Ragupathy Kannan: Salps to Shearwaters, August 22, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast Atlantic Ocean

Date: August 22, 2019

Weather Data from the Bridge

Latitude: 40.74767
Longitude: -70.41857
Water temperature: 25.3°C
Wind Speed: 7.18 knots
Wind Direction: 229 degrees
Air temperature: 24°C
Atmospheric pressure: 1014 millibars
Sky: Cloudy

Science and Technology Log

Life aboard this research vessel is fast-paced and absorbing.  I feel like I am a child in a toy shop, eager to learn and blog about so many of the happenings around me!  I spend much of my time high above in the flying bridge (above the bridge) with a panoramic 360 degree view of the horizon, documenting seabirds and mammals with colleagues—more on this later.  We suspend our surveying when the ship reaches a sampling station.  We have about 150 random sampling stations out in the ocean, ranging from close to coast (depth about 15 m) to right at the edge of the continental shelf (up to 500 m so far).  Cruising about 9 knots (about 10 mph), the ship zigzags along a predetermined track, stopping anywhere between 15-30 minutes at each sampling station. 

sampling station map
A map of our sampling stations. The black circles indicate plankton sampling sites; Dots show oceanographic stations where conductivity and temperature measurements are taken along with water samples for carbonate chemistry and nutrient analyses

At each station, an array of measurements are taken or specimens sampled.   

In my previous blog, I described a state-of-the-art device called the Imaging FlowCytoBot (IFCB).  But plankton are also sampled using more traditional methods.  We deploy Bongo Nets for plankton sampling.  Can you guess why they are called Bongos?  See the photo below. 

bongo nets
Bongo nets being pulled out after sampling. The chief bosun and student volunteers are on watch.

Note that there is a pair of bigger bongos and a pair of “baby” bongos.  These nets are lowered by a j-frame (arm that can be extended off the side of the ship) and winch, at various depths into the water and towed for particular distances through the water.  The time spent inside the water (5 minutes minimum) and the depth traversed (up to 200 meters) varies with station depth, but there is a Flowmeter at the mouth of each net that counts volume of water sampled.  So all measurements are standardized by volume.  The mesh size is 333 microns (1 micron = 1 millionth of a meter; 1 meter = 3.3 feet), meaning anything over 333 microns will be trapped.  (To put that in perspective, most cells in your body are about 100 microns).

flowmeter
A flowmeter at the mouth of a bongo net–-note the spinning fins that activate the water volume counting device

When they are pulled out, research personnel swing into action.  Most of them are undergraduate volunteers from various universities eager to get their hands wet (literally and figuratively) doing marine science.  The bigger bongo nets are hosed to flush all organisms to the bottom.  Then the bottom is opened and contents flushed into a sieve.  These samples are then preserved in formalin for future examination in labs on the mainland. 

Jessica rinses bongo nets
Jessica, an undergraduate volunteer, spraying the bigger bongo nets to flush plankton to the bottom
David rinses baby bongos
David (another undergraduate volunteer) sprays the smaller bongos
TAS Kannan rinsing nets
I lend a helping hand spraying the nets
emptying bongo nets
Jessica opens the bottom of the net and empties contents into a sieve
net contents
Much of the contents are Salps: jelly-like planktonic tunicates
salps and larval hake
Closer look at Salps with a larval hake fish (probably a Red Hake) near the center. More on hakes below.
Facts about Salps
The abundant salps are a vital component of the ecosystem. Source: archives.nereusprogram.org
crustacean
We even caught this beautiful planktonic crustacean (amphipod or isopod). It’s related to our rolly-pollies.
arrow worms
We also get some tiny arrow worms in our plankton samples. These torpedo-shaped worms belong to a phylum of predatory marine worms called Chaetognatha (“bristle jaws”). Photo courtesy Zatelmar
plankton jars
Plankton from the bigger bongos are preserved in 5% formalin for future analyses in mainland labs.

What happens to the contents of the pair of smaller bongos?  Our Chief Scientist Harvey Walsh freezes the sample from one of them into small ziplock bags for a Florida lab which will conduct Stable Isotope Analyses.  The other one’s contents are preserved in ethanol for genetic testing (Ethanol is far easier on DNA than formalin) to determine such aspects as taxonomy and phylogenetic (evolutionary) relationships and use in larval fish age and growth studies.

sample bag
Chief Scientist Harvey Walsh bags a sample for freezing
labels
All specimens are carefully labeled and catalogued

So what are Stable Isotope Analyses?  If you are a beginning college student, you may be unaware of this sophisticated and widely-used technique.  (My ecology students should be well aware of this!).  Basically, the ratio of isotopes of a chemical element in a given sample is used to yield insights into aspects such as food preferences of the organism or to reconstruct its past environmental conditions.  It can also be used to determine where the plankton originated and thus get insights into ocean circulation.  The analyses are done with a device called mass spectrometer. 


Career Corner

I spoke with our Chief Scientist Harvey Walsh about his career, research, and his advice for students.

Q. Harvey, tell us how a man from land-locked Minnesota ended up as a top marine biologist.

A. When I graduated from college I looked for a job with the Minnesota Department of Natural Resources, but they were very competitive. So I applied for several NOAA positions from North Carolina down to the gulf coast. I got a job offer in NC.  This was after my B.S. in Aquatic Biology from St. Cloud State University.

Q. You did an M.S. while working with NOAA?

A. Yes, I went back to school part-time and got my Masters. I then went to Woods Hole Oceanographic Institute [WHOI]

Q. From WHOI you came back to NOAA?

A. Yes.

Q. Has ocean acidity changed since NOAA started EcoMon?

A. It is hard to say because of seasonal variability.  We need more long-term data.

Q. Is ocean acidity world-wide increasing?

A. That’s what I see in the scientific literature.

Q. How about temperature?

A. Yes, the Northeast has seen an increase in water temperatures, especially in the Gulf of Maine, where it has increased about 0.9°C in about 4 decades.

Q. Has EcoMon helped document declines in sharks or whales?

A. Again, we need long-term data for that.

Q. Can you name one recommendation from EcoMon that has benefited sea life?

A. We get larval fish data.  Recently we started calculating Atlantic Mackerel Egg Index in collaboration with Division of Fisheries and Ocean Canada and the data indicated that there is a decline in the adult population.  This aided in the determination to lower catch limits for that species.

Q. Has the politics of climate change influenced your work?

A. No.  I have not had anyone try to change my research or findings in any way.  We have within NOAA good scientific integrity rules. We feel we have the ability to publish sound science research without any interference.

Q. You are highly published.  One of your papers on larval fish otoliths was with my former student Michael Berumen.  How are larval otoliths helpful in research?

A. One of the projects we have is trying to use larval hakes to examine stock structure (fish stock is a group of fish of the same species that live in the same geographic area and mix enough to breed with each other when mature) and estimate spawning stock biomass (the amount of mature fish).  We have interns in the lab who remove otoliths and get daily growth increments. That allows us to estimate age of the larva and spawning seasonality. 

Q. Can you tell based on this where they hatched?

A. That’s where we are headed.  Once we get information on when they were born and where they were collected, we hope to use oceanographic conditions to see if we can back-calculate where they may have come from and thus plot spawning locations to aid in stock structure analysis.

Q. One of the findings of past warming episodes is shrinking of foraminiferans and other small shelled organisms.  Is NOAA monitoring size of plankton?

A. We are.  That’s one of the projects we have just started: estimating size of Calanus finmarchicus, or Cal fin [see photo below].  This is a copepod crustacean and an important food for the endangered Right Whales. We have a 40-yr time series and have seen evidence of declining size of late-stage and adult Cal fin. We are trying to see if this has resulted in a decline in their energetic value.  They are a lipid-rich zooplankton.  If their size is related to their lipid storage they may be less nutritious for their predators.

Q. One of your papers indicated that about a third of fish and plankton species assessed in the northeast are vulnerable to climate change.  Is that trend continuing?

A.  Yes, as we monitor we continue to see shifts in fisheries, plankton, seabirds, and mammals.

Q.  What is your advice to early college undergraduates interested in marine science? 

A. Be flexible.  When I first started I thought I’d stay in Minnesota and work on adult fish stocks. I ended up working on larval fish and zooplankton.  Not focusing on one skill set and being able to adapt and look at various aspects will help you in the long run.

At the end of the interview, Harvey gave me this card and encouraged students to contact him for volunteer opportunities with NOAA. 

information card
Information Card from NOAA’s Oceans and Climate Branch
Calfin
Calanus finmarchicus, a subject of Harvey Walsh’s research. From: https://www.st.nmfs.noaa.gov/nauplius/media/copepedia
food web slide
Harvey also kindly shared this slide explaining the locations of Calfin, Baleen Whales, and even you, in the food web. The highly endangered North Atlantic Right Whale feeds on plankton like calfins by filtering them through a sieve (baleen) in their mouths (slide: courtesy Harvey Walsh)


Personal Log

One of the best aspects of this voyage is the daily spectacular views of sunrises and sunsets.  I spend a lot of time high up on the fly bridge assisting in sea bird, sea mammal, and sea turtle surveys.  It’s also a treat to look around 360 degrees and see nothing but the horizon, nothing man-made except this big old ship gently bobbing up and down in the center, leaving a wide frothy wake behind.  Yet, in the vastness of the ocean, we are but a mere speck. It really is humbling to experience this vista.

The ship crew are very serious about safety.  We have periodic Fire and Emergency, Abandon Ship, and Man Overboard drills.  A billet posted on my door advises where to report in each of these scenarios.  We have “muster” points, meaning, where to meet, for each.  I was trained to get into my Anti Exposure Suit in less than two minutes.  That was easier said than done!

Kannan in survival suit
Here I am in my Anti Exposure Suit. I felt like an astronaut in it

The food continues to be sumptuous and delicious, cooked by two expert stewards Margaret and Bronley.  Never did I dream I will enjoy eggplant curry and coconut jasmine rice on a NOAA Ship far out into the sea.

Dinner menu
Dinner menu posted in the mess
stewards Margaret and Bronley
Margaret and Bronley are the two great cooks on board. Margaret makes her own Garam Masala, putting her unique fingerprint into her curry dishes (and delighting my Indian-American tongue)!
gym
I even get my daily work out in the ship’s small but well-appointed gym


Did You Know?

Hakes (see photo above) are lean whitefish belonging to the Cod family.  They are known as Gadoids (Order Gadiformes) and are grouped with cods, haddocks, whiting, and pollocks.  They are much sought-after for their delicate texture and mild flavor.  We get some hake larvae in our plankton tows.  Hake larvae are used by scientists for all kinds of studies.  For example, their otoliths (tiny ear bones) can enable identification of species and even help determine where they were hatched (by Stable Isotope Analysis—see above).  This information, combined with data on ocean currents and circulation, can help determine hotspots for hake reproduction to enable conservation and sustainable fisheries. 

Interesting animals seen lately

Fish:

Hammerhead Shark

Whale Shark

Tuna sp.

Mammals:

Pilot Whales

Minke Whales

Common Dolphins

Bottle-nosed Dolphins

Spotted Dolphins (riding the bow!)

Sea Birds:

Great Shearwater

Manx Shearwater

Cory’s Shearwater

Sooty Shearwater

Audubon’s Shearwater

Wilson’s Storm-petrel

Band-rumped Storm-petrel

Leach’s Storm-petrel

Black-capped Petrel

Red-necked Phalarope

Northern Gannet

In addition, several land birds on their south-bound autumn migration rested briefly on the ship.  I was not expecting to see Prairie Warblers, Red-winged Blackbirds, and Brown-headed Cowbirds on a pelagic (=ocean) cruise!

Ragupathy Kannan: Starting with Plankton, August 18, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 15-30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast Atlantic Ocean

Date: August 18, 2019

Weather Data from the Bridge

Latitude: 38.2494289
Longitude: -75.0853552
Water temperature: 26.3°C
Wind Speed: 4.92 knots
Wind Direction: 122 degrees
Air temperature: 27.1°C
Atmospheric pressure: 1015 millibars
Sky: Partly cloudy


Science and Technology Log

In my previous blog posting, I explained the importance of plankton as base of the ecological pyramid upon which much of marine life in this ecosystem depends.  The past few days, I have witnessed and experienced in-person how scientists aboard this sophisticated research vessel collect and analyze sea water samples for plankton. 

Yesterday I spent some time with Kyle Turner, a guest researcher from the University of Rhode Island doing his M.S. in Oceanography.  He operates a highly sophisticated device called the Imaging FlowCytobot (IFCB).  I was fascinated to learn how it works.  It is basically a microscope and camera hooked up to the ship’s water intake system.  As the waters pass through the system, laser beams capture images of tiny particles, mostly phytoplankton (tiny photosynthetic drifters).  As particles do, they scatter the light or even fluoresce (meaning, they emit their own light).  Based on this, the computer “zooms in” on the plankton automatically and activates the camera into taking photographs of each of them!  I was amazed at the precision and quality of the images, taken continuously as it pipes in the water from below.  Kyle says this helps them monitor quality and quantity of plankton on a continual basis. 

Kyle Turner and IFCB
Kyle Turner with the Imaging FlowCytobot (IFCB)
Kannan and IFCB
Here I am examining a filamentous (hair-like) phytoplankton in the IFCB monitor.
IFCB computer screen
The various kinds of phytoplankton are neatly displayed on the IFCB’s computer screen. See my previous blog for a photo of the dazzling and colorful array of plankton out there! Plankton may lack the popularity of the more charismatic sea animals like whales, but much of life in the ocean hinges on their welfare.


Career Corner

Hello, students (especially bio majors).  In this corner of my blogs, I will interview some key research personnel on the ship to highlight careers.  Please learn and be inspired from these folks.

Here is my interview with Kyle Turner.

Q. Tell us something about your graduate program.

A. My research focuses on phytoplankton using bio-optical methods. Basically, how changes in light can tell us about phytoplankton in the water.

Q. How does this IFCB device help you?

A. It gives me real time information on the different types of phytoplankton in the location where we are.  We can monitor changes in their composition, like the dominant species, etc.

Q. Why are phytoplankton so important?

A. They are like trees on land. They produce about half the oxygen in the atmosphere, so they’re super important to all life on earth. They are also the base of the marine food web.  The larger zooplankton eat them, and they in turn are eaten by fish, and so on all the way to the big whales.  They all rely on each other in this big ocean ecosystem.

Q. How are phytoplankton changing?

A. The oceans are warming, so we’re observing shifts in their composition.

Q. What brought you into marine science?

A. I grew up on the coast.  I’ve always liked the ocean. I love science.  So I combined my passions.

Q. What is your advice to my students exploring a career in marine science?

A. Looking for outside research opportunities is important.  There are so many opportunities from organizations like NASA, NSF, and NOAA.  I did two summer research internships as an undergrad.  First was with NASA when I was a junior.  I applied through their website.  That was a big stepping stone for me. A couple of years later, I did another summer project with a researcher who is now my advisor in graduate school.  That’s how I met her.

Q. What are your future plans?

A. I’d love to get into satellite oceanography to observe plankton and work for NASA or NOAA.


Personal Log

I am pleasantly surprised by how comfortable this ship is.  I was expecting something more Spartan.  I have my own spacious room with ample work and storage space, a comfortable bed, TV (which I don’t have time for!), and even a small fridge and my own sink. Being gently rocked to sleep by the ship is an added perk! 

My own cozy stateroom
My own cozy stateroom
Sunrise view
A room with a view—sunrise from my window

The food is awesome.  We have two expert cooks on board, Margaret and Bronley. 

lunch
My first lunch on board
mess
The ship’s mess is a nice place to eat and interact with people. There’s always food available 24/7, even outside of meal hours.


Did You Know?

NOAA Ship Gordon Gunter played a big role in recovery operations following Hurricane Katrina and the Deepwater Horizon oil spill. 

Barograph
This photo is displayed in the galley. Note the sharp decline in atmospheric pressure as Katrina thundered through.


Some interesting animals seen so far

  • Flying fish (they get spooked by the ship, take off and fly several yards low across the water!)
  • Cow-nosed Rays (see photo and caption below)
  • Leather-backed Sea-turtle (I’m used to seeing them on the beach in Trinidad—see my previous blog.  It was a treat to see one swimming close by.  I was even able to see the pink translucent spot on the head).
  • Bottle-nosed Dolphins
  • Seabirds (lots of them…. four lifers already—more on this later!)
school of cow-nose rays
We saw large schools of Cow-nosed Rays closer to the coast. These animals feed on bivalve mollusks like clams and oysters with their robust jaws adapted for such hard food. They are classified as Near Threatened due to their reliance on oyster beds which are themselves threatened by pollution and over exploitation.

Ragupathy Kannan: From Arkansas to the Atlantic, August 1, 2019

NOAA Teacher at Sea

Ragupathy Kannan

Aboard NOAA Ship Gordon Gunter

August 14 – 30, 2019


Mission: Summer Ecosystem Monitoring

Geographic Area of Cruise: Northeast Atlantic Ocean

Date: August 1, 2019

Weather Data from the Bridge

I’ll update this when I get on board.


Greetings from land-locked Arkansas!

I am thrilled at the chance to embark on an adventure of a lifetime. In the latter half of August, I will be aboard NOAA Ship Gordon Gunter assisting scientists on a Summer Ecosystem Monitoring Survey of the Northeast U.S. Continental Shelf Ecosystem.  I am particularly excited about surveying for marine mammals and sea turtles, although a lot of our work will involve monitoring spatial distribution of plankton.  I cannot wait to learn novel techniques and measurements that I can later incorporate into my classes at the University of Arkansas—Fort Smith. 

While aboard NOAA Ship Gordon Gunter I will blog about my experiences.  My students will follow my blogs and hopefully learn a lot from them.  I hope to make my blog postings fun and informative at the same time.  I will cater to a broad audience, from biology majors and non-majors (college students), to even some school children who are keen on following me and exploring potential science careers.  So don’t be offended if I define basic terms or explain concepts you may have learned decades ago!    

Science and Technology log

I will be embarking on an Ecosystem Monitoring mission.  As my ecology students should know, the term ecosystem refers to a community of organisms along with their physical (or abiotic) environment.  And a community is a group of organisms living and interacting in an area.  To monitor the Northeast U.S. Continental Shelf ecosystem, we will take extensive data on various components, both biotic (biological) and abiotic (physical).  Such measurements are important because they alert us of possible changes in our environment and what that could mean to our well being and that of other life forms.  In effect, we keep a finger on the pulse of our planet.

What is continental shelf?  It’s the relatively shallow (generally up to about 100m or 330 feet depth) area of seabed around land.  Much of this was exposed during glacial periods when water was locked up as ice. This zone teems with life because of its shallow nature, which allows light to penetrate and photosynthesis to occur.  It is therefore vital for the fisheries industry in which many coastal human communities depend on for livelihood.

The Project Instructions document we were all sent (by the Chief Scientist, Dr. Harvey Walsh) indicates that the principal objective of the survey is to assess the “hydrographic, planktonic, and pelagic components” of the ecosystem.  Hydrography (Ancient Greek–hydor, “water” and graphō, “to write”) is a branch of the applied sciences that deals with measurements and descriptions of the physical features of water, like ocean currents and temperature.  Plankton (Greek—errant or wanderer) are organisms, both plants and animals, in the water that drift in the currents (most of them are microscopic).  Pelagic (Greek—of the sea) means oceanic, or belonging to the open seas.

I will be part of an elite multi-disciplinary team, meaning, we will have experts from various disciplines of science. We will be measuring the distribution of water currents and water properties, plankton, sea turtles, sea birds, and marine mammals.  Much of my career I have focused on ecology and behavior of vertebrates, especially birds.  The chance to learn hands-on and in-depth on aspects like water chemistry and plankton biology challenges and excites me.  It gets me out of my comfort zone and has the potential to make me a better-rounded biologist.  After all, I regularly teach the impacts of global warming and ocean acidification on coral reef organisms.  Can there be a better way to hone my teaching skills than actually do these studies hands-on, in the company of world’s leading experts, in a state-of-the-art research ship?

Since much of the survey focuses on measuring plankton distribution and abundance, it begs the question: 

Why are plankton important?

plankton
The wonderfully diverse, beautiful plankton. From planktonchronicles.org

Well, consider this.  Phytoplankton, the plant-like photosynthetic drifters, produce half of all oxygen on earth.  That’s about the same as ALL oxygen produced by land plants!  So that alone should convince you why they are vital. 

But there is more.  Their productivity (meaning, photosynthetic activity that converts sun’s energy into fuel) forms the energetic foundation of the food pyramid, and most of life in sea depends on it. 

So, you take away plankton, and much of oceanic life will collapse.  No fish, no whales, no sea turtles, no sea birds.  Ultimately it will affect all life on earth, including humans. 

The disturbing news is, plankton are in trouble.  Phytoplankton have declined 40% since the 1950s.  Since the beginning of the industrial age, they have dwindled about 1% a year.  There seems a connection between warming waters and this decline.  In the North Atlantic, the melting of Greenland ice has changed the physics and chemistry of ocean waters.  This has resulted in a decline in ocean circulation and its upwelling of nutrients that the phytoplankton depend on. 

So as you read this and take breaths of air, contemplate this: that oxygen you just took in probably came from phytoplankton.  That’s why we need to start with measuring them to monitor our planet’s health.  Our future depends on their well-being!

So I will be blogging quite a bit on these minuscule creatures—what kinds there are out there, how they appear, how to measure their abundance, and so on.  Stay tuned.

Personal Log

For nearly 40 years, I have been mainly a terrestrial ecologist.  I love taking people outdoors and making them into naturalists and field biologists.  My forays into the oceanic realm have been limited.  I once went on a sea birding cruise, which I described in this article.

birding in Trinidad
Here I am leading a birding outing in Trinidad

Earlier, in my college days, I did a number of “turtle walks” – 10 km walks along the beach in my hometown of Chennai, India, to collect Olive Ridley Seaturtle eggs and relocating them to a protected hatchery.  Since 2009, I have taught a tropical biology course in Trinidad, West Indies, where I take the class to a remote beach to observe massive Leatherback Seaturtles nest. A letter of mine on this appeared in the September 2009 issue of National Geographic (below).

National Geographic Note
National Geographic Note by Ragupathy Kannan

Kannan and sea turtle
Here I am with my tropical biology class and a nesting Leatherback Sea Turtle in Trinidad–note the translucent spot on top of head, believed to let light in and help them navigate

So, my exposure to the other 70% of the earth’s surface, the ocean, has been rather limited.  I hope that this NOAA program helps in my quest to fill that void.

My home for two weeks – NOAA Ship Gordon Gunter

NOAA Ship Gordon Gunter
NOAA Ship Gordon Gunter. From http://www.omao.gov.

This is an ultramodern oceanographic research vessel whose main mission is to study marine mammals and other living resources.   “Bigeye” 25 x 150 binoculars are used by scientists to scan for marine mammals.  This includes a scale to enable distance measurement. A hydrophone array is towed to hear and record marine mammal sounds 24 hours a day. 

She was once USNS Relentless, designed to assist the US Navy in collecting underwater acoustical data in support of Cold War anti-submarine warfare operations. After the end of the Cold War, she was transferred to NOAA. In 2010, NOAA used this ship to define the subsurface plume near the BP Deepwater Horizon site. 

I am honored to be assigned to this vessel. I hope you will join me and enjoy and learn from my adventure out in the seas in this amazing ship.