Steven Frantz: Loose Ends at Sea, August 7, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 7, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.4
Wind Speed (knots): 8.62
Wind Direction (degree): 183
Relative Humidity (percent): 080
Barometric Pressure (millibars): 1015.41
Water Depth (meters): 43.4
Salinity (PSU): 35.660

Location Data:
Latitude: 3040.46N
Longitude: 08011.74W

Loose Ends at Sea

We are getting close to wrapping up this first leg of a four-leg survey. Speaking of wrapping things up, one very important skill you must know when on a ship is how to tie a knot. Not just any knot, but the right knot for the job, or things might not turn out. Got it?

There are three knots, which we used every day. The Blood Knot (sometimes called the Surgeon’s Knot), the Double Overhand Loop (sometimes called a Surgeon’s End Loop), and the Locking Half-Hitch on a Cleat.

The blood knot is used to tie two ropes together. When we return a longline, it has to be tied back on to the main spool. Watch Tim and Chris demonstrate how to tie this knot.

Blood Knot courtesy Google Images
Blood Knot courtesy Google Images
Blood Knot courtesy Google Images
Blood Knot courtesy Google Images

The double overhand loop is used, as the name implies, to put a loop on the end of a line. It is used at each end of the longline to secure the highflier.

Double Overhand Loop courtesy Google Images
Double Overhand Loop courtesy Google Images
Double Overhand Loop
Double Overhand Loop

The locking half hitch knot is tied on to a ship’s cleat in order to secure the mainline after it has been sent out. This gives us the opportunity to tie a double overhand loop on to the end in order to clip on the highflier.

Locking Half Hitch on a Cleat
Locking Half Hitch on a Cleat
Releasing the Highflier
Releasing the Highflier

We have also been seeing some more different animals during the past couple of days. We saw a green sea turtle surface twice. The first time was right in front of us on the starboard side of the ship. The second time was several minutes later at the stern. Just when I thought I would not get a picture of a dolphin, a trio of Atlantic spotted dolphins followed along the Oregon II as we let out the longline. Dolphins and all sea turtles are protected.

Atlantic Spotted Dolphin
Atlantic Spotted Dolphin

We have also been catching more sharks. Again, the most common species caught has been the sharpnose shark. We finally caught a silky shark, Carcharhinus falciformes on our shift. The ridge that runs along their back and the smooth, silky look to their skin can be used to identify them.

Taking the hook out of a Silky Shark
Taking the hook out of a Silky Shark
Silky Shark's ridge on its back
Silky Shark’s ridge on its back
Silky Shark
Silky Shark

A 93.6 kilogram nurse shark, Ginglymostoma cirratum was caught and brought up using the cradle. These are bottom-feeding sharks and have an unusual texture to their skin. It feels like a basketball!

Nurse Shark on the line
Nurse Shark on the line
Nurse Shark in the cradle
Nurse Shark in the cradle
Getting a fin clip from the Nurse Shark for DNA studies
Getting a fin clip from the Nurse Shark for DNA studies
All data collected, tagged, and ready for release
All data collected, tagged, and ready for release

It is always nice when you witness the rare or unusual. Such was the case with the next shark we caught. Many photographs were taken in order to document this rare occurrence. After releasing the shark, it was identified as a Caribbean reef shark, Carcharhinus perezi. Mark Grace, who started this survey 18 years ago, believes this is only the third Caribbean reef shark ever caught on the longline survey! Rare indeed! Unbelievable–the very next longline we caught a second Caribbean reef shark!

Carribbean Reef Shark: Measuring Length
Caribbean Reef Shark: Measuring Length
Caribbean Reef Shark: Notice salt water hose to keep oxygen to the gills.
Caribbean Reef Shark: Notice salt water hose to keep oxygen to the gills.

Caribbean Reef Shark
Caribbean Reef Shark
Carribbean Reef Shark
Caribbean Reef Shark

Another first for the first leg of the 300th mission was a dusky shark, Carcharhinus obscurus. This is another rare shark to be found. This one was even bigger than the nurse shark weighing in at 107.3 kilograms! We keep the larger sharks in the cradle while data is collected before releasing them.

Dusky Shark
Dusky Shark
Dusky Shark
Dusky Shark

While cleaning up, this little remora was found on the deck. It is easy to see the suction disc on the top of its head. This is used to hold onto a larger fish and tag along for the ride, cleaning up bits of food missing the mouth of the host fish.

Remora
Remora

This amazing journey is winding down and coming to an end. I would be remiss not to thank the crew and scientists of the Oregon II. Their hospitality, professionalism, friendly dispositions, and patience (LOTS of patience) have made me feel more than welcome. They have made me feel as though, for a brief moment, I was a part of the team. Thank you and may the next 300 missions be as safe and successful as the first 300.

Dinner
Dinner

Steven Frantz: Critters at Sea, August 5, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 5, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 29.0
Wind Speed (knots): 10.28
Wind Direction (degree): 138.68
Relative Humidity (percent): 076
Barometric Pressure (millibars): 1022.33
Water Depth (meters): 28.45
Salinity (PSU): 35.612

Location Data:
Latitude: 3323.40N
Longitude: 07808.17W

Critters at Sea

On my last blog I introduced you to five species of shark found so far. I think you can tell which one is my favorite, which is yours?

Even though our mission is to collect data on sharks, you never know what might come up on the end of a hook (or tangled in the line!). Data is still collected on just about everything else we catch. For today’s blog I have put together a photo journey on the so many other beautiful creatures we have caught.

Basket Starfish
Basket Starfish with pieces of soft red coral
Black Sea Bass
Black Sea Bass
Blue Line Tile Fish (Unfortunately damaged by a shark)
Blue Line Tile Fish (Unfortunately damaged by a shark)
Box Crab
Box Crab
Clearnose Skate
Clearnose Skate
Conger Eel
Conger Eel
Red Grouper
Red Grouper
Mermaid's Purse (egg case from a skate or ray)
Mermaid’s Purse (egg case from a skate or ray)
Candling the Mermaid's Purse reveals the tail and yolk of the animal
Candling the Mermaid’s Purse reveals the tail and yolk of the animal
Hammerjack
Amberjack
Scallop Shell
Scallop Shell
Scomberus japonicus (Can you come up with a common name?)
Scomberus japonicus (Can you come up with a common name?)
Sea Urchin
Sea Urchin
Spider Crab
Spider Crab
Starfish
Starfish
Red Snapper (10Kg)
Red Snapper (10Kg)

There you have it. I hope you enjoy the pictures of just some of the beauty and diversity in the Atlantic Ocean. Be sure to visit my next blog when we tie up loose ends!

Sunset
Sunset

Steven Frantz: Sharks at Sea, August 3, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 3, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.79
Wind Speed (knots): 14.14
Wind Direction (degree): 199.05
Relative Humidity (percent): 070
Barometric Pressure (millibars): 1017.95
Water Depth (meters): 58.0
Salinity (PSU): 35.635

Location Data:
Latitude: 3409.72N
Longitude: 17611.11W

SHARKS AT SEA

Our 300th mission aboard the Oregon II is a Longline Shark Survey.  Stratified randomly selected sites have been generated using Arc GIS Software. This eliminates potential bias in sampling and each area has an equal opportunity to be sampled. Two depth strata zones (A: 5-30 fathoms, B: 30-100 fathoms) have been factored for the Atlantic. In order to avoid all sampling sites randomly bunched all together, the area has been divided into 60 nautical mile geographic zones from southern Florida to North Carolina. 60% of our effort (ex. time at sea) is put toward “A” stations and 40% of our effort is put toward “B” stations. This method of picking stations is called proportional allocation.

We are here to find sharks. This is important because so very little is known about them, or many of the other animals living in an extreme environment (extreme for people to live in).

One if the first sharks we caught was a blacknose shark, Carcharhinus acronotus. It is relatively small, a uniform gray color, and has a black tip on its nose.

Black-Nose Shark
Here I am holding Black-Nose Shark

The most common shark found so far has been the sharpnose shark, Rhizoprionodon terraenovae. Both sharpnose and blacknose sharks are considered to be small coastal sharks by the National Marine Fisheries Service. While similar in size to the black nose shark, the sharpnose shark is spotted. When brought on board, their size is nothing compared to their strength. I guess you have to act tough when you’re little!

Sharpnose being Weighed
Sharpnose being Weighed

Tough though they may be, we caught several sharp-nose sharks that have become bait themselves! I wonder what (kind of shark?) it was that ate the back half of this sharp-nose?

Shark as "Bait"
Shark as “Bait”

One of the many data we are collecting is the sex of the sharks. Pictured below are a male (top), then female (bottom). The male shark has claspers, which are used for internal fertilization. Claspers are also used to determine a male’s age depending on how calcified they are.  This is the standard way to determine sex on all the sharks we have caught thus far.

Male Sharpnose Shark
Male Sharpnose Shark
Female Sharpnose Shark
Female Sharpnose Shark

Another piece of data collected is a clip of flesh from a fin. This is a non-lethal way for scientists to obtain DNA for genetics studies and possibly for use in population structure for identification purposes.

Fin Clipping
Fin Clipping

As we saw above, some sharks don’t make it on board alive. While this is uncommon, the opportunity does present itself for more invasive study not done on living animals. Sharpnose sharks give birth to live young (viviparous). Pictured below are young sharks taken from a female. It is interesting to note that whether the shark is male or female can be determined at this early stage. Remember, not all sharks reproduce this way.

Baby Sharpnose
Baby Sharpnose

Sandbar sharks, Carcharhinus plumbeus, have been the next most common sharks caught. These are quite a bit larger than sharp-nose sharks, averaging 150 centimeters long and 35 kilograms in mass.

Sandbar Shark
Sandbar Shark

We must be safe when collecting data. Shark’s skin is like sandpaper, so if the teeth or tail doesn’t get you, you can also be given a pretty red rash by the scrapping of their skin against your skin.

Measuring a Sandbar Shark
Measuring a Sandbar Shark
Tagged Sandbar Shark
Tagged Sandbar Shark

Sandbar sharks were popular with the shark fin soup industry because they have a very large dorsal fin compared to their body size. Sharks were caught, their fin was cut off, and then the still-living shark was released back into the ocean to die. This practice has been outlawed in U.S. waters.

Sandbar Shark & Me
Sandbar Shark & Me

Watch the video below as a sandbar shark is caught and brought to the Oregon II.

The prettiest shark (at least to me) I’ve seen so far is the tiger shark, Galeocerdo cuvier. They can get very large. Three meters long or more! The ones we’ve found have been smaller. The one I’m holding is very young. The umbilical scar was still visible! Tiger shark teeth are different from most sharks in that a tiger shark’s teeth are made to slice their prey, like the shells of sea turtles.

Tiger Teeth
Tiger Teeth
Tiger Shark & Me
Tiger Shark & Me

Sharks don’t have eyelids, like we have eyelids, to protect their eyes. They have what is called a nictitating membrane to protect their eyes. Here is a picture of the nictitating membrane partially covering a sharpnose shark’s eye.

Nictitating Membrane
Nictitating Membrane

The most unusual shark we’ve caught has been the scalloped hammerhead shark, Sphyrna lewini. Once on board the Oregon II they seemed to be docile (for a shark), however, their eyes on the far ends of their head were always looking, watching what was going on.

Why is their head shaped like it is? Even scientists don’t know for sure. Some think it acts as a hydrofoil to help it move through the water. Other scientists think (because of its large size) it helps detect electrical impulses in the water (like a sixth sense). Do you have any ideas why their head is shaped the way it is?

Scalloped Hammerhead Shark
Scalloped Hammerhead Shark
Scalloped Hamerhead Shark
Scalloped Hammerhead Shark
Scalloped Hamerhead Shark
Scalloped Hammerhead Shark

I have been working the day shift: from noon to midnight. The other crew is the night shift. In addition to what we have seen so far, the night shift has also seen a great hammerhead, Sphyrna mokarran and a silky shark, Carcharhinus falciformes.

We still have five days of fishing left. What will we catch next? I’ll let you know!

Steven Frantz: Language at Sea, August 1, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the coast of Florida
Date: August 1, 2012

Weather Data From the Bridge:
Air Temperature (degrees C): 28.9
Wind Speed (knots): 13.94
Wind Direction (degree): 224º
Relative Humidity (percent): 082
Barometric Pressure (millibars): 1012.18
Water Depth (meters): 67.08
Water Temperature (degrees C): 28.5
Salinity (PSU): 35.649

Location:
Latitude: 3135.76N
Longitude: 07931.19W

Language at Sea

The language while at sea is English, however, there are many nautical terms you may not be familiar with. In today’s blog I will look into just some of the language typically used exclusively while on board not only the Oregon II, but also all ships in general. Along with the lesson on vocabulary, I will also be taking you on a visual tour of the Oregon II.

First let’s start with a little quiz. You’re on your own. This is NOT for a grade!!

  1. Bridge                                                _____Right
  2. Port                                                    _____Restroom
  3. Starboard                                          _____Stairs
  4. Bow                                                    _____Front of Ship
  5. Stern                                                  _____Floor
  6. Head                                                  _____Left
  7. Deck                                                   _____Bedroom
  8. Berthing                                            _____Mop
  9. Rain Closet                                      _____Rear of Ship
  10. Mess                                                  _____Control Room
  11. Ladder                                               _____Shower
  12. 1829                                                   _____Hallway
  13. Passageway                                     _____Restaurant
  14. Swab                                                  _____Time

How do you think you did? Follow along on a guided tour of the Oregon II to find out!

Here I am steering the Oregon II preparing to deploy the high-flier for another longline survey. The Bridge is where the captain conrols the ship. And yes, today is Luau Day!
Here I am steering the Oregon II preparing to deploy the high-flier for another longline survey. The Bridge is where the captain conrols the ship. And yes, today is Luau Day!
View from the Bridge looking over the bow.
View from the Bridge overlooking the bow.
Port, Starboard, Stern, Bow image courtesy of Google Images
As you can see, Port is left (red light), Starboard is right (green light), Bow is the front of the ship, and Stern is the rear of the ship. Image courtesy of Google Images.
The Head is the Bathroom!
The Head is the Bathroom!
The Deck refers to each Floor of the ship.
The Deck refers to each Floor of the ship.
Your Berthing is where you sleep. Bunk beds, three drawers, cabinet, one personal grooming shelf, shared sink and desk. On the Oregon II this is called your Stateroom.
Your Berthing is where you sleep. Bunk beds, three drawers, cabinet, one personal grooming shelf, shared sink and desk. On the Oregon II this is called your Stateroom.
Water Closet is where we shower.
Rain Closet is where we shower.
Galley=Food Eating Area! Walter and Paul are the best. Furthermore, "Steward" is the term for chef.
Mess Deck=Food Eating Area! Walter and Paul are the best. Furthermore, “Steward” is the term for chef.
The Ladder is the Stairs that take you from deck to deck.
The Ladder is the Stairs that take you from deck to deck.
The current time is 1829 (6:29 p.m.). We use a 24-hour clock. One p.m. is 1300, two p.m. is 1400, etc.
The current time is 1829 (6:29 p.m.). We use a 24-hour clock. One p.m. is 1300, two p.m. is 1400, etc.
Passageways are the Hallways.
Passageways are the Hallways.
Maybe you've heard the expression, "Swab the Deck?" It just means "Mop the Floor."
Maybe you’ve heard the expression, “Swab the Deck?” It just means “Mop the Floor.”

How did you do on the quiz? I thought I would share a few more interesting aspects about life on a ship.

All doors and drawers are latched. You just can't have door and drawers swing back and forth as the ship rocks on the waves.
All doors and drawers are latched. You just can’t have door and drawers swing back and forth as the ship rocks on the waves.
We must do our own laundry. There are four types of water. Of course fresh water and salt water you've heard of before. On the ship we also have brown water, which is water from laundry and sinks. We also have black water, which is the water from the head. You do remember what the head is don't you?
We must do our own laundry. There are four types of water on a ship. Of course fresh water and salt water you’ve heard of before. On the ship we also have brown water, which is water from laundry and sinks. We also have black water, which is the water from the head. You do remember what the head is don’t you?
People are trained to be on the ship's Fire Department. We have fire drills on the Oregon II.
People are trained to be on the ship’s Fire Response Team. We have fire drills on the Oregon II.
There is a gym for working out.
There is a gym for working out.
The Wet Lab wasn't used much for the Longline Shark Survey.
The Wet Lab isn’t used much (mainly for staging equipment) for the Longline Shark Survey.
The bulk of our work was done in the Dry Lab.
The bulk of recording our research was done in the Dry Lab.

There you have it. A vocabulary tour of the Oregon II. Rest assured, we have been catching sharks.  Stay tuned. There WILL BE sharks in my next blog!

Steven Frantz: Training at Sea, July 30, 2012

NOAA Teacher at Sea
Steven Frantz
Onboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise: Gulf of Mexico and Atlantic off the east coast of  Florida
Date: July 29, 2012

 

TRAINING AT SEA

In my last blog I mentioned we would be at sea three days to get to where we will begin the longline survey. I thought I would take a little time to share some of the training before we ever start a longline survey. Everybody pitches in to make sure we have a safe, successful journey.

First we learned the different parts to the longline. The line starts with a high-flier buoy and a weight. Gangions (also known as a branch line or leader) are snapped to the line. Another weight is placed midway, with more gangions, then finally another high-flier buoy at the end. There are 100 gangions used for the NFMS Bottom Longline Survey. While there are several variations when using longline gear, the NFMS Bottom Longline Survey has used this standardized set-up in order to minimize variables.  By using the same gear year after year they are able to compare fish catch data, minimizing any bias attributed to changing gear that may fish differently.

This just isn’t your average fishing trip! The longline itself is one nautical mile long! How long is this on land? In addition, each end is also calculated into the total length. This will vary depending on how deep the ocean floor is where we are fishing. The longline is left for one hour then retrieved.

Longline Diagram
Longline Diagram, courtesy Dr. Trey Driggers

Before we begin, everything needs to be ready and in place. Each gangion has to be placed in a barrel so they do not get tangled taking them out. A tangled bunch of gangions is a big problem. First, the AK snap of the gangion goes into the bucket. Next, let the line go into the bucket. Finally, place the hook in the notch in the bucket, making sure it points in toward the bucket. We certainly do not want anyone passing by caught by a hook.

Parts
From top to bottom: clips, hooks, AK snaps 
Hooks on Bucket
How to place gangions in the bucket
Numbered Tags
Numbered Tags

There are many data scientists use in their research. We need to make sure we collect accurate data; consistent with the 18 years this study has been going on. First we learned how to measure the length (in millimeters) of a shark. We used an Atlantic Mackerel as a measurement example. There are three length measurements to be taken: Total Length (from tip or nose to tip of tail), Fork Length (from tip of nose to notch in tail), and Standard Length (from tip of nose to where body ends and tail begins). The shark is placed on a two meter long measuring board. If the shark is longer than two meters, a measuring tape is used to measure length. The three lengths are recorded.

measuring board
Measuring Board

In addition to the three length measurements, we must also identify the species of shark, measure weight, condition when caught, sex, maturity (for males), hook number, and any tag information if the shark had been tagged before. For some species, if the shark isn’t tagged, we will tag it. We also need to record which vessel we are on, which survey, which station, and the date. Data is also being collected on many aspects of the water. Other samples may be taken that will determine the age of the shark (vertebrae).

Data Sheet
Data Sheet

The last thing we learned was how to bait a hook. These hooks are big! Atlantic Mackerel are used for bait. We must be careful to double hook the bait or it will fall off.

Cutting Bait
Cutting Bait
Baited Hooks
Baited Hooks

There you have it. Tomorrow I will begin working the longline actually fishing for sharks!

After three days in the Gulf of Mexico we see land! We passed near enough to be able to see the coastline of Miami. It all seems so peaceful here aboard the Oregon II when looking out into what I know is the hustle and bustle of Miami, Florida.

Miami
Miami

Steven Frantz: A Day’s Delay, July 26, 2012

NOAA Teacher at Sea
Steven Frantz
Aboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise:  Gulf of Mexico and Atlantic off the east coat of Florida.
Date:  July 26, 2012

Personal Log

A DAY’S DELAY

The Oregon II was supposed to leave Pascagoula, Mississippi on Thursday, July 26, 2012. However, a momentous event occurred which delayed our departure by one day. This upcoming mission just so happened to be the Oregon II’s 300th mission. Thursday was set aside as a day to celebrate this milestone.  NOAA employees, media, and public alike joined to reminisce the past and look toward the future. The very first Teacher at Sea sailed upon the Oregon II. Now it is my turn. I am humbled to think of all the great teachers who have gone before me and am honored to now be following in their footsteps.

Oregon II
The Oregon II all decked out and ready to sail
Cake
The cake decorated with the 300th cruise artwork

The day’s delay afforded me the opportunity to see some of the land operations NOAA conducts and a little bit that the Pascagoula area has to offer.

First stop was the NOAA lab. This building was just opened in 2009 as the former lab was destroyed during Hurricane Katrina. After checking in we saw office upon office of researchers working on their projects.

NOAA Labs
NOAA Lab

Alex Fogg was working in the lab. He was busy studying the stomach contents of lionfish. Lionfish were released around the Florida Keys several years ago. Having no predators, this invasive species has been reproducing at an alarming rate. Listen to Alex tell about his research.

 

NOAA also has an educational outreach program. Earlier in the morning a group of four year olds visited and learned how a Turtle Excluder Device (TED) works. TED’s are required to be installed on shrimp nets. Before the advent of TED’s, when a sea turtle was caught in a shrimp net, it usually drowned before the net was hauled up. Now, when a sea turtle gets caught in a net, it travels through the net until it gets to the TED. The TED looks like bars on a jail cell. The smaller shrimp can pass through, but the sea turtle gets pushed up and out through an opening in the net.

Turtle Steve
Mr. Frantz demonstrating how a TED works

The Pascagoula area is known for food: barbecue and seafood. The Shed is a famous outdoor barbecue restaurant, which has been featured on TV. I couldn’t decide what to order, so the sampler, with a little bit of everything fit the bill. A “little bit” has an entirely different meaning here than it does in Ohio. This was a huge meal of ribs, wings, and brisket. It also came with sides of collard greens, macaroni and cheese, and baked beans. There were plenty of leftovers for the next day!

It was also interesting that even though it was very hot and humid and the The Shed was outdoors, it did not feel hot at all. Swamp coolers were installed around the perimeter of the restaurant. What is a swamp cooler? I’ll leave it to you to find out!

Pascagoula, Mississippi is a port town with a rich history. Because of its close affiliations with everything nautical, they use nautical flags in their town logo. See if you can spell out P-A-S-C-A-G-O-U-L-A in the arch of flags. Then, see if you can spell out your own name!

City Hall
City Hall
Nautical Alphabet Flags
Nautical Alphabet Flags

There you have it! One long hot day of good food, celebration, and the wonderful people of Pascagoula, Mississippi. Tomorrow we set sail to find sharks! We have to travel three days at sea to get out of the Gulf of Mexico, around Florida, then to the Atlantic Ocean.

Steven Frantz: Introduction, July 23, 2012

NOAA Teacher at Sea
Steven Frantz
Aboard NOAA Ship Oregon II
July 27 – August 8, 2012

Mission: Longline Shark Tagging Survey
Geographic area of cruise:  Gulf of Mexico and Atlantic off the east coat of Florida.
Date:  July 23, 2012

Introduction

Hello! My name is Steven Frantz and I am from the “Buckeye State” of Ohio. OH—IO! I teach 6th, 7th, and 8th grade science classes at Roswell Kent Middle School in Akron, Ohio.

Google Map of Kent Middle School
Google Map of Kent Middle School

 

As you can see with this Google Earth view, for being a school in the city, there is quite a bit of land around the school. In addition to a ¼ mile track, two baseball fields, and a football field we also have an outdoor classroom. If you look between the two square shaped parts of the building on the west side you will see two very small squares. They are two math patios in our outdoor classroom. This past year our outdoor classroom was recognized by the Ohio Department of Natural Resources as a Wild Ohio School Site. It is also a monarch butterfly way station, has a tall-grass prairie, pond, bird feeders, and even has a “hidden” geocache. If you are interested in looking for our geocache, we are listed as Scientists in Progress.

Here we have some of our students relaxing in the Outdoor Classroom.
Here we have some of our students relaxing in the Outdoor Classroom.

There are many things Akron is famous for:

  1. The Goodyear Blimp and the HUGE blimp hanger. The hanger is the largest building in the world without any internal support. It is so big it even has its own weather! Or so we are told!
  2. The old Quaker Oats factory has been turned into a hotel. The rooms are very unique in that they are round. This is because they used to be silos for storing grain.
  3. The All-American Soap Box Derby is held every year in Akron, Ohio. Maybe you have seen the movie 25 Hill about the Soap Box Derby. This past year we built our first Soap Box Derby car and raced it in the Gravity Challenge. We ended up winning the first two heats, but lost the third heat. If you are ever in Akron, go to the top of Derby Hill and look down. And then imagine going down the hill in a very small car.
Our Soap Box Derby car about to descend Derby Hill
Our Soap Box Derby car about to descend Derby Hill

Our students enjoy showing, discussing, and sharing their science research projects at events such as the Bioinnovations BEST Medical Science Fair, Akron, Ohio; Intel Northeast Ohio Science and Engineering Fair, Cleveland, Ohio; AmericaView Fall Technical Meeting, Cleveland, Ohio; the SATELLITES Geospatial Technology Conference, Toledo, Ohio; and the GLOBE Program Annual Partner Meeting this year in Minnesota. If our students do well enough they qualify to go on to district or state competitions. We even had a group of students go to the GLOBE Program Learning Experience in Cape Town, South Africa!

Roswell Kent Middle School students at the AmericaView Fall Technical meeting
Roswell Kent Middle School students at the AmericaView Fall Technical Meeting, Cleveland, Ohio

There are many more exciting things our students do at Roswell Kent Middle School. I could go on and on for a very long time telling everyone about them. I can’t wait to be able to share my Teacher At Sea experience with them. I will be on the NOAA Ship Oregon II research ship in the Gulf of Mexico. This will be her 300th mission! While on this milestone mission we will be doing a longline survey studying sharks. Thanks for following along with my blog!