobsters pose for the camera at Lobster Rock. Today the divers collected a total of 23 lionfish from this dive site.
A lionfish and two lobsters pose for the camera at Lobster Rock. The divers collected a total of 23 lionfish

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

Today the divers explored Lobster Rock, collecting a total of 23 lionfish for the flow through aquarium aboard the ship. Water from the ocean flows into and out of the tank yhrough pipes on the deck to simulate the ocean environment. This brings the total laboratory aquarium at Beaufort.

Today I also interviewed the Chief Scientist, Paula Whitfield. Most amazing to me was how her life story evolved from a childhood fascination with Jacques Cousteau to her current passion for lionfish research. Paula grew up watching the underwater videos of Jacques Cousteau, and it was at that point that she knew she wanted to become a diver. “I was a diver first, but the more I dove, the more I was formulating questions in my mind…I was curious about everything that had to do with water and marine life.” She worked for a sea grass ecologist for many years, not running the show, but she saw how the scientific process worked. Her desire to become a marine biologist grew stronger,  and that’s when she decided to return to school to get her graduate degree.

Recently collected lionfish from the ocean floor are transferred to a flow through aquarium aboard the ship.
Recently collected lionfish from the ocean floor are transferred to a flow through aquarium aboard the ship.

So how did Paula become one of the leading scientists in lionfish research? She responds: “It stemmed from my recreational diving – I was diving constantly in my spare time, and working for a charter boat business that attracted recreational divers from all over the world.” And then one day she began seeing lionfish off the coast of North Carolina, which was very unusual for this area. Paula knew they were Pacific fish, but she needed proof that lionfish were now in the Atlantic. “From that point on, I collected evidence was finally able to convince NOAA when a world-renown scorpion fish expert confirmed that her collected specimens were lionfish.

Once Paula was aboard a diving ship, and she was ordered to do a routine dive to the ocean bottom. The first thing she saw was right angle patterns, which hardly exist in nature. All of the sudden Paula saw a porthole lying in the sand. Back then she wasn’t a technical diver with all the fancy gear she has today. So she clutched the porthole with her knees and climbed up the anchor line. When Paula reached the surface, everyone aboard the ship stared at her in disbelief when she said: “I think it’s a wreck. I have a porthole.” She fondly remembers feeling “excited to be the first person to dive a virgin shipwreck.”

Diver and Marine Biologist Paula Whitfield swims alongside a lionfish, the focus of her research.
Diver and Marine Biologist Paula Whitfield swims alongside a lionfish, the focus of her research.

What Paula finds most fascinating about lionfish is how they established themselves in such large numbers in the Atlantic within a short period of time. Because of this she calls lionfish the “ultimate survivors.” But overall, she feels very affectionate towards all sea creatures, including “everything from sea spiders and feather dusters to larger fish because it’s such a different world down there. It’s important for us to know how we’re affecting that world in order to make a positive change.”

Paula’s words of advice for those who want to become marine biologists: “I think it’s important if you can become a diver – just to be able to put your head in the water to see what’s going on is more rewarding than just dropping sensors into the ocean. It opens more doors, and by seeing the environment firsthand you are able to formulate more questions about it. All this helps you become a better marine biologist, even if you don’t dive all the time.”

Kimberly Pratt, July 21, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 21, 2005

Cornelia Oedekoven
Cornelia Oedekoven

Crew Interviews: Scientists on board the McARTHUR II

The scientists on board the McARTHUR II are hardworking, dedicated people.  Their shifts can start at sunrise 6:00 am and end at sunset 9:00 pm.  Most scientists are on watch for two hours then off for two hours during the whole day.  While on watch they are observing mammals or birds, entering data and taking photographs.  When they’re off watch, they eat, do laundry, exercise and relax.  On board a ship, there are no weekends, so their schedule is set 7 days per week.

An excellent Senior Marine Mammal observer as well as the photo ID specialist is Cornelia Oedekoven. Cornelia is a soft spoken person who has an eye for detail.  She meticulously goes through the photos taken on the cruise then enters them in the data base.  This can be quite a project as some days there are as many 300 photos to be  processed. Cornelia, whose background is in marine biology, graduated from Rheinische Friedrich-Wilhelms Universitaet, Bonn, or the University of Bonn, Germany.  She received her “diplom” which is equivalent to a master’s degree in Biology.  She came to the United States to study marine ornithology in San Francisco. She now lives in San Diego.  She enjoys ship life because she’s met a lot of friends, and there is no commute to work. While on board, Cornelia has been known to do haircuts for other scientists and she also does oil painting.  In the past she’s done sea bird work, and she’ll be involved with CSCAPE until December 10th at which time she’ll go home to Germany to visit her family.  To be a successful marine biologist, she advises to get your degree, and then do as many internships as possible.

Holly Fearnbach
Holly Fearnbach

When things slow down on this cruise, you can count on Holly Fearnbach to say “we need a good Killer Whale sighting”. Holly, who has always liked marine biology, grew up near the beach. She received her BS in marine biology from the University of North Carolina, Wilmington, and from Old Dominion University she received her MS.  She’s looking to get her PhD from the University of Aberdeen in Scotland where she will focus her research on Killer Whales.  She states that right now there are 3 different types of Killer Whales, residents, off-shores and transients.  She’s excited because they are now finding another type in Antarctica. She loves the discovery of different types of marine mammals and her past work was with Bottlenose Dolphins.  She likes being on these field work cruises because she learns so much from the Cruise leaders and has been taught much from the scientists at the South West Fisheries Science Centers.  To become a scientist who studies whales and dolphins, she advises to do internships, and do volunteer work early in school. She also states that you need a good work ethic.  Holly, who is a marathon runner, actually trains while on ship.  She has completed 12 marathons and says that it is a great stress reliever.  She does however miss dry land and her friends and family while she is away.

 Jan Roletto
Jan Roletto

An Independent Observer on board the McARTHUR II is Jan Roletto. Jan is the Research Coordinator for the Gulf of the Farallones Marine Sanctuary.  Her primary role as Research Coordinator is to attract researchers to the Gulf of the Farallones National Marine Sanctuary. The Sanctuary is the management agency protecting these waters. The science department conducts research, monitoring, permitting, disturbance, and investigates pollution issues.  The Gulf of the Farallones National Marine Sanctuary protects the body of water from Bodega Head to Año Nuevo, south of San Francisco. The Farallon Islands are managed by the US Fish and Wildlife Service and the  National Wildlife Refuge works to maintain the seabirds and pinniped colonies on the islands. Jan’s background is in Marine Biology and she attended San Francisco State University. She really likes seeing different things and is challenged by the Sanctuary work. She states that sometimes they work with boat groundings, environmental issues, watershed issues, estuaries, pelagic and coastal areas; all very different ecosystems.  Her challenge as Research Coordinator is the lack of funding that the sanctuary receives for research and monitoring.  To enter the field of Marine Science, she advises to do your schooling, learn about computers, math and statistics.  She states that you will apply these disciplines to biology. Furthermore, she advises to volunteer and do unpaid internships as it is a small field and can be competitive.

Sage Tezak grew up in the Pacific Northwest and currently lives in San Francisco.  Sage has run a volunteer program for the last 3 years monitoring harbor seals for human related and other disturbances. That job brought her to San Francisco. Before that she lived in Humboldt and she’ll be starting grad school in 2 weeks at Prescott College in Conservational Biology/Environmental Studies.  She likes having the opportunity to gain further field experience and to see the  operations of a research cruise.

Sage Tezak
Sage Tezak

Tamil Maldonado, July 21, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 21, 2005

Science and Technology Log

Navigation… Today we studied latitude and longitude and their relation to each other.  We used geometry concepts like degrees, parallel lines, circles, transversal lines, alternate internal angles, and alternate external angles.  We used charts, grids, compasses, and different instruments from the bridge.  We shared information about how people were measuring latitude and longitude in olden days and how it is measured nowadays.  We discussed mathematical relations of degrees, minutes, seconds and nanomiles.  One question for you… how are the Sun and angles utilized in calculating latitude and longitude?

Hydrography Lab… I got the chance to look at some hydrographic data, and to get to know information about the different sonars they are using to retrieve all the data.  The Difference among sonars is the beams per particular time that sonars are shooting.  FAIRWEATHER ship has a sonar that does 160 beams in 220 microseconds.  They also use little boats to go to shallower grounds and have sonars of 111 beams and 101 beams per 220 microseconds.  They get a huge amount of data coming into their computer devices, and then they use software called Cares Hips and Sips, which recollects all the data plotting it in two dimensional and three dimensional grids.  It also used colors to identify how deep it is in that particular region. Blue is used for deeper regions, while red is used for shallower regions. There are a few issues that needed to be corrected.  There is some noise in the data due to salinity, movement of vessel, and tides.  An important key is that they need corrections on real time.  To correct this data, they use another instrument like POSMV.  After all data is collected they could go back and get pictures per zone, and per beam too.  Therefore they could analyze all data and get correct information.  They also use satellites called GPS – Global Positioning System.  In the future I will be talking to Richard (the ET- Electrical Technician) about all satellites they are using on board.

FOCI… They had some problems today too with the computer system,  so in order to know about the depth of the net in the seawater they have to calculate “by hand” using charts.  For an approximately 45 degree angle measured between the cord holding the net and perpendicular to the floor of the ship, you need how much wire is out, how wide the circle is that holds the wire, how many revolutions, and if there is a linear relationship between this information and the desired net depth.  For example if you want the net 40 meters deep vertically then you need 57 m wire out.  Remember that the boat keeps moving at certain time and that will give you an angle (in this case you need the angle to be approximately 45 degrees).  Scientists use available charts for this information, but we can actually calculate it manually.

JoAnne Kronberg, July 21, 2005

NOAA Teacher at Sea
JoAnne Kronberg
Onboard NOAA Ship Rainier
July 12 – 22, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 21, 2005

Weather Data
Winds:  SW 15 knots
Waves: 5 feet

Science and Technology Log

We left Cushing Bay on Wednesday, July 20, and travelled between Semidi and Chinikof Islands. We arrived in Chiniak Bay on Thursday morning and anchored.  We sent a launch to pick up a team of Fleet Inspectors.

The entire day was spent with the Fleet Inspectors examining everything on the ship.  We had three drills– a Fire Emergency, an Abandon Ship and a Man Overboard exercise.  The inspectors observed all of these very carefully, because safety is so extremely important on a ship.  Everyone needs to know where to go and what their responsibilities are. I think that out ship performed very well.  All of us have been told repeatedly where we should go for each of these drills and what we should bring with us.  It is even posted on every berth on the ship. That way there are not questions and problems if a real emergency should occur.

After the inspection, we continued to travel toward Kodiak Island.  We arrived at the U.S.Coast Guard Fuel Pier, Berth 7 at about 5:00 PM.

Tomorrow, Friday, the ship will refuel and stay in port until Monday, July 25.

This is JoAnne Kronberg, Teacher-at-Sea, signing off. God bless to all of you.

Thomas Nassif, July 21, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 21, 2005

Thomas Nassif on the Bridge gathering measurements from the ship’s weather log.
Thomas Nassif on the Bridge gathering measurements from the ship’s weather log.

Weather Data

Latitude: 33°30’N
Longitude: 77°09’W
Visibility: 10 nautical miles (nm)
Wind direction: 290°
Wind speed: 15 kts
Sea wave height: 3′
Swell wave height: 3-5′
Sea water temperature: 28.9°C (84°F)
Sea level pressure: 1019.9 mb
Cloud cover: overcast, cumulus and stratus

Science & Technology Log

The day began with rocky seas, gusty winds, strong ocean currents, and the tallest swells we’ve had since our departure from port last week.  These ocean conditions are nothing extraordinary for the ship’s crew, but extremely tough for the divers.  The diving site for this morning was Southeast Tower 2, not far from the old Frying Pan Tower that was used by the Coastguard to collect and transmit ocean conditions.  The Tower’s location 35 miles off the Atlantic coast atop a 45-foot deep rock formation made it among the most valuable navigational aids for collecting ocean data such as wave height and water temperature.

The 187-foot NANCY FOSTER in the Atlantic.  The Bridge is located on the very top level of the ship.
The 187-foot NANCY FOSTER in the Atlantic. The Bridge is located on the very top level of the ship.

The first dive of the morning went smoothly.  But the second dive team was not so fortunate. After jumping off the ship they were swiftly pulled past the dive site buoy by strong ocean currents. Having missed the dive site, the divers ended up at an entirely different location on the ocean floor! This is why it is so important for ships to record the weather conditions and their location at sea.  These measurements take place on the Bridge, the command center of the ship.

Every day, I walk to the Bridge to get the weather data that appears at the top of my daily logs. Here is an explanation of the terms:  Latitude tells you how far north or south you are from the equator (which is 0° latitude), while Longitude tells you how far east or west you are from Greenwich, England (0° longitude).  Together, Latitude and Longitude give the exact location of the ship. Visibility is how far ahead you can see from the ship.  On a very foggy day you may only have a visibility of 10 feet, whereas on a clear day you can see all the way to the horizon, or 10 nautical miles.  Wind direction tells you which way the wind is blowing from – 0° is north, 90° is east, 180° is south, and 270° is west. Sea wave height and Swell wave height are height estimates of the smaller ripples and larger waves, respectively. Sea level pressure (or barometric pressure) indicates what the trend of the weather has been. High barometric pressures (like today – 1019mb) usually mean sunny weather; rain cannot build up in clouds if they are being squeezed together by high pressure. Low barometric pressures tell you that rain or stormy weather is on the way. Inside the eye of a hurricane barometric pressures can be as low as 875mb!  Under low pressures clouds can expand and fill up with rain.  Cloud cover is a number between 0 and 1 that describes how much of the sky is covered with clouds.  4/8 means that half of the sky is covered with clouds, 1/8 means very few clouds, 7/8 is mostly clouds, and overcast (or 8/8) is all clouds.

A lionfish has many fins.  The outstretched pectoral fins are not venomous.  The shorter, pointier spines are venomous.  From right to left they are: dorsal, pelvic, and anal spines. Photo courtesy of Christine Addison.
A lionfish has many fins. The outstretched pectoral fins are not venomous. The shorter, pointier spines are venomous. From right to left they are: dorsal, pelvic, and anal spines. Photo courtesy of Christine Addison.

Every day the ship sends all of this weather information to the National Weather Service (NWS) by satellite.  The NWS will in turn fax this information to other ships that will be traveling in our area so they can get a better idea of what the weather is like at our location. And when our ship steams ahead to a new dive site tomorrow, we will be grateful if another ship was in the same area.  The weather information that ship collected will help us know more about the weather!

Question of the day

How many sets of venomous spines do lionfish have?  Where are they found on its body?

Lionfish (like most fish) have five different types of fins.  But in Lionfish, some fins have sharp, venomous spines. The dorsal (back), pelvic (waist), and anal fins all have pointy, venomous spines that look like injection needles. The caudal and pectoral fins, on the other hand, are not venomous and look more like ordinary fish fins.

Kimberly Pratt, July 20, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Elegant Tern
Elegant Tern. Photo credit: Sophie Webb.

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 20, 2005

Weather Data from Bridge

Latitude: 3602.734 N
Longitude: 12153.520 W
Visibility: 8 miles
Wind Direction: Variable
Wind Speed: light
Sea Wave Height: <1  ft
Swell Wave Height: 2-3  ft.
Sea Level Pressure 1014.0
Cloud Cover: Cloudy
Temperature: 16.0

Heerman’s Gull
Heerman’s Gull. Photo credit: Sophie Webb.

 

Scientific Log

Our days continue to be hazy and cloudy. We are getting more track lines done and are staying “on effort” more frequently, yesterday, we had around 70 sightings of marine mammals.  We are still seeing humpbacks, killer whales, Risso’s dolphins, harbor porpoises, pacific-white sided dolphins, minke whales, beaked whales, Dall’s porpoise, as well as California sea lions, northern fur seals, and elephant seals. The California current is one of the most productive in the world.

Yesterday, afternoon, about 3 miles from Big Sur, a Blue Whale surfaced right on the bow of the ship. It was beautiful to see the whale with the Big Sur coastline in the background.

Northern Fulmar
Northern Fulmar. Photo credit: Sophie Webb

Ornithologists are observing many birds including the resident breeders – Common Murre, Ashy Storm Petrels, Cassin’s Auklets, and Western Gulls.  Additionally, they’ve observed Black-footed Albatross – (Hawaiian Island breeder), Sooty Shearwaters (New Zealand breeders), Pink footed Shearwaters (breed in Chile), South Polar Skua’s (Antarctic breeder), Red Necked Phalaropes, Sabine’s Gulls (Artic breeders), Heerman’s comes up the California current from Mexico, also 95% breed on the same island as the Heerman’s Gull, the Terns winter in Northern Chile, and Southern Peru.

Personal Log

The days are getting busy with sightings as we continue to work track lines in the southern marine sanctuaries.  Although hazy and foggy, the weather has been quite pleasant.  The ocean has been relatively flat, with little waves and small swells.  This makes it easier to sight blows and marine mammals.

Today I’ll be editing video, and hopefully will have some good footage to share with you. We are trying a new way to get my logs off the ship.  I will still answer e-mail to scientist7.mcarthur@noaa.gov until Sunday afternoon.

Pinkfooted Shearwater
Pinkfooted Shearwater. Photo credit: Sophie Webb
Sooty Shearwater
Sooty Shearwater. Photo credit: Sophie Webb

Photos by: Sophie Webb

Tamil Maldonado, July 20, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 20, 2005

Science and Technology Log

The Tucker trawl and Method Net had been deployed all night and day.  Scientists have shifts of 12 hours every day. Equipment is attached in the fantail area (back of ship).  There was a problem with the coaxial cable… it was broken, wet and they had to cut a portion of it.  The Electrical Technician needed to set up the cables, put them together, and use a cable coating so the wires would not get wet again.  Still, the data was not going through the wires into the computer data base.  After a few hours they had some data and started doing experiments with the CTD and Tucker net.  I was washing bottles they use to recollect larvae, taking them to the lab, freezing the bottles and chlorophyll filters, writing data down on their sheets, etc.  It was very exciting to see larvae, jelly fish, and little fish.

I also went to the bridge and we started talking about the mathematics behind navigation, including all the geometry, trigonometry and vectors involved.  We used the charts (maps) to find out our position, calculate how much time it would take for us to get to the next station where we were going to do another survey on larval fish.  I also got to know all instruments on the bridge, and how they use them for traveling, and navigation.  Moreover, we calculated true speed looking at the relative speed and using instruments, vector, ship speed, and charts.

At the end of the day I read the Draft of the scientific research, which helped me to know more information about their equipment and specifications of nets, CTD, and computer interface, among others.

I also talked to some students that are doing their internship with NOAA vessels.  It was great to get to know them, and see their different interests on the ship.

Tomorrow I am going to interview people from the Hydrographic lab department, and learn some more about navigation.

Thomas Nassif, July 20, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 20, 2005

A underwater photograph of the City of Houston shipwreck. Over time the ribs of the ship’s hull have been covered by sponges (pink fluff) and soft coral (colorful branches). Tomtate fish are pictured to the right.
A underwater photograph of the City of Houston shipwreck. Over time the ribs of the ship’s hull have been covered by sponges (pink fluff) and soft coral (colorful branches). Tomtate fish are pictured to the right.

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

My excitement and fascination with this entire diving expedition grew even more when I heard that the divers would be exploring two shipwreck sites on the ocean floor today – “18 Fathom” in the morning and “City of Houston” in the evening. Fathoms are an old unit of measurement still used by navigators today to describe the depth of the ocean (1 Fathom = 6 feet deep). The dive site “18 Fathom” is a mystery shipwreck that was discovered at a depth of 108 feet (18 Fathoms). Shipwrecks provide excellent habitats for a variety of fish, including lionfish. The broken down hull and old passageways of a  shipwreck create a manmade reef upon which algae and coral grow, smaller fish hide, and larger fish feed. Rather than scrap old ships, many countries around the world clean and sink their old ships to the ocean floor to create artificial reefs for fish and other marine organisms.

An explosion of Tomtate (white fish) and Vermilion Snapper (red fish) envelop the water in a silvery red glow.
An explosion of Tomtate (white fish) and Vermilion Snapper (red fish) envelop the water in a silvery red glow.

After lunch, the boat steamed ahead to the next dive site, City of Houston. Far beneath the ocean surface looms an old Civil War Era shipwreck. Thousands of fish including Tomtate, Vermilion Snapper, and Silverside enveloped the divers, making the surrounding waters shimmer with silvery red. At times the number of fish were so great that the divers had trouble seeing even a few feet in front of them! Over one  hundred years after the City of Houston wrecked and fell to the seafloor, you can now see coral and algae taking over the entire manmade structure. Even so, it is still possible to make out obvious structures of the ship, including the engine and the hull.

Personal Log 

Today I went snorkeling off the NF4 once again and had a fantastic time swimming in the 84°F water under a beaming sun – It’s unbelievable that the Atlantic Ocean can be so warm during the summer months! Also, I’ve watching the divers in action as they descend to the ocean floor, collect live lionfish, and take stupendous photos of the deep ocean all inspire me to someday become a professional SCUBA diver myself.

Question of the day

What type of air do SCUBA divers breathe?

This depends on how deep you plan to dive. Regular air (the kind we breathe on land) is mostly nitrogen and only 21% oxygen. The tanks that the deep-sea divers carry on their back are filled with regular air, and they can dive up to 150 feet by breathing this air through a mouthpiece (or regulator). Other divers that only need to dive up to 113 feet (like our safety divers) use Nitrox, which has more oxygen (36%) than regular air. Finally, at depths up to 20 feet deep, SCUBA divers can breath pure oxygen (100%). The deep-sea divers on our cruise switch to pure oxygen 20 feet before they reach the ocean surface to speed up their decompression.

The two dangers with SCUBA diving and the air they breathe are:

1 – Too much oxygen can be toxic to your body. The deeper you dive, the less oxygen you should have in the air you breathe. 2 – At the same time, too much nitrogen can make you feel light-headed and put you to sleep underwater. Jacques Cousteau, French inventor of the SCUBA, called this “Rapture of the Deep.” That is why it is so dangerous for divers to spend too long in the deep ocean.

Kimberly Pratt, July 19, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Greg Hubner
First Mate Greg Hubner

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 19, 2005

Crew Interviews: “The Officers of the McARTHUR II”

Officers of the McARTHUR II are commissioned by NOAA.  They are uniformed personnel with the exception of the First Mate.  They all are assigned different watches and their primary responsibilities are, under direction of the Commanding Officer, to run the ship, navigate, take care of the ship’s medical needs and to make sure that shipboard operations are running smoothly.

The McARTHUR II has 6 officers on board – LCDR Morris, First Mate Greg Hubner (who is not uniformed), Operations Officer Nathan (Herb) Hancock, Navigation Officer Paul Householder, and Junior Officers, Ensign Steven Barry, and Ensign Paul Smidansky.  All NOAA Corps Officers have two years at sea, initially followed by three years of shore duty and rotate between sea and shore duty unless they are aviators.

Nathan Hancock
Operations Officer Nathan Hancock

First Mate Greg Hubner has been with NOAA for 26 years. He has a background in the Navy and started with NOAA as a deck hand. He is currently a licensed Officer and enjoys being out to sea. He likes seeing different countries and his favorite port is an island off of Spain. Another NOAA ship, RONALD H. BROWN, is involved with international research so some NOAA ships travel the world, and Greg has had the opportunity to see many countries and cultures.

Operations Officer Nathan Hancock is readily noticeable by his sense of humor and laughter.  Nathan graduated with a BS degree in Environmental Sciences and a MS degree in Geology and Geophysics. Nathan really enjoys his position as it enables him to “drive the boat”.  In the future, he would like to be transferred to the Key Largo Marine Sanctuary or fly into hurricanes. Nathan developed a love for the water when he was a child living at the ocean and running charters with his father a marine biologist.

Navigation Officer Paul Householder is also the medical person in charge.  He has a BA/BS in Chemical Engineering and joined NOAA after being laid off during the downsizing of the semi- conductor era. He’s been with the ship for over a year and is adjusting to sea life. He likes seeing the different places, but does miss his weekends.

Paul Householder
Navigation Officer Paul Householder

Ensigns Barry and Smidansky both have a background in Meteorology and Barry would like to join the National Weather Service. Barry, who joined NOAA in February ’04, enjoys the adventure of meeting different people.  On this tour, it will be his first time visiting Hawaii.  Ensign Smidansky, is a licensed airplane pilot, and is looking to join the air fleet of NOAA, but for the time being is enjoying his time at sea.

In order to become a NOAA Corps Officer, you need a college degree, preferable with a background in science or math.  You must be under 35 years old, with no arrests or criminal background.  Also, it takes between 6-9 months for your application to be processed and then the Secretary of the Commerce grants you a temporary commission.  The Senate grants you permanent status.  You must undergo three months training at the Merchant Marine Academy and then are assigned to a ship at sea to become a qualified deck officer. NOAA is constantly training officers for higher positions and Officer Householder will be promoted soon to Lt. Jr. Grade. All of the officers while professional and polite still have a sense of humor, they are gracious enough to keep answering the question – “where are we?”

Question: Malka, grade 5 – Where does the ship/vessel get fresh water?  The ship makes its own water, we take salt water and process it to turn it into fresh water.  Everyday we make 2,000 gallons worth. The process is started 10 miles out to sea.

Steven Barry
Ensign Steven Barry
Paul Smidansky
Ensign Paul Smidansky

Tamil Maldonado, July 19, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 19, 2005

Science and Technology Log

We took off from port at 10:00 a.m., after dealing with some ship problems.  An hour after we started testing all research equipment and noticed there was a problem with the coaxial cable that connects nets with computer interface.  The Electrical Technician worked with that issue for hours. Everything else was fine.  This coaxial cable and getting data information to computers was really important to get research correctly.  They should be able to know depth, temperature, salinity, pressure and chlorophyll information through the net’s path in water, main keys for their oceanographic research.

At night I interviewed Chief Scientist Janet T. Duffy-Anderson and other participating scientists (Colleen E. Harpold, Matthew T. Wilson, Miriam J. Doyle, Sigrid A. Salo, Dylan Righi, David G. Kachel and William J. Floering).  We discussed cruise objectives and operations.  FOCI will conduct an ichthyoplankton survey in the Gulf of Alaska in the vicinity of Kodiak Island, Alaska. This area is a known nursery ground for a variety of species of fish – walleye Pollock, Pacific cod, rock sole, Pacific halibut.  Work is needed to describe larval fish and zooplankton assemblages in summer, and to examine the movement of water and associated biota from the slope to the shelf.  Six satellite-tracked drifters will be released to study current trajectories in the vicinity of Port Lock Bank. Conductivity, Temperature, and Depth profiler casts will be made to characterize water column properties, collect nutrient and chlorophyll information, and to evaluate the flow field.

A goal of the Eco-FOCI is to identify the physical and biological factors that underlie ecosystem change, and to understand how those factors interact.  One focus is the effects of perturbation at lower trophic levels; therefore they will collect ichthyoplankton using a 1 m2 Tucker net and collect juvenile and small fishes using a Method net.  And Sea-Bird Electronics SBE 911plus Conductivity, Temperature and Depth (CTD) casts will collect physical data as well as water samples for nutrients and chlorophyll.

Scientific Computer System shall operate throughout the cruise, acquiring and logging data from navigation, meteorological, oceanographic, and fisheries sensors.

I recorded their first test and learned how to throw the nets, how to get them back, etc.   In that way I was going to be able to do it myself for the next stations.

JoAnne Kronberg, July 19, 2005

NOAA Teacher at Sea
JoAnne Kronberg
Onboard NOAA Ship Rainier
July 12 – 22, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 19, 2005

Weather Data
Waves: 8ft during the day diminishing to 6 ft in the evening
Winds:  NW 25-39 knots

Science and Technology Log

We arrived at Mitrofania Island at about 5:00 am and anchored in Cushing Bay.  Our mission today was to do a Tide Station Installment.  The National Water Level Observation Network operates 175 continuous observatory stations in the U.S. coastal zone and the Great Lakes. All are equipped with satellite radios.  Of course, a Tide Station would only be placed in the coastal areas that are affected by tides.  Water Level Stations operate in the Great Lakes.

We had to replace the Tide Station in Cushing Bay.  The sensor that is installed is called a Bubbler Orifice. It is anchoring to the bottom of the bay and is powered by a long tube that is filled with Nitrogen gas.  Two divers went down to anchor the Bubbler and attach the tube. Meanwhile, other people in another launch were setting up a Tide Staff.  A Tide Staff is just a long stick that is marked with levels like a yardstick.  The Tide Staff has to be set up to correspond with the Bench Marks that have been already determined.  The Bench Marks may be located at different sea levels.  Both the Bubbler Orifice and the Tide Staff have to be at the same sea level to be accurate.

After the Bubbler Orifice is established and the Tide Staff is set up, we started taking the readings from these two sources. Readings were taken every 6 minutes for a period of one hour. If the readings after an hour are not the same, then the Bubbler Orifice has to be adjusted.

The data collected by the Bubbler Orifice is transmitted to the Data Collection Platform.  In turn, this information is transmitted to no less than four satellites and to the National Geodetic Survey.

The work today has taken most of the day.  We will stay anchored in Cushing Bay tonight. Early tomorrow morning, Wednesday, we will start cruising toward Chiniak Bay.

It was a very educational day and the weather was fantastic.  Thank you for this opportunity.

JoAnne Kronberg Teacher-at-Sea

Thomas Nassif, July 19, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 19, 2005

“A fiery ball of radiant yellow…penetrated the hues of deep blue and wispy whites.”
“A fiery ball of radiant yellow…penetrated the hues of deep blue and wispy whites.”

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

Today was by far the most beautiful sunrise we’ve had since our departure from land last week. A fiery ball of radiant yellow captured the sky, as its luminous rays penetrated the hues of deep blue and wispy whites in the surrounding sky. This morning the divers visited Kinny 1 and 2 (also known as K1 and K2). But this was no ordinary dive… K2 happened to be the most challenging and strenuous dive yet. The ocean currents were moving faster than we expected. The ship pulled up-current from the dive site (marked by an orange buoy), to put the divers in position. All they would have to do is jump off the ship and drift down-current to find the buoy. But when the divers jumped off the ship they were swept away by the strong ocean currents well past the buoy. The NF4 picked up the divers, who had to take off all 200lbs of their SCUBA gear, and wait to be taken to the correct diving site. The divers eventually finished their mission at K2, but were very exhausted when they returned to the NANCY FOSTER.

Thomas Nassif aboard the NF4 dive boat. The NANCY FOSTER is pictured in the background.
Thomas Nassif aboard the NF4 dive boat. The NANCY FOSTER is pictured in the background.

Today I finally got my chance to step off the NANCY FOSTER for the afternoon. I boarded the NF4 (diver recovery boat) and we steamed off into the open sea. Soon thereafter we watched from a distance, as the divers leap off the NANCY FOSTER. Our job was to keep an eye on the divers to ensure their safety during the 130-foot descent to the ocean floor. The NF4, along with the NANCY FOSTER and RHIB, all bear the “divers flag” when we deploy SCUBA divers into the ocean. This red flag with a diagonal white stripe warns other ships in the immediate area that there are divers in the water.

I also went snorkeling in the ocean to watch the SCUBA divers decompress underwater. After the divers finished their dive to the ocean floor, they stopped at 20 feet from the ocean surface to breath pure oxygen from a long tube supplied from the surface by the RHIB (the air we breathe everyday is only 21% oxygen). If the divers chose instead to shoot straight up to the ocean surface, they risk getting the “bends,” a painful experience that occurs when nitrogen bubbles form in the blood.

The divers safely returned to the ship with 6 lionfish in their nets – the aquarium aboard the NANCY FOSTER now has a total of 25 live lionfish! The scientists plan to transport them to a more permanent home at the NOAA Beaufort Laboratory when we arrive at port next week. To simulate the natural conditions of the ocean, scientists will place the lionfish in a “flow through aquarium” that transports ocean water through a pipe into and out of the aquarium. By having several aquaria full of lionfish in the lab, scientists hope to learn more about their diet and how often they reproduce.

Question of the day

Do lionfish reproduce in the same way as fish? How often do they reproduce?

Yes – Lionfish reproduce like most fish, through External Fertilization. Eggs are released from the female into the water and then fertilized by sperm from a male fish. The thing that makes lionfish so different from most fish is this: Female lionfish release a floating mass of eggs that stick together (most fish release eggs that disperse and spread out from each other in the water). Scientists think that lionfish are more successful at reproducing because the floating masses of eggs are more likely to be fertilized. We do not know how often lionfish reproduce – this is one of the biggest questions scientists want to find out! The reproductive periods of fish overall can be very different. Some species of fish, like Salmon, reproduce only once in their entire lifetime. Tropical organisms like the Parrotfish, on the other hand, reproduce every day! It will be very helpful for us to know how often female lionfish reproduce so that we may better understand their impact on the local ecosystem.

Kimberly Pratt, July 18, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 18, 2005

Weather Data from Bridge

Latitude:  3614.084N
Longitude: 12213.868W
Visibility: <1 mile
Wind Direction: 340 Wind Speed:  22 knots
Sea Wave Height: 5-6 feet
Sea Level Pressure: 1014.6
Cloud Cover: Foggy, Drizzle
Temperature:  14.8

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

Scientific Log 

Our days have been mostly foggy with the sun peaking through rarely. After not seeing the sun for days, we were all delighted when the bridge announced that there was sun and many of us ran outside right away!  Right now we’re outside of Pt. Reyes, continuing on transect lines. The animals we’ve observed lately are: a pod of Killer Whales feeding, several Humpback Whales, schools of Pacific White-sided Dolphins, Risso’s dolphins and Northern Right Whale dolphins.

The Zodiac was launched and tissue samples and photo ID was taken of the Killer Whales. (photos attached) This evening two Humpbacks gave us quite a show.  They rolled next to the ship, breached, and slapped their flippers. Many times we could see their bellies as they lazily made their way by the ship rolling and diving, quite peacefully.  Video and photo was taken of these amazing animals.

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

The bird observers have been especially busy. In the past few days they’ve identified Black-footed Albatross, Common Murre, lots of Sooty Shearwaters, Pink footed Shearwaters, Ashy Storm Petrels that breed on the Farallons, and Cassini’s Auklets. Also seen are South Polar Skua’s, and Red Neck Phalaropes who are Artic breeders.  We’ve also seen Mola Mola fish, and a Mako shark with a pointy snout.  We’re continuing Bongo Net Tows and continue to collect plankton, larvae and small jellyfish.

Personal Log

Thanks to Rich Pagen being back on board, I am now focusing more on taking video, completing interviews, doing logs and e-mail correspondence. My interviews have gone well; the crew has been responsive and also forgiving when I’ve made mistakes.  For the remainder of the trip, I’ll be focusing on interviewing more of the scientists, developing curriculum and completing logs.  It’s been great meeting all the crew and finding out more about them. With less than a week to go, I’m treasuring every moment. This has been a great trip!

MAC433-AR1, OO
Photo credit: Cornelia Oedekoven

 

Until later…
Kim

Thanks to Cornelia Oedekoven for the Orca photos.

Tamil Maldonado, July 18, 2005

NOAA Teacher at Sea
Tamil Maldonado
Onboard NOAA Ship Fairweather
July 18 – 28, 2005

Mission: Hydrographic Survey
Geographical Area: North Pacific
Date: July 18, 2005

Personal Log

Today we did not get out of port. We were supposed to sail this morning, but there were a few problems we needed to take care of.  First, the scientists’ equipments did not come to the ship on time.  Second there was a problem with the fuel pier.

I read the Standing Orders and saw a video about FAIRWEATHER Ship.  Both helped me to understand some rules, daily duties, safety information, and hierarchy of people and their positions in the ship.  For example, the highest position in the ship is called Commanding Officer (CO),  then we have the Executive Officer (XO), Officer of the Deck (OOD) and Officer In Charge (OIC).

I also learned some concepts that are well used in the ship.  Some of these concepts are brow, galley, bridge, fantail, etc.

I got to know people in the ship and scientists that were part of ECO- FOCI research.  ECO-FOCI stands for Ecosystem and Fisheries- Oceanography Coordinated Investigation.  It is the first time these scientists are on FAIRWEATHER ship since the boat it is mostly used for Hydrographic work.

After the scientists got their equipment (sent from Seattle), they installed machinery, nets, and computers.  It took a long time to do this.

Thomas Nassif, July 18, 2005

NOAA Teacher at Sea
Thomas Nassif
Onboard NOAA Ship Nancy Foster
July 15 – 24, 2005

Mission: Invasive Lionfish Survey
Geographical Area: Southeast U.S.
Date: July 18, 2005

Diver Christine Addison conducts a visual transect survey with a clipboard and meter tape along the ocean floor.
Diver Christine Addison conducts a visual transect survey with a clipboard and meter tape along the ocean floor.

Weather Data

Latitude: 33°38’N
Longitude: 76°55’W
Visibility: 10 nautical miles (nm)
Wind direction: 240°
Wind speed: 13 kts
Sea wave height: 1-2′
Swell wave height: 2-3′
Sea water temperature: 28.9°C
Sea level pressure: 1018 mb
Cloud cover: 6/8, Cumulus, Altocumulus

Science & Technology Log  

Today we awoke to a cloudy overcast day, providing the divers some relief from the sweltering heat we’ve had the past few days. The jet-black wet suits that keep the divers thermally insulated on the ocean floor can become extremely hot under a scorching sun! Every day for the remainder of the cruise we will try to complete 2 dives in the morning and 2 dives in the afternoon, each at a different location along the seafloor. (The divers are divided into two rotating teams, so that each person will only have to dive once in the morning and once in the afternoon).

Thomas Nassif watches Roldan Munoz perform a lionfish dissection, removing the stomach and gonads for further analysis.
Thomas Nassif watches Roldan Munoz perform a dissection, removing the stomach and gonads for further analysis.

This morning the divers visited Big Fish 1 and Big Fish 2, appropriately named after an 18-inch lionfish that was caught by a local fisherman. At Big Fish 2, the dive team descended to a depth of 143 feet, and they were stunned at the sight of 5 enormous lobsters; several were hiding beneath rocks while two other lobsters chased after one another across the sand. They also spotted several large grouper (approx. 30 lbs each). They conducted a 100-meter visual transect by steadily unreeling meter tape in a straight line. Along those 100 meters of line, they counted 17 lionfish (mostly juveniles), a big surprise considering the sandy bottom and featureless bathymetry (elevation) of the region. Lionfish typically thrive near rocky outcrops and coral reef structures that provide niches for other organisms that would serve as potential food sources (including baby shrimp, grouper, and snapper). Findings like the one at Big Fish 2 suggest that lionfish can flourish anywhere, from flat sandy bottoms to hard rocky outcrops, we suspect that as long as the water temperature remains warm enough to support a tropical habitat.

On the fourth and final dive of the day, the divers speared 3 lionfish and brought them back onto the ship for analysis. The scientists dissected the lionfish within 30 minutes of being brought onto the ship to ensure high quality stomach and reproductive system samples. First they recorded the weight, total length, and standard length (backbone only) of the lionfish. Next they removed both gonads and recorded the combined weight to determine the reproductive status of the lionfish. Finally they removed the stomach to determine the diet of the lionfish. We found two small fish that the lionfish had ingested. The lionfish remains were then frozen for future morphological (external) analysis. Scientists at the NOAA Beaufort Laboratory will conduct spine & ray counts on the fins and observe the facial features to see if there is any correlation with the development of the bearded spine, a feature that lionfish are thought to acquire as they age.

Question of the day

Do lionfish have any predators?

Great question! Lionfish do not have any known predators, but scientists aboard the NANCY FOSTER are hoping to someday answer this question. In Florida there was a reported sighting of a goliath grouper eating a lionfish. Other than that we do not know for sure. Of course it would be a good thing to find out. If it turns out that lionfish do not have any predators, then that would be bad news for the local ecosystem. Lionfish would be able to reproduce without limit and continue eating prey until resources are heavily depleted, thereby starving other fish that are important to the fisheries industry such as grouper.

Kimberly Pratt, July 17, 2005

NOAA Teacher at Sea
Kimberly Pratt
Onboard NOAA Ship McArthur II
July 2 – 24, 2005

Kevin Lackey

Mission: Ecosystem Wildlife Survey
Geographical Area: Pacific Northwest
Date: July 17, 2005

Crew Interviews: “Dynamite Deck Crew”

If you walk around the McARTHUR II you will encounter hardworking and dedicated Mariners.  These individuals are the deck crew. Outside my door every morning is Korie Mielke, diligently sweeping and swabbing the hall.  On the deck below you will find Charles Sanford painting along with Dave Hermanson, and Teresa Moss. In the evenings, Jake Longbine operates the cranes and wenches for the CTD tests. Throughout the day you’ll find Steve Pierce and Kevin Lackey busily fixing items or on the bridge.The deck crew is responsible for the operation of all the ship’s machinery.  They also paint and clean the ship.  They are instrumental in helping the scientists complete their mission assisting with collections and run the small boat operations.  A deck hand will do watches as a quartermaster who is a lookout for things that may damage the ship and also report on weather observations. In addition, they drive the ship at the Officer’s command.

Jake Longbine

The deck crew comes from a variety of backgrounds, some have college degrees, and others have prior military experience.  Teresa has a fashion and marketing background. She joined NOAA through her mother who is a security officer for NOAA in Seattle. Charles’ who has a military background often thinks about becoming a teacher.  Kevin’s background is in wildlife conservation and his position with NOAA is the first sea duty he’s had.  Kevin really likes the variety and has enjoyed going to see Alaska and sail in Russian waters.  He, like some of the other deck crew found that being on duty with no weekends is taxing.  Also, living and working with other people in a space the size of 224 x 42 ft, (about the size of Cabello’s cluster of classrooms #22 – 26), can be difficult at times.  The deck crew like being a part of the McARTHUR II and it is evident by their good nature and hardworking spirits. After porting in San Francisco, they will be headed off to Hawaii – to warmer waters and climates.

Charles Sanford

School Questions:

Aira grade 5: What is the size of one room on a ship?

Answer: Average size is 10×12

Tania, grade 5 – Where do you guys sleep?

Answer: Some people have a single room with a double sized bed. Others sleep in bunk beds.

Malka, grade 5 – What type of food do you eat?

Answer: The food is very good, usually at every meal there is a meat choice and a vegetarian choice.  At lunch and dinner, you can have salad bar and there is always dessert.