Michelle Greene: Meet the Beakers, July 26, 2018

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 26, 2018

 

Latitude: 40° 0.989″ N

Longitude: 67° 30.285″ W

Sea Surface Temperature: 22.1° C (71.8° F)

Sailing Speed: 4.65 knots

 

Science and Technology Log

Premier marine ecologist Dr. Robert Pitman is a member of our cruise.  He works at the NOAA Fisheries at the Southwest Fisheries Science Center in the Marine Mammal and Turtle Division.  He has traveled the world in search of cetaceans, turtles, flying fish, and seabirds.  Currently he is doing extensive work with killer whales.  Dr. Pitman has viewed almost all of the 80 plus species of whales known to man; however, seeing some of the Mesoplodon beaked whales in person has been elusive… until now.  Dr. Pitman gave an excellent presentation on the different species of beaked whales that we might to see in the North Atlantic Ocean.

Blainville’s Beaked Whale (Mesoplodon densirostris)

Blainville's Beaked Whale

Blainville’s Beaked Whale

The Blainville’s beaked whale was first identified by Frenchman Henri de Blainville in 1817 from a piece of a jaw.  The average length of a Blainville’s beaked whale is 4.4 meters.  The most prominent feature of the whale is a high arching jaw. Blainville’s beaked whales have scars from raking which heal white.  Males are very aggressive and proud.  Dr. Pitman stated, “They want a pair of horns but only have a pair of teeth.”  They leave deep scars with their pairs of teeth, because they will savagely charge each other.  Sometimes barnacles will settle on their teeth.  The head of a Blainville’s beaked whale is flat to expose the teeth.

Cuvier’s Beaked Whale (Ziphius cavirostris)

Cuvier's Beaked Whale

Cuvier’s Beaked Whale

The Cuvier’s beaked whale was first identified by Frenchman Georges Cuvier from a skull in 1823.  The skull had a large cavern in the head which was the reason for the name cavirostris (cavi means hollow or cavernous in Latin).  Cuvier’s beaked whales also go by the name of goose beaked whale.  The whale can grow to a length of seven meters.  Cuvier’s beaked whales have the most variable coloration.  Some Cuvier’s will be grey in color while others may be reddish brown in color.  They have white sloping melons.

Gervais’ Beaked Whale (Mesoplodon europaeus)

Gervais' Beaked Whale

Gervais’ Beaked Whale

The Gervais’ beaked whale was first identified by Frenchman Paul Gervais in 1855.  The average size of a Gervais’ beaked whale is 4.8 meters.  The prominent feature of the Gervais’ beaked whale is the vertical striping along its back along with a dark band just behind the melon.  A white circular spot is located just below the melon.  The dorsal fin is dark.  The male Gervais’ beaked whale has one set of teeth located about one-third of the way back from the tip of the beak.  Males turn dark and lose their striping with age.  Males also rake each other; however, scars from the encounters re-pigment a darker color.

Sowerby’s Beaked Whale (Mesoplodon bidens)

Sowerby's Beaked Whale

Sowerby’s Beaked Whale

The Sowerby’s beaked whale was first identified by Englishman James Sowerby in 2804.  The average size of a Sowerby’s beaked whale is 5.5 meters.  They are one of the few whales that have a long beak.  Males have one pair of teeth that are located about two-thirds of the way back from the tip of the beak (or rostrum).  Males have make scratch marks along their backs; however, since the teeth are positioned so far back, scratch marks are from just one tooth and not a pair which would create parallel tracks.  Scientists believe the scarring is due to male competition.  The dorsal fin is located approximately two-thirds of the way along the back.  These whales are not very aggressive and more than one male will be seen in a group.  These animals do not usually travel alone unless it is a male.

True’s Beaked Whale (Mesoplodon mirus)

True's Two

True’s Beaked Whale Photographed on Our Cruise

True's Beaked Whales

True’s Beaked Whales

The True’s beaked whale is the dominant subject of study of this cruise.  The True’s beaked whale was first identified by American Frederick True in 1913.  Due to his excitement over his discovery of the marine mammal, he named it mirus, which means wonderful in Latin.  A True’s beaked whale can grow to be about 5.4 meters.  The identifying features of a True’s beaked whale include: a dark band behind the melon, a large light spot behind the dark band, a pale melon, two tiny flippers, dorsal fin that is small and triangular,  and for males two tiny teeth at the front of the rostrum.  These whales will have paired parallel scarring because their teeth are so close together.

 

Personal Log

First and foremost, I am in awe every day at the different things I see in nature on this cruise.  I have seen so many birds that I cannot remember one from the other… not to mention the dolphins.  I did not know there were so many kinds of dolphins.  I watched the television series “Flipper” when I was a little girl, and now I can say I have seen a bottlenose dolphin in person.  I think the scientists get almost as excited as I do about seeing an animal even though they have probably seen them hundreds, if not thousands, of times.  Nature is always amazing no matter how many times you see it.

During Dr. Pitman’s presentation, I was captivated by the way he spoke about the whales like they were his best friends he had known forever.  I found out why.  He has spent most of his life studying them.  Dr. Pitman is an amazing resource for me on this cruise.  Being a marine mammal observer newbie, Dr. Pitman took the time to answer all of my questions about whales.  I really value the conversations I have had with a famous whale lover.

The weather has not been ideal for marine mammal observation for several days.  If the swell is too high, it makes it hard to see the animals, because they can breach in the waves where we cannot see them.  The fog also makes it difficult to see the animals, and it is not safe on the flying bridge if it is raining.  During times of foul weather, the scientists are busily working on projects except for the seabirder.  The seabirder sees several birds during foul weather.  The chief scientist, Dr. Danielle Cholewiak, has assembled an international crew of scientists who are as passionate as she is about beaked whales.

During the foul weather when people are not working on other projects, the galley is place to be.  The scientists have taught me how to play a card game called Peanut.  It is a wild version of a multiplayer solitaire.  I am usually pretty good at catching on how to play card games, so learning another game was fun.  It gets fast and furious, and you cannot be faint of heart.  The first person to 100 wins, but the person with the lowest score which can be negative also gets to be the winner of the lowest score.  Sometimes even a NOAA Corps officer will join in on the excitement.  All kinds of fun happens on board the Gordon Gunter!

One of the best experiences I have had so far on this cruise is talking with the crew.  They are from all over the country and take their work very seriously.  As different NOAA Corps officers on board get promoted, they may not stay with the Gordon Gunter and may move to other ships.  Most of the crew, however, sticks with the Gordon Gunter.  I thought when we went on the cruise that we were basically going on a “fishing” trip to watch whales and dolphins and no machinery would be on board.  Oh how I was wrong!  There are several pieces of heavy machinery on board including a crane and a wench.  The boatswain is in charge of the anchors, rigging, and other maintenance including the heavy machinery.  Boatswain is not a term I was familiar with before this cruise.  The word is pronounced like “Bosun” not “Boat Swain.”  Boatswain Taylor is the first one I see in the mornings and last one I see at night.  He works tremendously hard to make sure the “work” of the ship is done.

 

Did You Know?

The Smithsonian National Museum of Natural History Marine Mammal Program created a beaked whale identification guide.  Check out the website: http://vertebrates.si.edu/mammals/beaked_whales/pages/main_menu.htm

Animals Seen

  1. Audubon’s Shearwater Bird (Puffinus iherminieri)
  2. Barn Swallow Bird (Hirundo rustica)
  3. Blue Shark (Prionace glauca)
  4. Brown Booby Bird (Sula leucogaster)
  5. Brown-headed Cowbird (Molothrus ater)
  6. Common Dolphin (Delphinus delphis)
  7. Cory’s Shearwater Bird (Calonectris diomedea borealis)
  8. Cuvier’s Beaked Whale (Ziphius cavirostris)
  9. Fin Whale (Balaenoptera physalus)
  10. Great Shearwater Bird (Puffinus gravis)
  11. Leach’s Storm Petrel Bird (Oceanodroma leucorhoa)
  12. Parasitic Jaeger Bird (Stercorarius parasiticus)
  13. Pilot Whale (Globicephala)
  14. Pomarine Jaeger Bird (Stercorarius pomarinus)
  15. Portuguese Man O’war (Physalia physalis)
  16. Pygmy Sperm Whale (Kogia breviceps)
  17. Red-billed Tropicbird (Phaethon aethereus)
  18. Risso’s Dolphin (Grampus griseus)
  19. Spotted Dolphin (Stenella frontalis)
  20. South Polar Skua Bird (Catharacta maccormicki)
  21. Sowerby’s Beaked Whale (Mesoplodon bidens)
  22. Sperm Whale (Physeter macrocephalus)
  23. Striped Dolphin (Stenella coeruleoalba)
  24. True’s Beaked Whale (Mesoplodon mirus)
  25. White-faced Storm Petrel Bird (Pelagodroma marina)
  26. Wilson’s Storm Petrel Bird (Oceanites oceanicus)

Vocabulary

  1. Barnacles (balanus glandula) – sticky crustaceans related to crabs and lobsters that permanently stick themselves to surfaces
  2. Blowhole – similar to “nostrils” in humans which sits on top of the head to make it easier for cetaceans to breath without breaking their swimming motion.
  3. Dorsal fin – a fin made of connective tissue that sits on the back of a whale believed to be used for balance, making turns in the water, and regulating body temperature
  4. Fluke – a whale’s tail is comprised of two lobes made of tough connective tissue called flukes which help it move through the water
  5. Melon – an oil-filled sac on the top of a beaked whale’s head that is connected it vocal chords.  The melon helps the whale to make clicks which help it to find food.
  6. Rostrum – snout or beak of a whale
  7. Winch – a machine that has cable that winds around a drum to lift or drag things

 

Photograph References

“Beaked Whale Sets New Mammalian Diving Record.” The Guardian. 27 March 2014. https://www.theguardian.com/science/2014/mar/27/beaked-whale-new-mammalian-dive-record

“Blainville’s Beaked Whale (Mesoplodon denisrostris).” NOAA Fisheries: Species Directory.  https://www.fisheries.noaa.gov/species/blainvilles-beaked-whale

“Gervais’ Beaked Whale (Mesoplodon europaeus).” NOAA Fisheries: Species Directory. https://www.fisheries.noaa.gov/species/gervais-beaked-whale

“Sowerby’s Beaked Whale (Mesoplodon bidens).” Ocean Treasures Memorial Library: The Legacy Continues.   http://otlibrary.com/sowerbys-beaked-whale/

Photographs of True’s beaked whales taken by Salvatore Cerchio.  Images collected under MMPA Research permit number 21371.

 

Michelle Greene: Acoustics Team…Do You Hear What I Hear?

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 24-25, 2018

 

Latitude: 40° 2.629″ N

Longitude: 67° 58.954″ W

Sea Surface Temperature: 23.3° C (73.9° F)

Sailing Speed: 1.80 knots

 

Science and Technology Blog:

Today I had the opportunity to shadow the acoustics team in the dry lab.  The acoustics team uses a linear array or a prototype tetrahedral array of hydrophones to listen to the sounds that whales and dolphins make under the water.  So far in this journey, the team has only used the linear array.  The array has been towing behind the ship with the “line” of hydrophones parallel to the surface of the water about 10 meters below the surface.

Linear array of hydrophones

Linear array of hydrophones

The hydrophone is the black device in the cable

The hydrophone is the black device in the cable

When the array is deployed, the acoustics team uses a computer software called PAMGuard to record the sounds and track the clicks and whistles of whales and dolphins.  PAMGuard can be programmed to record sounds in any frequency range.  On this cruise, acoustics is looking at sounds up to about 100,000 hertz.  A human being can hear from about 20 Hz to about 20 kilohertz with normal human speech frequency between 1,000 Hz and 5,000 Hz.  The optimal hearing age for a person is approximately 20 years of age and declines after that.

Beaked whales click at a frequency too high for human hearing; however, PAMGuard can detect the clicks to help the acousticians possibly locate an animal.  PAMGuard produces a real-time, time series graph of the location of all sounds picked up on the array.  A series of dots is located on a continual graph with the x-axis being time and the y-axis being bearing from the ship. The array picks up all sounds, and PAMGuard gives a bearing of the sound with a bearing of 0° being in front of the ship and a bearing of 180° being behind the ship.  The ship creates noise that is picked up by all the hydrophones at the same time, so it looks like a lot of noise at 90°.  The acousticians must sift through the noise to try to find click trains.  Rain and heavy waves also create a lot noise for the hydrophone array.  The acoustician can click on an individual dot which represents a sound, and then she can see a Wigner plot of the sound which is a high resolution spectrogram image of the sound.

A screenshot of a spectrogram from PAMGuard

A screenshot of a spectrogram from PAMGuard

Scientists have determined what the Wigner plot image of a beaked whale sound should look like.

Wigner plot of a True's beaked whale (Mesoplodon mirus) or a Gervais' beaked whale (Mesoplodon europaeus)

Wigner plot of a True’s beaked whale (Mesoplodon mirus) or a Gervais’ beaked whale (Mesoplodon europaeus)

 

Wigner plot of a Cuvier's beaked whale (Ziphius cavirostris)

Wigner plot of a Cuvier’s beaked whale (Ziphius cavirostris)

When a Wigner plot image looks to be a possible Mesoplodon, the acoustician starts tracking a click train on the time series graph in hopes of getting the sound again.  If the acoustic signal repeats, the acoustician then adds it to the click train.  Each time the acoustician adds to a click train, the bearing to the new click is plotted on a graph.  The array cannot calculate the actual location of an animal, so a beam of probability is plotted on a chart.  Then the acoustician uses the angle of each click in a click train to determine a possible location on the port or starboard side of the ship.  If the click train produces a sound that can be localized with the convergence of beams to a certain point, the acoustician can call the visual team to look on a particular side of the ship or ask the bridge to slow down or turn in a certain direction.  Mesoplodons have average dive times of between 15 and 20 minutes and foraging dive times of up to 45 minutes, so there is a time delay between getting the clicks and seeing an animal.

PAMGuard map of a sighting of a beaked whale

PAMGuard map of a sighting of a beaked whale

The objective of this cruise is to find the occurrence of beaked whales, but PAMGuard does not record just beaked whale clicks, so several other whales and dolphins are heard by the array.  Sperm whales (Physeter macrocephalus) have clicks that can be heard by the human ear with an average frequency of 10 KHz.  Sperm whales have a synchronized click train.  It can be thought of as “click click click click…” with about 0.5 to 1.0 second between each click.  Scientists believe the clicks are used for echolocation.  Since it is very dark in the ocean and light does not travel far underwater, sperm whales use their clicks as sort of flashlight for locating food which usually consists of squid.  When a sperm whale senses the location of food, it produces a rapid series of clicks called a buzz.  After the buzz, the animal makes a dive.  If the dive is not successful, in other words the whale did not get food, then clicks return to their normal pattern until another attempt is made.  Clicks are also used for social interaction between sperm whales.  Sperm whales have been very vocal on the cruise so far.

Personal Log

I have been spending my days rotating between the visual sighting team and the acoustics team.  Even when I am not scheduled to be there, I am in acoustics.  I find listening to the sounds very interesting.  I had no idea whales made clicking sounds.  I knew dolphins whistled, but clicking is not a term I was familiar with until this cruise.  We have had several episodes where many dolphins will go by the ship.  When that happens, the whole plot in PAMGuard almost turns black from all of the dots on the screen.  It is amazing to hear all of the clicks and whistles from the dolphins.  My favorite whales right now are sperm whales.  I can now look at the screen and see the clicks and know it is a sperm whale.  I get so excited.

Getting a Mesoplodon click train is like watching a whale lover’s version of Storm Chasers.  When a possible Mesoplodon click train is detected, everybody gets excited in hopes of seeing a beaked whale.  I can really understand how the visual sighting team relies on the acoustics team to find a location.  We have two people on big eyes and two people on binoculars, and the ocean is all around us.  We have a high probability of missing a Mesoplodon, so having the acoustics team getting a click train with convergence in a certain direction helps to focus the visual sighting team in sighting an animal.  The reverse idea is also true.  When the visual sighting team sees a Mesoplodon, they call down to acoustics to see if a click train can be detected.

Life aboard the Gordon Gunter has been a real classroom for me.  I think I learn something new about every five seconds.  Since I have been out of college, I have not dealt with biological sciences much, so this math teacher is relearning some key information about marine animals.  I have really enjoyed seeing the passion in everyone’s eyes for the beaked whales.  When we get a sighting of a beaked whale on the flybridge, everyone rushes to that side of the ship in hopes of just getting a glance at the elusive creature.  When we get a Mesoplodon click train, the acousticians get really excited.  One evening, we got a sustained click train for a Sowerby’s beaked whale (Mesoplodon bidens).  One of the acousticians was not in the dry lab, so I went to try and find her with no luck.  She was really upset when she returned, because she had not been there to see it.  I hope to develop that kind of passion in my students, so they can become great thinkers about life in their futures.

Did You Know?

  1. Even though Moby Dick was a fictional sperm whale, real life event inspired Herman Melville to write the novel.  Check out this page on those events:  https://oceanservice.noaa.gov/facts/mobydick.html.
  2. Sperm whales use an organ in the front of their head, something called the spermaceti organ, to make their clicking sounds.  Check out this PBS article: http://www.pbs.org/odyssey/odyssey/20010809_log_transcript.html.

Animals Seen

  1. Sperm whales (Physeter macrocephalus)
  2. Fin whales (Balaenoptera physalus)
  3. Cuvier’s beaked whale (Ziphius cavirostris)
  4. Risso’s dolphins (Grampus griseus)
  5. Manta ray (Manta birostris)
  6. Whale shark (Rhincodon typus)

Vocabulary

  1. (Ocean) Acoustics – the study of how sound is used to locate whales and dolphins and how whales and dolphins communicate
  2. Bridge – the room from which the boat can be commanded
  3. Click train – a series of whale clicks
  4. Dry lab – a lab that primarily uses electronic equipment such as computers
  5. Echolocation – a process used by whales and dolphins to locate objects.  A whale will emit a pulse, and the pulse then bounces off an object going back to the whale.  The whale can then determine if the object is food or something else.
  6. Flybridge – an open platform above the bridge of a ship which provides views of the fore, aft, and sides of a ship
  7. Hertz – a measure of sound frequency.  For example, when you hear someone singing in a low (or bass) voice, the frequency of the sound is low.  When someone is singing in a high (or soprano) voice, the frequency of the sound is higher.
  8. Hydrophone – a microphone that detects sound waves under water
  9. Spectrogram – a visual representation of a sound
  10. Wigner plot – a high resolution spectrogram

Michelle Greene: Visual Sighting Team, July 23, 2018

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 22-23, 2018

Latitude: 40° 35.213″ N

Longitude: 66° 6.692″ W

Sea Surface Temperature: 23.4° C (74.1° F)

Knots: 7.85 knots

Science and Technology Blog:

The visual sighting team started early this morning at 6:00 am and had rotating shifts of 30 minutes each until 7:00 pm.  The different shifts included watching with regular binoculars on the port and starboard sides, watching with the big eyes on the port and starboard sides, and being the data recorder for sightings.  I had the opportunity to shadow scientists in each of these positions throughout the first day and actually performed the duties on the second day.

Members of the Cetacean Survey Visual Team on Lookout

Members of the Cetacean Survey Visual Team on Lookout

One of the important jobs the data recorder has is to input the environmental conditions at a certain point in time.  The first measurement to input is the percent of cloud cover which is just a number from 0 to 100. Then the glare magnitude is determined on an ordinal scale from 0 to 4 with a value of zero meaning none and a value of four meaning severe.  After determining the glare magnitude, the percent of glare cover is determined.  Since the two sets of big eyes cover from 90 degrees left of the bow to 90 degrees right of the bow, the glare covering this spaced is what is determined.  The data recorder also has to determine the degree angle and height of the ocean swell.  Swell is not the wind waves generated by local weather.  It is the wind waves that are generated by distant weather systems.  Then the Beaufort scale is used to determine the amount of wind on the ocean.  The scale was developed by Sir Francis Beaufort of the United Kingdom Royal Navy in 1805.  The scale ranges from 0-12.  A zero score means the surface is smooth and mirror like, while a score of 12 means there are hurricane force winds.  Rain or fog is also determined by the data recorder.  Finally, the data recorder has to determine a subjective condition of the weather overall.  This is on an ordinal scale from 1 to 4 with 1 being poor and 4 being excellent.

When a marine animal is sighted by one of the observers, the data recorder has to input several measurements about the event.  The bearing of the location of the animal has to be determined using the big eyes.  Also, the big eyes have a scale in the lens called reticles that determines distance from the ship to the animal.  A conversion scale can then be used to determine how far away the animal is in meters or nautical miles.  The number of animals sighted, including any calves that are in the group, has to be given.  The group’s swim direction has to be determined based on bearing from the ship.  If possible, the species of the group has to be given.  Since the objective of this survey is to find the occurrence of Mesoplodons in the North Atlantic Ocean, determining the species is very important.  Also the observer has to give the initial cue as to what determined the identification of the species.  Several different cues are available such as the body of the animal, the blow of a whale or dolphin, or the splash.

The software used to input the occurrence of a marine mammal automatically inputs the GPS of a sighting.  The initial route for this survey is a zig zag pattern out of Rhode Island towards Georges Bank.  There are several canyons with very deep waters (over 1,000 meters) which is where the Mesoplodons make foraging dives to get food.  Instead of making a straight line through the canyons and only making one pass through the area, using zig zag routes gives the survey a better chance of locating Mesoplodons.  The chief scientist uses the information from sightings to track a path for the ship to take the next day.  Sometimes the acoustics team hears possible Mesoplodons.  If the acoustics team can find a convergence of the area of an animal, they will tell the ship to go at a slower rate or turn.

The map here shows the sightings of Mesoplodons from the beginning of our journey and the zig zag pattern taken by the chief scientist.  The first day of our journey, a storm was coming up the East Coast.  The Gordon Gunter‘s Commanding Officer (CO) determined that we could run from the storm by going east in a straight line direction instead of doing the zig zag motion.  The CO was correct, because we did not have bad weather.  The ocean had a lot of high swells which made the boat rock tremendously at times but no rain.

GU18-03_Map_24July2018_wLegend

A map of the daily route of the Gordon Gunter based on sightings.

 

Personal Log

I have found my favorite place to be on the visual sighting team…being the data recorder.  Statistics is my passion, and being the data recorder puts me in the middle of the action getting mass amounts of data.  It also helps that the data recorder sits in a high chair and can see a wide area of the ocean.  The scientists have been very helpful in finding me a milk crate, because that chair is so high I cannot get onto it without the milk crate.  Being the data recorder can be intense sometimes, because multiple sightings can be made at the same time.  In any free time I have, I will fill in as the data recorder.  It is lots of fun!

Data Recorder

Favorite place to be on the visual team – Data Recorder

One thing that was a little intimidating to me at first was the intercom system.  I would hear things like, “Fly Bridge Bridge.”  Then the data recorder would say “Bridge Fly Bridge.”  I had no clue of what they were talking about.  Then all of a sudden it made sense to me.  In “Fly Bridge Bridge,” someone from the Bridge is calling up to us on the Fly Bridge.  The Bridge has a question or wants to tell the people on the Fly Bridge something.  Since I figured it out, I am ready to go.

I have learned so much on this cruise in the short time I have been aboard the Gordon Gunter.  My head is exploding with the numbers of lessons that I can incorporate into my statistics classes.  I have also talked with the acousticians, Jenny, Joy, Emily, and Anna Maria, and have come up with lessons that I can use with my algebra and calculus classes as well.  The scientists have been very generous in sharing their knowledge with a science newbie.  Being a math teacher, I want to be able to expose my students to all kinds of content that do not deal with just the boring math class.  Being a Teacher at Sea has opened up a whole new experience for me and my students.

We have an interesting participant in our cruise that I was not expecting but was happy to meet…a seabird observer.  Before this cruise I did not know there were birds that pretty much lived on the surface of the ocean.  These birds have been flying around the ship which is about 100 nautical miles from shore.  The seabird observer documents all sightings of seabirds and takes pictures to include in his documentation.

Did You Know?

Reticles are the way a pair of binoculars helps observers to determine the distance to an animal; however, the conversion from reticles to distance is not an instantaneous solution.  Based on the height of a pair of binoculars on the ship, reticles can mean different distances.  A conversion chart must be used to determine actual distance.

Check out this article on how to estimate distance to an object with reticles in a pair of binoculars:

https://www.osc.co.uk/estimate-range-with-reticle-binoculars-2/

Animals Seen

  1. Sperm whales (Physeter macrocephalus)
  2. Fin whales (Balaenoptera physalus)
  3. Cuvier’s beaked whale (Ziphius cavirostris)
  4. Risso’s dolphins (Grampus griseus)
  5. Bottlenose dolphins (Tursiops truncatus)
  6. Common dolphin (Delphinus delphis)
  7. Great shearwater bird (Puffinus gravis)
  8. Cory’s shearwater bird (Calonectris borealis)
  9. Wilson’s storm petrel bird (Oceanites oceanicus)
  10. Leach’s storm petrel bird (Oceanodroma leucorhoa)
  11. White-faced storm petrel bird (Pelagodroma marina)
  12. Red-billed tropicbird (Phaethon aethereus)

Vocabulary

  1. acoustician – someone whose work deals with the properties of sound
  2. bearing – the direction from your location to an object in the distance starting at 0° which is located at absolute north.  For example, if an animal is spotted at 90°, then it is due east of your location.
  3. blow of a whale – the exhalation of the breath of a whale that usually looks like a spray of water and is an identifying feature of different species of whales
  4. bow of a ship – the point of the ship that is most forward as the ship is sailing (also known as the front of the ship)
  5. cloud cover – the portion of the sky that is covered with clouds
  6. foraging dive – a type of deep dive where a whale searches for food on the ocean floor
  7. glare – the light reflected from the sun off of the ocean
  8. nautical mile – a measurement for determining distance on the ocean which is approximately 2025 yards (or 1.15 miles) or 1852 meters
  9. port side of a ship – when looking forward toward the bow of the ship, the left side of the ship is port
  10. starboard side of a ship – when looking forward toward the bow of the ship, the right side is starboard

Michelle Greene: Setting Sail on the Gordon Gunter, July 20, 2018

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 20-August 3, 2018

Mission: Cetacean Survey

Geographic Area of Cruise: Northeast U.S. Atlantic Coast

Date: July 20, 2018

Weather Data from the Bridge

Latitude: 41° 31.838′ N

Longitude: 71° 19.018′ W

Air Temperature:  26.7° C (80° F)

Conditions: Sunny

Science and Technology Log

Beaked whales are elusive creatures that roam all of the world’s oceans.  The purpose of this cetacean cruise is to find the occurrence and distribution of beaked whales in the northeast Atlantic off the coast of Rhode Island and Massachusetts.  The beaked whale is a toothed whale from the family Ziphiidae.  Several types of beaked whales have been spotted in this region including the True’s beaked whale (Mesoplodon mirus) and the Cuvier’s beaked whale (Ziphius cavirostris).

To find the occurrence of beaked whales, the scientists are using several different methods.  The first method is a visual sighting of the animals.  High-powered binoculars, affectionately termed “big eyes” can see animals from several nautical miles away.  Then regular binoculars are used to scan the areas closer to the ship.  The second method scientists are using is by passive acoustics.  Acousticians are using two different types of listening devices to try to hear the whales.  The first device is called a linear array.  In this device, four hydrophones are attached to a tube in a linear pattern.  The array is then towed in the water behind the ship, and acousticians can hear the whales when they communicate.  The acousticians can then determine how far the whale(s) is(are) from the device.  However, with this type of array, it is difficult to calculate how deep the whale is in the water.

In an effort to improve detection of the depth of a beaked whale, a new array has been designed.  This tetrahedral array is designed so that the four hydrophones are placed in a way that is not linear two-dimensional space but in a more three dimensional space, so scientists can detect not only the distance of a whale but the depth.  We will be testing a new prototype of this array during this cruise.

Personal Log

Arriving the day before the Gordon Gunter sailed allowed me to see some pretty interesting things.  I got to help two of the scientists put up the “big eyes.”  These binoculars are really heavy but can see very far away.  On the day we sailed, we were able to zero the binoculars which means we set the heading on the binoculars to zero with the ship’s bow based on a landmark very far away.  We could not zero them the day before, because there was not a landmark far enough away to get an accurate reading.

The Gordon Gunter is one of the larger ships in the NOAA fleet according to several of the scientists who have been on many cruises.  It took me a while to figure out where all of the doors go and how they open.  I did not realize how hard it was to open some of the doors.  According to the XO, the doors are hard to open because of the pressure vacuum that exists in the house of the ship.  There is not really a reason for the vacuum to exist.  It is just the nature of the ship.

Life on board the Gordon Gunter has been very interesting for the first day.  Before leaving port, we had a fleet inspection.  We had to do all of our emergency drills.  Safety is very important on a ship.  We had to do a fire emergency drill where everyone had to meet at a muster station and be accounted for by one of the NOAA officers.  Then we had to do an abandon ship drill.  Then once we got sailing a short time, we had to do a man over board drill.

Donning the immersion suit in case of an abandon ship order was not a thrill for me but was comical in retrospect.  I am only 4’ll”, and the immersion suit I was given is made for someone who is over six feet tall.  When I tried on the suit, I had two feet of immersion suit left at the bottom.  When the NOAA officer came to inspect, he said I definitely needed a smaller suit.

One of the best features of my cruise so far has definitely got to be the galley.  The Gordon Gunter has the best cook in Miss Margaret.  She is the best and makes awesome food.  She has made cream cheese from scratch.  She makes the best smoothies.  I can only imagine what we are going to be getting for the rest of the cruise.

Did You Know?

All marine mammals, including the beaked whales, are protected under the Marine Mammal Protection Act.

Check out this website on what the law states and what it protects:

https://www.fisheries.noaa.gov/topic/laws-policies#marine-mammal-protection-act

Michelle Greene: Getting Ready for a Big Adventure, July 18, 2018

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 18, 2018

 

Latitude: 34° 18.967′ N

Longitude: 79° 52.047′ W

Temperature: 89° F (32° C)

Tomorrow is the big day!  I am getting ready to board the plane from Florence, SC to Charlotte, NC to Providence, RI.  I have never been to Rhode Island, so this is going to be a bucket list activity to keep adding states to my history.  Rhode Island will make state number 24…almost half way!

I teach in a very rural high school in Lamar, South Carolina which is approximately 90 miles from Myrtle Beach.  Lamar High School has about 280 students.  This year we had a graduating class of 52 students.  I teach Calculus, Statistics, and Algebra 2 Honors.

Teaching statistics is the main reason I applied to the Teacher at Sea program.  I wanted to give my students some real world experience with statistics.  I try to create my own data for students, but I end up using the same data from the Census, Bureau of Labor Statistics, Major League Baseball, etc.  I had one student a couple of years ago in Algebra 2 Honors who is a weather lover.  His favorite website is NOAA, and he would give me the daily weather or hurricane updates.  Any time we had a baseball game, he would be able to tell me if we were going to be able to play the game.  Being able to provide him and his classmates projects using data from something he loves will help me to reach that one student.  Hopefully, I might even spark interest in other students.

Helping my students to become statisticians is the main reason I applied; however, I also applied to challenge myself.  Throughout my life, I have not been the kind of person who deals well with creepy crawly things.  Being on a ship on the ocean will definitely force me to deal with that.  I want to do my very best to get involved in all kinds of neat activities.  I hope “Cool Beans!” will be my daily saying.

I am really looking forward to working with the scientists on the Gordon Gunter.  Having read as much as I can about the Passive Acoustic Research Group has helped me to understand a little of what we will be doing on our 15-day journey.  I hope that I can help them to further their research to learn the patterns that cetaceans use to communicate with each other!