Taylor Planz: What’s It Like to Be a…, July 19, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

 Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 19, 2018 at 10:53am

Weather Data from the Bridge
Latitude: 65° 15.541′ N
Longitude: 168° 50.424′ W
Wind:  10 knots NW, gusts up to 20 knots
Barometer:  13.60 mmHg
Visibility: 8 nautical miles
Temperature: 7.4° C
Sea Surface 7.2° C
Weather: Overcast, light drizzle

Interview Issue!

NOAA hires employees with many different career specialties. So many in fact that I cannot cover them all in one blog post. In an effort to give you a glimpse into some of the day to day happenings of the ship, I chose three different people with widely varying careers to interview today. The first is Oiler Kyle Mosier, who works in the engineering department. Next is Erin Billings, a meteorologist from the National Weather Service visiting NOAA for this leg of the mission. Finally, ENS Jeffrey Calderon who works for the NOAA Commissioned Officer Corps as the Medical Person In Charge.

Oiler Kyle Mosier

Oiler Kyle Mosier

Oiler Kyle Mosier


What is your job on NOAA Ship Fairweather?
“I am an oiler in the engineering department, and my job is to do maintenance work and watches when we are underway. During my work day, I complete a list of maintenance items called a SAMMS list. On a given day, I might clean strainers, air supply, or air filters. We have 5 fan rooms; fan rooms 1 and 3 go to our staterooms, so I make sure those are always clean.”

What tool do you use in your work that you could not live without?
“An adjustable wrench. We use wrenches just about every day, so if I only had one wrench (and one tool) it would be the one that can adjust to many sizes.”

What do you think you would be doing if you were not working on a NOAA ship?
“My dream job is to be a successful writer. I got started in high school just writing for fun, and I got better as I went through college. I also took an art class in college, and the teacher let me work on my own project ideas. I made my first book cover in that class, for a book called “Natalie and the Gift of Life”. I brought back my original character Natalie years later because I loved that first book so much, and I’m a much better writer now versus back then. My most recent book is “Natalie and the Search for Atlantis”.”

What advice would you give to students who may be interested in a job like yours?
“Some people only get certified to be an Oiler, but I went to the Maritime Academy and got my QMED certification (Qualified Member of the Engine Department). I recommend this pathway because it qualifies you to be an electrician, oiler, junior unlicensed engineer, and work in refrigeration. You’re not stuck with one job; instead, you have many different choices for what kind of job you do.”

Erin Billings

Meteorologist Erin Billings

Meteorologist Erin Billings

Tell me about what you do for a living.
“I am general forecaster for the National Weather Service in Fairbanks, Alaska. I produce forecasts for northern Alaska and the adjacent waters. As an organization, we forecast for approximately 350,000 square miles of land area.”

What do you enjoy most about your work?
“It’s like putting all the pieces of a puzzle together. Forecasting is a lot about pattern recognition. People also rely a lot on forecasts, so I feel like my job is important for people as they plan their day, their weekend, and even their vacations.”

What parts of your job can be challenging?
“When you have a lot going on and the weather is frequently changing, it can be hard to choose what area gets looked at first as well as managing the time it takes to do that. I work rotating shifts as well, so my work hours are always changing and sometimes I work 7 days in a week. I love what I do though, so there’s a trade off.”

What advice would you give to students who may be interested in a job like yours?
“In order to get in to a meteorological position, you should find a way to set yourself apart from other people. Get a good foundation of science and math, but focus on something else you can bring to the table. Examples could be learning a foreign language, learning computer programming, or completing an internship or relevant volunteer position. Setting yourself apart will make you more competitive than everyone else who is applying for the same job and has the same degree as you.”

Ensign Jeffrey Calderon

Ensign Jeffrey Calderon

Ensign Jeffrey Calderon

What is your job on NOAA Ship Fairweather?
“I am a Junior Officer with the NOAA Commissioned Officer Corps. My job is administration of the ship, which is broken down into collateral duties. Each duty needs to be completed to keep the ship operating smoothly. I am the Medical Person in Charge, so I keep track of all the medicines, make sure they haven’t expired, order medical supplies, and inspect medical equipment. I can also perform CPR and first aid. I can follow a doctor’s order to administer medication, including IVs. I am also in charge of all of the keys on the ship; there are about 300. I have to get them back from people when they leave and make copies when needed. I am the auxiliary data manager on the ship. I collect weather data, inspect the sensors (anemometer, barometer, etc), and upload the data to an online system. I also drive and navigate the ship and the small launch boat.”

What do you enjoy most about your work?
“I like being on a ship because I get to travel and see things that I will remember all my life. On the Fairweather, I get to see the aurora borealis, mountains, fjords, whales… things that not everyone gets to see. It also forces me to face new challenges; there’s always something I have to master and learn. I may have to fight a fire on the ship or go out on a launch and rescue somebody on the water.”

What do you miss the most when you are at sea?
“I miss having a real bed. I miss the privacy too. My stateroom is a 2-person stateroom.”

What advice would you give to students who may be interested in a job like yours?
“Pick a science-related path. It will be challenging, but it will be worth it in the long run. Science degrees will better prepare you for challenging careers, and it will prove to future employers that you can persevere through challenges. NOAA is also looking for people with good moral character, so stay out of trouble.”

Question of the Day
What are the eligibility requirements to be in the NOAA Commissioned Officer Corps?

Answer to Last Question of the Day
As mentioned above, northern Alaska reaches temperatures colder than most people can even imagine! Nome’s record low temperature occurred on January 27, 1989. Without using the internet, how cold do you think Nome got on that day?

The coldest temperature on record in Nome, Alaska is -54° Fahrenheit! Brrrr!

Taylor Planz: Surveying 101, July 18, 2018

 

NOAA Teacher at Sea
Taylor Planz
Aboard NOAA Ship Fairweather
July 9 – 20, 2018

 Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 18, 2018 at 10:15am

Weather Data from the Bridge
Latitude: 66° 24.440′ N
Longitude: 163° 22.281′ W
Wind: 17 knots SW, gusts up to 38 knots
Barometer: 13.5 mmHg
Visibility: 5 nautical miles
Temperature: 12.2° C
Sea Surface 9.6° C
Weather: Overcast, no precipitation

Science and Technology Log

NOAA Ship Fairweather has a variety of assignments in different parts of the west coast each year, mostly in Alaska. They also work with many different organizations. In April of 2018, the US Geological Survey, or USGS, hired the ship to complete the last part of the survey of a fault line, the Queen Charlotte Fault, which lies west of Prince of Wales Island, Alaska. This was a joint venture between the US and Canada because it is the source of frequent and sometimes hazardous earthquakes. The Queen Charlotte Fault lies between the North American Plate and the Pacific Plate. The North American Plate is made of continental crust, and the Pacific Plate is made of oceanic crust. The two plates slide past one another, so the plate boundary is known as a transform, or strike slip, fault.

Queen Charlotte fault area

This image is from the USGS, who have been surveying the Queen Charlotte Fault area for many years. Photo Source: https://soundwaves.usgs.gov/2016/01/

The image to the right came from the USGS. Notice the two black arrows showing the directions of the North American and Pacific plates. Strike slip faults, such as this one, have the potential to produce damaging earthquakes. The San Andreas Fault in California is another example of a strike slip fault. The Queen Charlotte Fault moves relatively fast, with an average rate of 50 mm/year as shown in the photo. The USGS explains the Queen Charlotte fault beautifully in this article.

The image below was created after hydrographers on NOAA Ship Fairweather processed the data from their survey in April. The colors show relative depth across the fault, with red being the shoalest areas and blue being the deepest areas. In the top right section, you can see Noyes Canyon. There are many finger-shaped projections, which are result from sediment runoff. Notice that the color scheme in this area does not have much orange or yellow; it basically goes from red to green. If you were to look at this map in 3-D, you would see in those areas that the sea floor dramatically drops hundreds of meters in a very short distance.

Queen Charlotte Fault and Noyes Canyon

Queen Charlotte Fault and Noyes Canyon. Photo Courtesty of HST Ali Johnson

It is also worth noting what can be found in the remainder of this image. When NOAA finishes their survey, two different products are formed. The first is the colored map, which you see to the far left of the image. This is useful for anyone interested in the scientific components of the area. Mariners need the information as well, but a colored schematic is less useful for marine navigation, so nautical charts are produced (or updated) for their use. A nautical chart looks just like the remainder of this image. Small numbers scattered all over the white part of the map (ie – the water) show the depth in that area. The depth can be given in fathoms, meters, or feet, so it is important to find the map’s key. The purpose of the charts is to communicate to mariners the most navigable areas and the places or obstacles that should be avoided. The nautical charts usually have contour lines as well, which give a better picture of the slope of the sea floor and group areas of similar depth together.

Lower half of Queen Charlotte Fault, photo courtesy of HST Ali Johnson

Lower half of Queen Charlotte Fault, photo courtesy of HST Ali Johnson

The photo above is a closer view of the Queen Charlotte Fault. Can you see the fault? If you cannot see it, look at the line that begins in the bottom center of the photo and reaches up and to the left. Do you see it now? On the left side of the fault lies the Pacific Plate, and on the right side lies the North American Plate. If you look even closer, you might find evidence of the plates sliding past each other. The areas that resemble rivers are actually places where sediment runoff imprinted the sea floor. If you observe closely, you can see that some of these runoff areas are shifted at the location of the fault. Scientists can measure the distance between each segment to determine that average rate of movement at this fault line.

I also wanted to briefly mention another small side project we took on during this leg. A tide buoy was installed near Cape Lisburne, which is north of Point Hope. The buoys are equipped with technology to read and communicate the tidal wave heights. This helps hydrographers accurately determine the distance from the sea surface to the sea floor. The buoy will remain at its station until the end of the survey season, at which time it will be returned to the ship.

 

 

Personal Log

Northwest Alaska may not be a breathtaking as Southeast Alaska, but it has sure been an interesting trip! It amazes me that small communities of people inhabit towns such as Nome, Point Hope, and Barrow (which is about as far north as one can travel in Alaska) and endure bone-chilling winter temperatures, overpriced groceries, and little to no ground transportation to other cities. Groceries and restaurant meals are expensive because of the efforts that take place to transport the food. During my first day in Nome, I went to a restaurant called the Polar Cafe and paid $16 for an omelette! Although the omelette was delicious, I will not be eating another during my last day in Nome on Friday. It is simply too expensive to justify paying that much money. I also ventured to the local grocery store in hopes of buying some Ginger Ale for the trip. Consuming ginger in almost any form can help soothe stomach aches and relieve seasickness. Unfortunately ginger ale was only available in a 12-pack that happened to be on sale for $11.99. I decided to leave it on the shelf. Luckily the ship store has ginger ale available for purchase! The ship store is also a great place to go when your sweet tooth is calling!

The Ship Store

The Ship Store opens most nights for personnel to buy soda, candy, or even t-shirts!

 

Did You Know?
The Queen Charlotte fault was the source of Canada’s largest recorded earthquake! The earthquake occurred in 1949 and had a magnitude of 8.1!

Question of the Day
As mentioned above, northern Alaska reaches temperatures colder than most people can even imagine! Nome’s record low temperature occurred on January 27, 1989. Without using the internet, how cold do you think Nome got on that day?

Answer to Last Question of the Day:
How does a personal flotation device (PFD) keep a person from sinking?

When something is less dense than water it floats, and when it is more dense than water it sinks. Something with the same density as water will sit at the surface so that it lies about equal to the water line (picture yourself laying flat on the surface of a lake). Your body is over 50% water, so the density of your body is very close to the density of water and you naturally “half float”. A PFD, on the other hand, is made up of materials which have a lower density than water and they always float completely above water. When you wear a PFD, your body’s total density is a combination of your density and the PFD’s density. Therefore, the total density becomes less than the density of water, and you float!

Sources:
Danny, et al. (2016). Investigating the Offshore Queen Charlotte-Fairweather Fault System in Southeastern Alaska and its Potential to Produce Earthquakes, Tsunamis, and Submarine Landslides. USGS Soundwaves Monthly Newsletter. https://soundwaves.usgs.gov/2016/01/.

Torresan, L (2018). Earthquake Hazards in Southeast Alaska. USGS Pacific Coastal and Marine Science Center. https://walrus.wr.usgs.gov/geohazards/sealaska.html.

 

Taylor Planz: Safety First!, July 15, 2018

NOAA Teacher at Sea
Taylor Planz
Aboard NOAA Ship Fairweather
July 9 – 20, 2018

 Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and vicinity
Date: July 15, 2018 at 8:46am

Weather Data from the Bridge
Latitude: 68° 22.310′ N
Longitude: 167° 07.398′ W
Wind: 3 knots W, gusts up to 20 knots
Barometer: 13.39 mmHg
Visibility: 5 nautical miles
Temperature: 10.8° C
Sea Surface 9° C
Weather: Overcast, light rain

Science and Technology Log
I was in my stateroom on Friday afternoon when I heard one continuous alarm sound, followed by an announcement that white smoke had been detected on board. My first thought was Oh no! What’s wrong with the engine now??? As I walked out of my room, I noticed smoke permeating through the halls near the ceiling. My muster station was the forward mess, so I walked there to meet up with my group. Two PICs (people in charge) had already laid out a map of the ship, and they were assigning pairs of people to search different sections of the ship looking for smoke and/or hot spots on doors or walls. Each “runner” group took a radio and reported their findings, and the results were written on the map. I was runner group 4 with an intern named Paul, and we were assigned the E level just below the bridge. We saw a small amount of smoke but no hot spots. One runner group opened an escape hatch to the fan room to find smoke EVERYWHERE. After finding the source of the fire, it was put out as quickly as possible and the smoke ventilated out of the ship. If you haven’t guessed it yet, this was our first fire drill.

Safety is always the first priority on all NOAA vessels. Working on a ship is much different than working on land. In the event of an emergency, everyone on board has to be prepared to be a first responder. If one serious accident happens, it could affect all 45 people on board. To ensure emergency preparedness, drills take place on a regular basis. Each drill is treated as though the emergency were happening in real life. Fire drills and abandon ship drills take place weekly, and man overboard drills and hazardous materials drills take place every three months.

An announcement to abandon ship happens as a last resort if there is no possible way to save the ship. If this were to happen, we would hear seven or more bursts of the alarm followed by an announcement. We would then grab our immersion suit and PFD (personal flotation device) as quickly as possible and meet at our muster stations. My muster station is on the port (left) side of the ship at fire station 24. There are life rafts on each side of the ship that can be deployed into the water. Right now, the water in the Arctic Ocean is a chilly 9° C. To protect ourselves from hypothermia, we must don an immersion suit within 60 seconds of arriving at our station. New people to the ship must practice this during our first few days on board.

The immersion suits would be used to keep warm in the event we had to abandon ship

The immersion suits would be used to keep warm in the event we had to abandon ship

In addition to drills, an operational risk assessment (or GAR score) is calculated for the mission each day. GAR stands for Green, Amber, or Red, and it determines whether the mission is safe to pursue that day. The GAR score consists of the following sections: resources, environment, team selection, fitness, weather, and complexity. Each section is given a rating of 1 – 10, with 1 being the best and 10 being the worst. Many of the sections are variable depending on the day, so sometimes a mission will be delayed until the weather improves, and other times assigning different personnel to the task may be enough to make the mission safe. The total score is the sum of the six sections. If the score is 45 or above (red zone), then the mission will not happen that day. If the score is between 24 and 44 (amber zone), it means extra caution is advised, and a low GAR score of 0 – 23 is green. The best case scenario is for the mission to be in the green zone.

Some other examples of safe practices on board NOAA Ship Fairweather are detailed below.

LT Manda gives a safety brief before deploying the small boats for the day. Once deployment begins, everyone must wear hard hats and a PFD for safety

LT Manda gives a safety brief before deploying the small boats for the day. Everyone participating in the boat deployment must wear hard hats and a PFD

Many hands are needed to safely deploy a small boat

Many hands are needed to safely deploy a small boat

The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment

The small boats are equipped with life jackets, immersion suits, first aid kids, and other safety equipment

Personal Log
I’m learning what it truly means to be flexible during my time with NOAA Ship Fairweather. Weather can make or break a day of surveying on the sea. The water experiences surface waves from both the wind and swell. Swells are the large waves that originate elsewhere and have a definite direction whereas the surface waves are caused by wind and are much smaller. The surface waves in combination with the swell produce a total wave height, and the NOAA Corps looks at the total wave height when deciding the plan of the day. Unfortunately, waves of up to 14′ are predicted in the Point Hope region this week, which will make it incredibly difficult to launch the small boats. Not only do the large waves create hazardous conditions on the boat, they make it harder to acquire good soundings with the MBES. If the data collected will be of poor quality, it is better to delay the mission and wait for better conditions. The poor weather in combination with the mechanical delay we experienced during the first week of the leg has made it difficult to collect very much data around Point Hope.

Not only do the large waves slow down the ship’s data collection, they make me queasy! I felt lucky coming in to the Arctic Ocean on Friday because the sea was calm and beautiful! It was almost eerily quiet. The most amazing part was that the horizon seemed to disappear as the sky and the ocean gently blurred into one. The serenity was short-lived however, and taking the small boats out Saturday morning was quite the adventure! I am so glad I brought motion sickness medication with me!

The Arctic Water was calm and beautiful Saturday morning

The Arctic Water was calm and beautiful Saturday morning

Did You Know?
Did you know NOAA Ship Fairweather weights 1,591 tons? Since one ton is the same as 2,000 pounds, the ship weighs 3,182,000 pounds! The ship stays afloat, so that means the buoyant force it experiences is equal and opposite to its weight. If the buoyant force were any less, the ship would sink!

Question of the Day
How does a personal flotation device (PFD) keep a person from sinking?

Answer to Last Question of the Day:
How many nautical names can you think of for rooms/locations on the ship, and what would their equivalent name be on land?
These are the ones I have learned so far:
Stateroom = Dorm or bedroom
Galley = Kitchen
Mess = Dining room
Scullery = Dish washing room
Head = Bathroom
Gangway = ramp (to get off boat)
Sick Bay = doctor’s office/patient room
Do you know of any that I missed? Feel free to answer in the comments!

 

Taylor Planz: Oodles of Jobs on NOAA Ship Fairweather, July 13, 2018

NOAA Teacher at Sea
Taylor Planz
Aboard NOAA Ship Fairweather
July 9 – 20, 2018

Mission: Arctic Access Hydrographic Survey
Geographic Area of Cruise: Point Hope, Alaska and Vicinity
Date: July 13, 2018 at 8:50am

Weather Data from the Bridge
Latitude: 64° 29.690′ N
Longitude: 165° 26.276′ W
Wind: 15 knots SW, gusts up to 25 knots
Barometer: 13.53 mmHg
Visibility: 10+ nautical miles
Temperature: 14.4° C
Sea Surface Temperature: 15° C
Weather: Cloudy, no precipitation

Science and Technology Log
As you may or may not know, NOAA stands for National Oceanic and Atmospheric Administration. NOAA is a branch of the Chamber of Commerce and gets funded by the federal government to undergo many important tasks. Their mission is “to understand and predict changes in climate, weather, oceans, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources.” (http://www.noaa.gov/about-our-agencyNOAA Ship Fairweather’s role in that mission is to measure and understand changes in the sea floor to allow for safe navigation in our world’s oceans and seas.

Two NOAA Corps Members prepare to dive under the ship to clean sound-measuring instruments.

Two NOAA Corps Members (LT Moulton top, ENS Siegenthaler bottom) prepare to dive under the ship to clean sound-measuring instruments.

Many different career specialties are required to keep the ship running smoothly. The NOAA Commissioned Officer Corps operates ships, conducts dive operations, and manages the hydrographic research projects assigned to the ship. They make up one of the seven uniformed services of the United States: Army, Navy, Marine Corps, Airforce, Coast Guard, NOAA Commissioned Officer Corps, and Public Health Service. All NOAA Corps members have a bachelors degree or higher in a STEM field; some of the degrees earned by Corps members on NOAA Ship Fairweather are marine biology, environmental science, wildlife ecology, chemistry, physics, and math.

The Survey Department is comprised of scientists who exclusively focus on the hydrographic mission. They operate and monitor instruments, collect and process data, and deploy and recover survey equipment. Data collection sometimes takes place on the ship and sometimes on small boats. They have to be proficient with advanced hydrographic software and with combining multiple sources of data into one. I have even seen members of the Survey Team conducting dive operations, so being dive-certified is very useful for the job. The Survey team makes nautical charts used by many different industries worldwide.

We have the option to eat fresh fruits and vegetables at every meal, and there is always a new kind of meat to try! This meal was the first time I have ever eaten lamb!

Fresh fruits and vegetables are served at every meal, and there is always a new kind of meat to try! This was my first time trying lamb!

The Deck Crew consists of Able-Bodied Seamen (ABs) and General Vessel Assistants (GVAs). ABs and GVAs must be knowledgeable and capable of completing many types of work. They perform general maintenance, infrastructure repair, sanitation, and upkeep of the ship. They also assist in emergency operations and the launch and recovery of small boats. Another department is the Steward Team who cook our food, clean the mess (dining area) and galley (kitchen), and wash dishes in the scullery (dish room). They often work 12 hour days, and their work is needed 7 days a week. So far, they have planned nothing but delicious meals for us all to enjoy (especially the desserts!).

EU Meissner cuts a gasket to fit in between the engine and exhaust mainfold

EU Meissner cuts a gasket to fit in between the engine and exhaust manifold

Engineers keep the ship functioning well by inspecting, maintaining, and repairing all of the ship systems (water, sewage, power, heating, etc.). They must be familiar with a vast array of equipment in order to do their job well! We also have one medical professional, a Physician’s Assistant, who works in the sick bay to treat anyone who may be ill or injured and assist with emergency operations. Visitors frequent the ship as well. Currently, there is a meteorologist from the National Weather Service and an intern from Loyola University Chicago on board. Specialists may come aboard for a few days or a whole trip depending on what kind of work they are doing. As you can see, working aboard a ship is not limited to ocean-related careers. You can find positions for many different interests, and all of these people get to work in an environment that most others don’t get to experience!

In my previous blog, I promised to include a picture of a nautical chart developed by the multibeam echosounder (MBES) on NOAA Ship Fairweather and its small boats. The photo below shows progress on a survey that began in April 2018. As you can see by the colored boxes that not all of the surveying is yet complete. NOAA Ship Fairweather has experienced a fairly difficult season with some mechanical setbacks, but they use every minute possible when underway, sometimes working 24 hours per day in designated shifts to finish a job. Every team on this ship does a great job working together and adjusting to the unexpected!

This sketch was completed by staff on NOAA Ship Fairweather in May 2018 to replace surveys that were last updated as long ago as 1916.

This sketch was completed by staff on NOAA Ship Fairweather in May 2018 to replace surveys that were last updated as long ago as 1916.

The numbers around the chart show depth in fathoms from previous surveys (the survey is in meters). Before echosounding technology was developed, surveys were often completed using lead lines. Lead lines are exactly what they sound like; there is a long rope with a block of lead attached to the end. It is slowly lowered through the water column until it hits the sea floor. The line is then pulled back up and the water depth is measured. This form of surveying gives mariners some idea of what the sea floor looks like, but you can see that current technology allows for a fuller coverage map of the area. This is helpful because fishing and transportation ships need to know what obstacles they may encounter below the surface of the water while traveling.

Personal Log

Two whale ribs at the entrance of the Carrie McLain Museum in downtown Nome

Two whale ribs at the entrance of the Carrie McLain Museum in downtown Nome

Our ship is very close to Nome’s town center, and there are a few interesting things to do and see! Nome is the ending point of the famous Iditarod Sled Dog Race. You can find photos all over town of previous competitors in addition to standing under the arc of the finish line in the middle of town. There is a museum in town, the Carrie McLain Museum, that showcases the beautiful history of Nome and has over 15,000 artifacts.

Tropospheric Antennas build in the 1950s from the White Alice Communications (WACs) System

Tropospheric Antennas build in the 1950s from the White Alice Communications (WACs) System

It’s also very easy to access some beautiful hiking. I hiked Anvil Mountain yesterday with a couple other friends on the ship. During our hike, we encountered two separate herd of Muskox. They are large, gentle creatures that call the Arctic regions their home. You can learn more information on this National Geographic website. We made sure to keep a safe distance away because both herds had young, and we did not want them to feel threatened in our presence.

A herd of Muskox on Anvil Mountain

A herd of Muskox on Anvil Mountain

After a few extra days in Nome, I am happy to announce that we began our 22 hour journey to Point Hope at 10:00 this morning! The survey work will start once we reach our final destination. If all goes well, we will cross the Arctic Circle tonight. There is a history in the Navy of awarding sailors unofficial certificates for crossing navigation lines at sea. For example, sailors earn the “Shellback” when they cross the Equator by boat. When we cross the Arctic Circle, many of us onboard will earn the “Blue Nose”. You can see other unofficial certificates that are offered around the globe on this Navy website.

 

I took this picture at 4:30am on July 13. Sunrise was at 5:03am. Even though the sun technically "sets", it doesn't get dark at night during this time of year.

I took this picture at 4:30am on July 13. Sunrise was at 5:03am. Even though the sun technically “sets”, it doesn’t get dark at night during this time of year.

 Did You Know?
In January of 1925, the Nome hospital realized their treatment serum for the deadly diptheria infection was expired, and the winter weather was too harsh to send a replacement via plane. People began to get infected, and they were in a state of emergency! If treatment didn’t arrive soon, the entire town could acquire the disease. Luckily, over twenty sled dog mushers volunteered to take part in a relay on the Iditarod Trail, spanning over 650 miles of wilderness. The final sled dog team was led by 3-year old Balto, a siberian husky. Does this story sound familiar? In 1995, a cartoon movie was made and given the name “Balto” in honor of the brave, rookie sled dog who led his team into Nome on February 2, 1925 to save the town!

Question of the Day
How many nautical names can you think of for rooms/locations on the ship, and what would their equivalent name be on land? (For example:  the “scullery” = “dish washer”).
Hint: reread the “Science and Technology” section of this blog for a few answers! Feel free to leave your answer as a comment!

Answer to Last Question of the Day:
If a CTD determined that the speed of sound in an area was 1,504 m/s and the time it took for the sound wave to travel from the ship’s transmitter to receiver was 0.08 seconds, how deep was the water in that specific area? 

  1. The time must be divided in half to find the time it took for the sound to travel one way:
    0.08 seconds x 0.5 = 0.04 seconds
  2. Plug your known values into the equation: distance = rate x time
    rate = 1,504 m/s          time = 0.04 seconds
    distance = (1,504 m/s) x (0.04 seconds)
    distance = 60.16 meters deep

Taylor Planz: Rocks are Red, Valleys are Blue, July 10, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, Alaska and Vicinity

Date: July 10, 2018 at 5:30pm

Weather Data from the Bridge
Latitude: 64° 29.691′ N
Longitude: 165° 26.276′ W
Wind: 5 knots SW, gusts up to 12 knots
Barometer: 99.9 kPa
Visibility: 10+ nautical miles
Temperature: 16.0° C
Sea Surface Temperature: 11.9° C
Weather: Cloudy, no precipitation

Science and Technology Log

The City of Nome from NOAA Ship Fairweather

The City of Nome from NOAA Ship Fairweather

Welcome to Nome

The center of town features a sculpture of a gold pan because Nome is historically known for gold panning and dredging.

I arrived in Nome on Saturday, July 7th around 7:30pm. The weather was a beautiful 65° F with just a few clouds in the sky! By the time I settled in my stateroom (bedroom) and unpacked my belongings, it was raining! According to the Western Regional Climate Center (WRCC), Nome receives and average of 16″ of rainfall each year and 60″ of snow. Despite this fairly low rainfall total, precipitation is a frequent
occurrence in Nome. Usually, the precipitation falls as more of a light drizzle in the summer, so the accumulation over the course of a year is very small.

I am here in Nome to join NOAA Ship Fairweather on a Hydrographic Survey of the vicinity of Point Hope, Alaska. Nome is the northernmost city in Alaska with a deep enough draft dock and facilities (such as sewage disposal and fresh water) for a ship. Therefore, we will start and end our trip in Nome. The ship has been experiencing some technical difficulties, so we were not able to go underway on our scheduled day of July 9. Over the weekend, engineers discovered a leak in the exhaust from one of the ship’s engines. Left untreated, black smoke could escape into the ship and personnel could be exposed to the unhealthy fumes. As of today, the exhaust pipe has been fixed, but there are a few parts that need to be shipped to Nome to finish the job. Hopefully NOAA Ship Fairweather will be underway later this week.

on a small boat

Here I am aboard one of the small boats with NOAA Ship Fairweather in Background at the Nome Harbor.

Once we are underway, the trip to Point Hope will take approximately 22 hours. That means we must reserve a full day on each end of the leg (another name for the trip) for travel. In order to maximize our limited time near Point Hope, NOAA Ship Fairweather will deploy up to four 28′ boats to work at the same time. There are also enough personnel onboard to allow data to be collected on the small boats for up to 24 hours per day. Two of the four 28′ boats are shown below.

Launch 2805

Two 28′ boats with hydrographic instruments can be found on each side of NOAA Ship Fairweather.

So what are these boats all doing anyways? As previously mentioned, NOAA Ship Fairweather and its small boats are designed for hydrographic research. “Hydro” is a prefix meaning “water”, and “graph” is a root word meaning “to write”. The boats will map the sea floor (i.e. – “write” about what is under the water) and any of its contents with sonar devices. Sonar is an acronym that stands for SOund Navigation And Ranging. The main sonar device used on this ship is a multibeam echosounder (MBES for short), which can be found on the underside of the ship as seen below. Sound waves are emitted from the front of the device, known as the transmitter. The sound waves travel through the water column, bounce off the sea floor, and then get picked up by a receiver adjacent to the transmitter.

Multibeam Echosounder

Multibeam Echosounder on NOAA research vessel (Photo courtesy: NOAA)

Conductivity, Temperature, and Depth Sensor (CTD)

Conductivity, temperature, and depth sensor (CTD)

There is a lot of math involved both before and after sound wave data is collected! The photo below is a CTD instrument, which stands for conductivity, temperature, and depth. Conductivity is a measure of how well an object conducts electricity. This instrument is lowered through the water column, collecting data on all three parameters listed above. The speed of sound varies based on conductivity and temperature, so the sonar data can be adjusted based on the results. For each individual data point collected along the sea floor, the actual speed of sound is multiplied by half of the time it took the sound wave to travel from transmitter to receiver. Using the equation distance = rate x time, one can find the distance (i.e. – depth) of each point along the sea floor. Put a bunch of those results together, and you begin to see a map!

Workstation

Many screens are needed to put all of the data together into an accurate sea floor map.

Sea floor maps use color to show different depths. The most shallow areas are colored with red, while the deepest areas are colored with blue. The remaining colors of the rainbow form a spectrum that allows us to see slopes. Today, we took a small boat out and surveyed the harbor where NOAA Ship Fairweather is docked. The harbor was very shallow, so every large rock in the harbor showed up as red on the map. The deeper areas showed up as blue. Hence my blog title! In my next blog, I will include pictures of maps that have recently been completed! Stay tuned!

Personal Log

Sea glass and rock treasures

Sea glass and rock treasures from the Bering Sea

Living on a ship that is docked in a tiny town with little to no cell phone service is fairly challenging. However, everyone on the ship finds creative solutions to keep themselves and others entertained. It is not uncommon for groups to form in the conference room to watch a movie on the big projector screen or to host a game night. There is also a fitness room onboard with plenty of exercise options! The Bering Sea and a long beach are a short, five minute walk from the ship. We had a campfire with marshmallows the first night that everyone returned to the ship from their time off. One person in our group found a whale bone on the beach! See the picture below. I spent some time walking the water line looking for sea glass. I actually found a few pieces, in

Whale bone

This is a whale bone that was found on the beach near NOAA Ship Fairweather

addition to a couple of rocks I thought were quite pretty! Sea glass is made from containers, bottles, and other glass objects that end up in the ocean. Over time, these objects break into smaller pieces, and the sandy and/or rocky sea floor erodes them. By the time they reach the beach, the pieces of glass have smooth edges and a translucent color. They are fun to collect as they come in many different colors, shapes, and sizes!

Did You Know?
Ocean water has a high conductivity, or ability to conduct electricity, because of all of the dissolved salts in sea water. The ions that form from dissolved salts cause ocean water to be about 1,000,000 times more conductive than fresh water!

Question of the Day
If a CTD determined that the speed of sound in an area was 1,504 m/s and the time it took for the sound wave to travel from the ship’s transmitter to receiver was 0.08 seconds, how deep was the water in that specific area? Make sure to use proper units, and remember that the total time is two ways and not just one way!
(Answer in the next blog post)

Taylor Planz: Welcome to my Adventure! June 27, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, Alaska

Date: June 27, 2018

Weather Data from the House

Lat: 33.4146° N Long: 82.3126° W
Air Temperature: 23.3° C
Wind Speed: 6.1 Knots
Wind Direction: West
Conditions: Mostly Cloudy, 69% humidity

Personal Log

Welcome to my blog! My name is Taylor Planz, and I am so honored to be a Teacher at Sea this season! My passions in life besides education are my family, my cats, the mountains, and, of course, the ocean! In college I studied Oceanography and conducted undergraduate research in Chemical Oceanography where I explored phosphate dynamics in estuarine sediments. I went on multiple afternoon research cruises as part of my undergraduate degree, but I have never been on a ship overnight before now. I married my husband Derrick in 2014 on the beach, a childhood dream of mine. We got married on the Gulf of Mexico in Destin, Florida.

My husband Derrick and I got married on the Gulf of Mexico in 2014.

My husband Derrick and I got married on the Gulf of Mexico in 2014.

In the fall I will be teaching Physical Science and Forensic Science to juniors and seniors at Harlem High School in rural Harlem, GA. In the past, I taught middle school science and this year will be my first year in a high school classroom. I am excited to teach a new age group this fall as there are many big decisions students must make during these critical high school years. I hope that my experience with NOAA Teacher at Sea will inspire at least one student to pursue science, and maybe even ocean science, as a career! There is so much out there to be explored in the ocean, atmosphere, landscape, and even space!

Alaska is about to be the 34th state I have visited in my life! I never really understood how far away it was until my flights for this trip were booked. After departing Atlanta, Georgia, I will land briefly in Portland, Oregon and then Anchorage, Alaska before arriving in Nome, Alaska. From there, I will board NOAA Ship Fairweather for Point Hope. The flights and layovers alone will take 16 hours! It is quite amazing how far the United States stretches!

Flight Map

My trip from Atlanta, Georgia to Nome, Alaska will span 3 flights and 16 hours.

NOAA Ship Fairweather will be my home for 12 days next month where I will help conduct a hydrographic survey of the Point Hope region in northwestern Alaska. We will be so far north that we may cross the Arctic Circle! Only 30% of this region’s ocean floor has ever been surveyed, and those surveys need updating because they took place in the 1960s. Updated and new surveys will be vital for the continued safe navigation of the ever-increasing maritime traffic, especially because the size of the vessels navigating the local waters continues to grow.

NOAA Ship Fairweather

NOAA Ship Fairweather – Photo Courtesy NOAA

Science and Technology Log

Most of the blog posts I write onboard NOAA Ship Fairweather will tie back to physical science, so today I would like to discuss some earth science! Point Hope, AK is located at 68.3478° N  latitude and 166.8081° W longitude. As you may know, Earth is divided into 90° of latitude per hemisphere, so 68° is pretty far north! In comparison, Harlem, GA is located at 33.4146° N latitude and 82.3126° W longitude.

What is significant about a region’s latitude? Latitude affects many things including sunlight distribution, seasons, and climate. For most of us in the United States, we know that summer days are long and winter days are short (in reference to hours of sunlight per 24 hour day). In Alaska the effect is much more dramatic! Parts of Alaska experience 24 hours of daylight around the summer solstice in June and 24 hours of darkness around the winter solstice in December. Not only are the daylight hours much different than what most of us experience, the concentration of sunlight that reaches Alaska is different too.

No matter which hemisphere you live in, as your latitude increases away from the equator (0° latitude) the amount of sunlight that reaches you decreases. The sun has to travel a longer distance through more of Earth’s atmosphere to reach you. As the light travels, it becomes more diffuse and less of it reaches its final destination: the Earth’s surface. The less direct sunlight makes those places feel cooler throughout the year than places like Ecuador, which is close to the equator and gets direct sunlight year round. Regions closer to the equator also do not get the long summer days and long winter nights because their daylight hours average around 12 hours per day year round.

It’s a common misconception to think that Earth is closer to the Sun in the summer and farther in the winter. If this were true, summer would start in June all over the world! Instead, the Earth’s tilt (at 23.5°) determines which hemisphere is pointing towards the Sun and that hemisphere experiences summer while the other experiences winter. As latitude increases, the seasonal effect becomes more dramatic. In other words, the difference between summer and winter is more and more noticeable. That is why warm, tropical places near the equator stay warm and tropical year round.

With all of this important science to consider, my 12 days in Alaska will definitely be an adjustment! I purchased an eye mask to help me to get restful sleep while the sun shines around me close to 24 hours per day. In addition, I will be packing plenty of layers to stay warm during the cool days and cold nights. In Georgia, most summer days reach temperatures in the mid-90s with high humidity. In contrast, Alaskan days on the water will reach 50s-60s on average.

Did You Know?

NOAA Ship Fairweather was built in Jacksonville, Florida in the mid-1960s, and its home port today is on the opposite side of the country in Ketchikan, Alaska.

Question of the Day

How many hours of daylight did you experience in your home state during the summer solstice on June 21? Nome, Alaska had 21 hours and 21 minutes of daylight!