Richard Jones & Art Bangert, January 23, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 23, 2010

Wow! The Captain’s Luau was something else. We all got on a bus to Aggie Gray’s Resort at 5:30 in a tropical downpour and drove for about an hour through the Samoan countryside. As we drove we passed many small villages where it seemed everyone would wave at us. Once we got to the resort we took a look around and then we were seated for the luau, which included roast pig, fish, chicken, sweet potato, rice, noodles, coleslaw, and a variety of desserts.
View from the resort
View from the resort
While we were eating we were entertained by local music and dance.
A cultural experience
A cultural experience
…and for the finale the fire dance.
Fire dancers!
Fire dancers!

Saturday is market day in Apia. While there are vendors pretty much everywhere in Apia, there is also a central market where local goods crafts and other items are sold.

Art with the harbor in the background
Art with the harbor in the background

The main market is made up of many stalls, similar to a flea market. Some of the vendors have only Lava Lava’s (the local wrap skirt) and some have woodcarvings and other stalls have designs on the locally made Tapa Cloth.

Goods at the market
Goods at the market

Tapa is made from tree bark, and from listening to the tour guide at the Robert Lewis Stevenson home in Samoa; typically the paper mulberry or the breadfruit tree is used.

Art galore!
Art galore!

The grocery stores are very different than those we are used to in Montana. They are fairly small but have goods similar to those available to us. It is not uncommon to see small open air restaurants that sell fish “n” chips, chicken and other Samoan fair. The one pictured here is right next to the Samoan Central bank.
Fish n ChipsChurches are quite an influence here. We passed many villages, churches and church schools on our trip to Aggie Grays resort yesterday evening. Some of the churches located in the countryside were as large as the one pictured below (located on the main street of Apia).

A local church
A local church

By about 2PM everything in town was shutting down in preparation of Sunday so we began to head back to the ship. The after noon gets a little warm and humid, and even the dogs like to find a shady spot to cool and recharge. Not a bad idea in the tropics.

Dogs are a common sight in town
Dogs are a common sight in town

Once we have a chance to do the same we plan on joining some of the crew for dinner at one of the local restaurants that is close to the ship. Maybe even the rainforest restaurant, which looks like a rainforest inside and out.

A delicious dinner spot
A delicious dinner spot

Richard Jones & Art Bangert, January 17, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 17, 2010

Science Log

Today was not all that physically demanding which is good since it was 30.5 degrees Celsius by 9:30 AM ship time.My students should be able to figure out the temperature in temperature units they are more familiar with.While it was still fairly cool this morning Art and Rick helped Alen paint the anti fouling paint on the bottom of each of the three tolroids that needed it. Once the deck crew flipped them back to top side up, Alen discovered that one of the buoys had been hit and was cracked and so he needed to do some grinding and patching before painting the yellow. So we are going to finish the paint job early tomorrow after the patch has time to cure.

TAS Art painting
TAS Art painting
Land Ho! Later in the day we sighted land for the first time since we lost sight on Hawaii on the 6th. We came upon Tautua Island, which is part of the Cook Islands. If you take a look on Google Earth around 9 degrees: 13 minutes South and 157 degrees: 58 minutes West you can see the

island and the village on the island. We weren’t very close, so we couldn’t actually see the village, but it was nice to see land after 10 days of the vast expanse of the Pacific in every direction to the horizon.

Rick painting the buoy
Rick painting the buoy
Tautua
Tautua

Richard Jones & Art Bangert, January 15, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 15, 2010

Science Log

We have our last buoy of the 155 West line in the water and the anchor is set. Today began with a ride for Rick over the old buoy where he was responsible for removing an old loop of rope in order to put on the shackle and line that the tow line would be attached to.

Readying to retrieve the buoy
Readying to retrieve the buoy
You would think that cutting a three-eights nylon line would be pretty easy, and you would be right if that line wasn’t attached to a rocking, slime covered buoy floating in the middle of an ocean that is over 5000 meters deep.
Teamwork is essential
Teamwork is essential
It would also have helped if my knock-off Leatherman had a sharper blade.Anyway, Al and I went out the buoy on the RHIB and got a pretty good spray here and there as you can see from the water drops on some of the images.
Reeling it back in
Reeling it back in

Once we were on the buoy Al removed the ‘Bird” and handed to the support crew in the RHIB.If it weren’t for these men and women we (the scientists) would not be able to collect the data.This is science on the front lines and it takes a dedicated and well-trained crew to make the endeavor of science one that produces meaningful, valid, and important data.

Barnacles and all!
Barnacles and all!

Once the ‘Bird’ is off the buoy and the towline is attached it is time to go back to the KA to pick-up the towline so that the buoy can be recovered and the next phase of the process can begin, deployment of the new buoy that will replace this one.

Zodiak returning to the ship
Zodiak returning to the ship
During the recovery Art and Rick often work as a team spooling the nylon because it takes two people to re-spool the line in a way to prevent tangles, one person to provide the turning and another to be the ‘fair lead’.
The fair lead actually has the harder job because they have to keep constant eye on the line as it spools.With seven spools of nylon all over 500 meters and the 700 meters of Nilspin recovery is a team effort by everyone.
KA from RHIB_1
Like the recovery, the deployment is a team effort and many hands make the work easier for everyone.But at this point of the cruise Art and Rick can pretty much handle the nylon line individually, but work as a team to move the empty spools and reload the spool lift with full spools. Deployment of this buoy ended just about 4:30 PM with the anchor splashing and some deck clean up then it was out of the sun and into the air-conditioned comfort of the ship for some clean clothes and good food.
Deployment is also a team effort
Deployment is also a team effort

Richard Jones & Art Bangert, January 14, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Making fish lures
Making fish lures

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 14, 2010

Science Log

After the buoy deployment yesterday, I spent the afternoon, contributing to our blog, setting up my online courses for this semester and building fishing lures. Yes, building fishing lures. I mean we are in the middle of the Pacific Ocean – why not fish? This type of fishing is very different from what we typically think of when fishing in the rivers and lakes of Montana. Most of the fish are big and require heavy tackle. I had the opportunity to help Jonathan and Doc (Helen) build a lure using multicolored rubber skits tied onto a large metal head.

These lures are then attached to a nylon line that is about 200 feet long and attached to the rear of the boat.
Fishing off the back of the boat
Fishing off the back of the boat
Catch of the day
Catch of the day

The prized fish is the yellow fin tuna (Ahi) that the crew likes to make Sashimi and Poke (Sushi). Other fish caught include Whaoo (Ono) and Mahi Mahi (Dorado). The Chief Stewart even deep fat fried the Ono to produce delicious, firm chunks of fish to supplement on of our dinner meals and tonight we had Ono baked in chili sauce that Rick said was…Ono, which is Hawaiian for ‘good’. After lunch today I launched the Rossiter/MSU Atlantic Oceanographic Meteorological Laboratory (AOML) drifting buoy. These buoys collect surface sea surface temperature and air temperature data and send this information to the Argos satellite system. The data is downloaded and used by agencies such as the National Weather Service to produce models that are used to predict weather patterns. The satellites also track the AOML buoy’s drifting path. These buoys will collect this data for approximately the next three years. You can track the Rossiter/MSU drifting buoy as soon as the information from the deployment is registered with the proper agency.

Rick had a fairly relaxed day today, preparing the
next batch of cups for the 3000 meter CTD cast at 8S: 155W and doing odd jobs on the buoy deck getting ready for our recovery-deploytomorrow at 5S: 155W and future deployments scheduled later in the cruise.

With the drifter buoy
With the drifter buoy
Cups ready for the depths
Cups ready for the depths
Continuing south
Continuing south
As you can see by the GPS, at 4:54 Hawaiian Standard time (7:54 Mountain Standard Time) we continue to move south toward our next buoy recovery and deployment at 5 latitude South and 155 West longitude.
Stay Tuned for More!

Richard Jones & Art Bangert, January 12, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Sunrise
Sunrise

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 12, 2010

Science Log

We are almost there! We are holding station at 0 degrees 3 minutes North and 154 degrees 58 minutes West while we conduct out second deep (3000 meter) CTD. This cast began at 9:13 AM ship time (19:13 Zulu) and made it to depth at 10:10 AM ship time. The depth is 4650 meters at this location.

This cast has significance to Rick’s students (and his Daughter) because this is the first cup cast the cruise.
Rick spent about 30 minutes making sure that the mesh bags with 172 cups (a record for a single cast on the KA) and the bag with the Styrofoam head were attached on the instrument cage securely and in a way that would not interfere with the operation of the instruments on the CTD. As you can see from these pictures the results were profound.
CTD ready to go
CTD ready to go

When Rick returns to the classroom he will return all the cups to their rightful owners. The kids will then recalculate the volume, mass, height and diameter (if they can) and determine the rate of compression for the styrofoam cups. And of course the famous shrunken head his Daughter provided.

After recovery of the CTD Rick and Art spent about a 45 minutes getting the mesh bags off the CTD, untied and for a few of the cups that had nested, carefully pulling them apart so that they would dry as individual “mini-cups”. As soon as this task was completed we moved to the TAO-CO2 Buoy that we are going to replace.The new buoy will be the Bobcat-Bronc Buoy and will be deployed tomorrow since the recovery started around 2 PM and wasn’t complete until just about dark. Tonight we will remaining on station through the night, making five mile loops around the position of the new buoy so there is a very good chance that we will cross the equator 10 or more times tonight.

Cups returned from the depth
Cups returned from the depth

As Rick wrote, today we recovered a buoy designed to measure the amount of COin ocean water in addition to typical data (i.e., temperature, wind speed, humidity, rain and salinity). During the recovery I had the opportunity to ride the RHIB out to the CO2buoy to help the Chief Scientist remove some equipment before pulling the buoy onto the ship. Our ride to the buoy was phenomenal! We were told by the Coxswain to “hold on tight” to the ropes surrounding the top of the RHIB. As we pushed through the indigo waves of the ocean at the equator, I felt like a Montana bull rider holding on for dear life. While Brian was removing the anemometer and the rain gauge, I attached a short rope with a coupling to one leg of the buoy that a larger rope could be attached and bring the buoy aboard the ship. While on the buoy, I realized that the only other thing in site for miles was our mother ship, the Ka’Imimoana!

Out in the zodiak
Out in the zodiak
The RHIB returned to pick us up and then went back to the ship to retrieve the rope that would be attached to the buoy. After some concern that the anchor did not release, the buoy was hauled aboard and stowed for future use. Tomorrow the new CObuoy will be deployed.

This morning we were at 3 minutes North (3 nautical miles) of the equator, about a half hour ago we were only 3/10th of a mile North, we are really getting close. On to the Southern Hemisphere!

Retrieving the buoy
Retrieving the buoy

gettingclose_2

Richard Jones & Art Bangert, January 11, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Successfully deployed
Successfully deployed

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 11, 2010

Science Log

“Science isn’t pretty…” Dexter from the cartoon Dexter’s Laboratory tells his sister. What he really needs to say is that science is hard work, work that takes a team of scientists, technical specialists, and in this case the dedicated crew from the NOAA ship Ka’Imimoana. Yesterday was our first real taste of what it takes to get the data needed to understand the role of the tropical ocean in modifying the world’s climate. We began out day with a shallow cast of the CTD at 6N:155W that ended around 7AM. A shallow cast still goes to a depth of 1000 meters (how many feet is that?) and takes about two to three hours to complete. The Survey Technician, a couple of the deck crew and several officers worked though heavy winds (35knots) and seas of around 18 feet and intermittent downpours of rain to make the data from the TAO Buoy array more solid.

Mahi mahi
Mahi mahi

Once the CTD was back on the ship and secured we headed toward our first recovery/deploy at 5N:155W. Our next task was to recover a TAO buoy that had been sending climate data for the past 8 months. The recovery began with a pass by the buoy to make sure that everything was still attached and that the buoy would be safe to “hop” and then come aboard. During these “fly-bys” or passes to view the condition of the old buoy the crew had an opportunity to fish. The Doc caught a nice Mahi Mahi as you can see in the image. Two Ahi (Yellow fin tuna…fresh poke and sashimi…yum) were caught, a Wahoo or Ono, and a small Galapagos shark that was released back in to the ocean.

After our successful fishing the RHIB was sent over to the buoy to secure the ‘bird’ (how we refer to the anemometer) and attach a line for hauling in the buoy to the ship. Once the winch line is attached the RHIB was brought back onboard and we started the recovery.Retrieving the buoy produced a steady rhythm of line in, filling spools, and switching to empty spools.Even the Ensign’s got in on the deck action running in a spool and scraping the barnacles off the old buoy.

Recovering the buoy
Recovering the buoy

Once the buoy was completely recovered (about 4 hours) we set the deck for deployment of the new buoy and broke for dinner. After dinner we began the deployment which took about 3 hours and ended in the dark around 8PM. Deployment of buoys is basically the opposite of the recovery process: Nielspin, plastic coated steel cable, with its sensors attached are then attached to the buoy with its electronics.

This line along with thousands of meters of braided line feed out into the water until the buoy’s anchor position is reached.Once the buoy was anchored in the water we waited for about a half an hour then swung by the buoy to check that it was operational. Once the buoy was confirmed as successful, the crew began to prepare for the 5N CTD and our first drifter buoy deployment.

Rick helped with this CTD to continue his training for his solo CTD’s coming in a day or so.The 5N CTD, like the 6N was a shallow cast and took about 2 hours and once the CTD was stowed Rick, the Survey Technician and two Ensign’s bid farewell to the first drifter and the day was pau (“done”) as the Hawaiians say.

Reeling in the line
Reeling in the line

Today was our opportunity to take it a little easier as compared to yesterday’s long day of buoy recovery and deployment that did not end until after dark. We had an opportunity to catch-up on some email and work on an article that is due on the 15th of January. Nothing like being under a time crunch to get you motivated. The day is filled with sun and winds are “fresh” as it is called by some. The first order of business was to help with the 3N: 155W shallow cast CTD. It is still had to grasp that shallow is over 3000 feet down into the ocean. When the pressure of the water increases the equivalent of 1 atmosphere each 10 meters that is a lot of pressure when something goes down 1000 meters like the shallow CTD does. When we make our deep cast (3000 meters) at the equator the pressure on the instruments is staggering. What would it be in pounds per square inch? Once the CTD was back on the ship and we resumed our course south along the 155W longitude line we worked on getting the Atlantic Oceanographic and Meteorological Laboratory (AOML) drifter prepared for its deployment as the Bronc Buoy at the Equator along the 155W line.

Hard at work
Hard at work

If followers look back to a post from October they can see the stickers that the students at Billings Senior High Freshman Academy prepared for the drifter they were adopting through NOAA’s Adopt-A-Drifter Program. If you are interested in adopting a drifter you can find information about the program in the “links to learning a little more” area of this Blog. After lunch we helped the Brian, Jim and Alan to put together a specialized TAO buoy that collects information about the amount of dissolved Carbon Dioxide in the ocean in addition to the typical temperature, salinity, humidity and rain data that is gathered. These buoys appear to be easy to build.

On the lookout
On the lookout

However, standing on top of a TAO buoy anchored to the ship’s deck while trying to hold on with one hand and attach electronic sensors with the other can be daunting as the ship pitches to and fro considering the seas we had today. One gains a whole new perspective and respect for the power of the Ocean and the scientists who routinely build these buoys so that good data can be collected to help mankind. One added benefit of working on the buoys is that occasionally we have the chance to do a little personalizing. Art painted MSU CATS on one side since he works at MSU and since I just graduated from Bozeman last May. On the other side Rick put in a plug for Billings Senior Broncs. So now the Broncs and the Cats will be part of the TAO array at 155W at the equator for the next year.

We also had our first fresh sashimi and poke.Rick for one can’t wait! It is great that we have a crew with diverse skills and hobbies. Deck crew who prepare top notch sashimi and a doc who makes poke with his help.

Adopted buoy
Adopted buoy

BroncCO2Buoy_1MakingPoke

Richard Jones & Art Bangert, January 9, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 9, 2010

Sunrise
Sunrise

Science Log

Today was a busy day. We were up before dawn so we could check on an existing buoy close to the location of our new deployment. We made what was called a ‘fly-by’. The ship closed on the buoy and at about a mile it was vaguely visible in the early dawn. The first buoy deployment of our mission began about 7:30 AM and we had the anchor in the water about 11AM and everything went smooth. The new generation TAO buoy was deployed at 155 W longitude and 8 N latitude in a depth of 5200 meters(about 3.2 miles deep!). The TAO buoys, also called moorings, are anchored to the ocean floor using plastic coated steel cable and heavy rope. We have a drawing of the standard buoy to give you some idea what the whole package looks like, at the surface as well as below. The adjacent image is of the actual buoy that we deployed today.As you can see the color scheme has change to a solid International Yellow above the waterline.

Buoy mooring up close
Buoy mooring up close

During the initial deployment electronic sensors are placed at specific depths on a special coated steal wire. These sensors are designed to by induction and send information about conductivity (salinity), temperature and sometimes depth to the instrument tube in the buoy.This image shows two of the science team placing one of these sensors on the line.

The information provided by these sensors, and those on the buoy that measure surface conditions, help climate scientists better model the behavior of the ocean atmosphere interface and understand what patterns are more representative of El Nino, La Nina, or Neutral conditions.

In addition to the deploy of this first buoy on our trip, the ship was also engaged in the deployment and recovery of the first deep CTD. This 3000-meter (about 9750 feet or slightly over 1 3/4thmiles down) cast went fairly smoothly until it was on its way back to the surface. The winch

controller overheated and the CTD had to rest

for about one hour while the instrument package sat at 2000 meters.After the control circuits had a chance to cool we were able to continue the recovery of the CTD and resume or course south on the 155 W to our next station at 7N for a 1000 meter CTD cast. There is a good chance that we will do the CTD later this evening since it will take about six hours for the ship to transit one degree depending on sea conditions.

Deployment
Deployment
Sensors monitor the ocean conditions
Sensors monitor the ocean conditions
CTDs being deployed
CTDs being deployed

Richard Jones & Art Bangert, January 7, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Oceanographic Survey
Geographical Area: Hawaiian Islands
Date: January 7, 2010

Cups heading to the depths
Cups heading to the depths

Science Log

Today was a day of transit. We did a lot of work on the buoys, preparing them for deployment and Rick, with the help of Tonya our Chief Survey Technician, got about half of the cups that his students decorated for ‘shrinking’ into the mesh bags to attach to the deep CTD when we do one . The CTD is a rosette of bottles that are sent to depth, in this case 3000 meters (how many feet is that and how many atmospheres of pressure?) where water samples and a record of the Conductivity (salinity), Temperature, and Depth are taken. These CTD’s will help provide a double check for the electronic data that our buoys collect and add to the data used to model El Nino/La Nina. One of the side activities of the CTD is to send down the cups to be squeezed by the pressure. We also have a cup of similar size that will be used as a control so that students will be able to see the changes that the cups undergo. Rick also has brought along a Styrofoam wig head from his daughter Teri to see the effect on a larger scale.

In addition to our work on the buoys we had our first at sea drills including an abandon ship drill.But since we had a similar drill in port we only were required to muster to our stations with our exposure suits, long sleeve shirt, head cover, and long pants and wear our personal flotation device.

Ship safety drill
Ship safety drill

A wee bit rocky today.We have a swell that seems to be coming from the starboard (right) aft quarter, which gives the ship a strange movement that has made some of the folks a little queasy.Ships tend to roll (movement around an imaginary line running bow to stern) pitch (movement up and down around an imaginary line running 90 degrees to the direction of roll) and yaw (movement left or right of the imaginary line running bow to stern).Today the KA is doing all three at the same time which is why we are encouraged to take Meclizine HCL (Dramamine) for a few days prior to the trip and for the first few days at sea. Taking this makes it easier for the crew to function in an environment that has un-natural motion without getting ‘seasick’. Even with the weird motion of the ship, we still have work to do and for us “newbies” things to learn before we are allowed to do them, like learn how to set the ‘painter line’ for the RHIB so that we will stay attached to the ship in the advent that the engine of the RIHB doesn’t start or other various bad things that can happen to a little boat in a big ocean. We didn’t actually ride in the RHIB today, we simply learned how to enter the boat, where to sit , where the emergency items are located, and how to start and steer the boat.

Out on the deck
Out on the deck

One of the tasks that needs to be done prior to the deployment of our first Buoy at 8N:155W is to determine (as close as possible) the ideal position for the buoy’s anchor. To do this it is essential to know the true depth of the ocean and the topography (collectively called bathymetry) of the area within a few miles of the target latitude and longitude for the buoy.Brian, our Chief Scientist, will determine the depth and location for the anchor by using both satellite sea surface heights and actual sonar depth data from ships that have been in the area. In reality, there really isn’t much hard data, physical sonar tracks, for much of the ocean and much of the depth is determined by the actually height of the sea surface as measured by satellite. These measurements take into account variables, such as orbit of the satellite, atmospheric effects on radar, and tides and compare the computer result to a mathematical ellipsoid model of the Earth’s shape. Sounds pretty complicated, and it is, but we can use this calculated sea surface to help determine the depth of the ocean since the surface mirrors the actual topography of the ocean floor. For Academy students, you will have the opportunity to do two activities from the American Meteorological Society (AMS) that will help you understand what it is that we are attempting to do.

Bathymetric map
Bathymetric map
Catch of the day!
Catch of the day!

 

Richard Jones & Art Bangert, January 6, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 6, 2010

Science Log

The KA is under her own steam, well actually diesel and electric, and we are making 10 knots (you should figure out how fast that is in miles per hour) at a heading of 173 degrees. The KA uses diesel generators to create the current to drive here electric propulsion motors. She is a vey quit ship because of this configuration which was part of her original deign…to be quite. The KA is a former Navy antisubmarine warfare ship and needed to be quiet to play her role listening for submarines that might have been lurking around the oceans. Now that quiet nature makes it nice for those of us about to have our first night at sea.

Our current position was 157degrees 51 minutes and 7 seconds west longitude (157:51:07 W) and 22 degrees 55 minutes and 8 seconds north latitude (22:55:09N) at 19:30 lcl on the 5th of January. At that time we had been at sea for about five hours and have many more to go on our way to work the 155 W Buoy line. Sunset was fantastic, but very short. It seems to take almost no time to go from day to night here in the tropics. You can see how it looks behind some of the “birds” (anemometers) that will measure windspeed and direction on the buoys. We are now (09:10 lcl) about 40 nautical miles south of the Big Island and can just see it in the distance. It will be some time before we see land again.

Since we are running a little slow on the internet I will simply post a few images from our first day rather than a video. I will attempt to post a video or two later on but currently we are limited on our bandwidth to about 128K.

For two days I have been overwhelmed as I observed all of the aspects of the crew’s preparation for the TAO mission to Samoa. I am fascinated with everything about this operation – watching the crew load the ship, observing the ship being fueled, viewing the massive nuclear submarines located in Pearl Harbor, and assembling the sensors that collect climate data from each of the buoys we will deploy. Yesterday, in preparation for our voyage, we continued to calibrate instruments and assemble sensors.Last night was our first night at sea, I slept like a baby -the gentle rocking of the boat was like being in a giant cradle.

Richard Jones & Art Bangert, January 5, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 5, 2010

Science Log

The ship has been in port at Pearl Harbor most of the day. We got underway about ten to ten this morning to transit to the fuel pier. We have been loading fuel and getting the various instruments ready for deployment. One of the more memorable things for me was passing by the USS Arizona Memorial and thinking about all the history that has gone on here. It makes one pause and think of the value of our freedom and the price paid for that freedom.

One of the more mundane, but important tasks today has been to check all the sensors and to make sure that the electrical connections are all correct. I even had the opportunity to crawl under the test bench to make sure the connections for the long wave and short wave UV sensors were connected to the correct test leads.

Richard Jones & Art Bangert, January 4, 2010

NOAA Teacher at Sea
Richard Jones
Onboard NOAA Ship KAIMIMOANA
January 4 – 22, 2010

Mission: Survey
Geographical Area: Hawaiian Islands
Date: January 4, 2010

The ship is underway
The ship is underway

Personal Log

Art and I arrived at Pearl at 7AM today at the Visitor Check-in and ID office. We were a half hour early and were still 12th and 13th in line. The process was pretty slow, but we got picked up by one of the science crew (James) when we got our passes around 8:15AM. We then went the ship and came on board durning the first of three drills for the day. Within in a few minutes of getting to the ship we were already involved in the ship board fire drill. Both Art and I were shlepping fire fighting equipment to the “fire scene”, I had a ventilation hose and Art a really big, and nasty looking, pry bar. It looked like a pry bar on steroids. After the fire drill it was the abandon ship drill, where we all put on our “gumby” suits ( I wish I had thought to have my camera ready first thing) and exchanged our old whistles for new ones without cork balls. After the abandon ship drill, it was man overboard and then we were able to stand down by about 10AM. Once the drills were done it was time to get with moving the equipment to the ship and setting up the instruments. The process of meeting the crew, loading the equipment and stores, and setting up the science stuff took until almost 6PM.