Lisa Hjelm, August 12, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 12, 2008

Chief Boatswain outlining the day’s work to crewmember
Chief Boatswain outlining the day’s work to crewmember

Science and Technology Log 6: Looking Ahead 

The weather started getting rough, the tiny ships were tossed. If not for the courage of the fearless crews the data could be lost. 

We’re into our last two work days before Rainier begins the transit back to Homer, AK. The weather has indeed changed. The skies are shifting, shades of gray, and this afternoon the winds may kick up to 15 knots. Spits of rain hit your face when you venture on deck. It could be a rough day on the launches. A few people picked up seasickness medication on the way to the morning meeting on the fantail. After fifteen days of work the faces of the crew of the Rainier are taking on determined, tired looks.  These are the final days of the 2008 season in the Pavlof Island area.

Even with an end in sight no one is gearing down. There is still plenty to do. The crew is preparing the ship for an upcoming inspection and an open house during “Hydrapalooza”, a gathering of hydrographers in Homer, AK. The officers are preparing for the 36-hour return transit. The survey technicians are putting finishing touches on their final survey sheets and reports for this area. There is activity and some excitement everywhere. Perhaps due to the extended period of fine weather, work is ahead of schedule. Today, the launches are surveying a new sheet that wasn’t scheduled until 2009. They’ve named this one SNOW: white uncharted territory.

Okeanos Explorer, image courtesy of NOAA Office of Ocean Exploration
Okeanos Explorer, image: NOAA Office of Ocean Exploration

After three days working evenings on Night Processing, I am still learning the procedure. There are many steps involved in processing the sonar data. I was fortunate to have the opportunity to work on SNOW data. It was exciting to be the first person to see the bathymetry of uncharted seafloor. It is amazing to think that only 1% of the world’s oceans have been mapped. The future for aspiring hydrographers looks bright. And that brings me to the topic of my final Teacher at Sea Science log: what’s in store for the future. Talking with the crew, observing and listening to stories, two projects that people on the Rainier are or will be involved with captured my interest: Okeanus Explorer and Autonomous Underwater Vehicles, (AUVs).

In 2008, NOAA will commission an ocean exploration ship, Okeanos Explorer. It’s currently in Seattle, WA which is, coincidentally, the homeport of the Rainier. Rainier’s Chief Steward suggested that I read about the Okeanos Explorer because it has an interesting educational mission. That seemed like a great idea, and I discovered that the Chief Boatswain from the Rainier will be moving to the Okeanos Explorer when it is deployed. So, I looked it up at, “Okeanos Explorer: A New Paradigm for Exploration”, where I found the following information. The Okeanos Explorer will be dedicated to exploring the world’s oceans with a threefold mission: deep water mapping; science class remotely operated vehicle (ROV) operations; and real-time ship to shore transmission of data. Scientists, educators, students and the Chief Boatswain from the Rainier will be participants in ocean exploration in much the same way that I was part of project SNOW (see above).

AUV PUMA
AUV PUMA

Through ship personnel there is also a connection between NOAA Ship Rainier and Autonomous Underwater Vehicles (AUVs). Recently, I talked with a visiting Survey Technician who was programming as he spoke. The keyboard seemed an extension of his fingers. His regular job in Silver Spring, MD turned out to be in research for developing and improving AUVs. AUVs are unmanned, underwater robots that can use their sensors to detect underwater mines, objects of archaeological interest or for mapping the seafloor. This was fascinating to me, and I asked many questions.  Last summer, 2007, I had followed the day-by- day log of the Icebreaker Odin in the eastern Arctic Ocean. On this expedition two AUVs, named PUMA and Jaguar, were used to explore and map below the ice on the Gakkel Ridge. In part their mission was to search for hydrothermal plumes or vents. AUVs and their potential are probably as interesting to ocean explorers as the Mars Rover is to NASA scientists. I found out more about NOAA’s role in exploration with AUVs at “AUVfest 2008: Navy Mine-Hunting Robots help NOAA Explore Sunken History”.  

Personal Log 6: Back on the Bridge, Headed Home 

An AUV demonstrates its ability to sense and respond to its surroundings.
An AUV can sense and respond to its surroundings.

As we transit from the survey area to Homer, AK, I have time to reflect on what I will take away from this experience. Again, I am pleasantly interrupted by trips to the Bridge to look at whale spouts and the endless display of volcanic mountains, islands and sea. We’ve made a stop en route for the anglers aboard, and I periodically race back to the fantail for photos of fish, and fishermen and women. But, my thoughts keep returning to, how to make an experience like this real for students. I believe that a research experience and interaction with scientists can make an impression on a student that will last a lifetime. I want students to ask questions and be able to find the resources to answer them. On this voyage I have learned how scientists map the seafloor, and like NOAA I am interested in finding even more ways to use the data.  The Hydrography branch of NOAA recognizes that seafloor maps are a valuable resource that can have multiple uses in addition to producing nautical charts for safe surface navigation. They are looking for ways to, Map It Once: Use Many Times. I had in mind something catchier like, Hydrographic Survey: Ocean Window, but the thought is the same. I like the idea of something called Hydrographic Survey Highlights.

Students could see seafloor discoveries or mysteries from the most recent surveys, and then use NOAA resources to discover what they are or what seafloor features they represent. A good example would be the images of the volcanic plume surveyed by the Fairweather in Dutch Harbor, AK this summer. Another question I have had while surveying the seafloor around Pavlof Volcano is, “Is it glacial, or is it volcanic?” Perhaps I will use one of those topics for a lesson plan when I get back.

I want to close my Teacher at Sea logs by saying that I have had the time of my life, and am willing to come back again if the Rainier ever needs me.

Here are some resources for looking at hydrographic survey data:

hjelm_log6e
Lisa Hjelm

Lisa Hjelm, August 9, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 9, 2008

A survey technician night processing on the Rainier
A survey technician night processing on the Rainier

Science and Technology Log: Ping to Chart … 

For the past three days I have been Night Processing. That may sound confusing, so I’ll explain. Instead of going out to sea to collect data, I have been processing the data that comes in from the launches. I can’t begin my job for the day until the evening. Survey technicians rotate between collecting and processing data. This science log will summarize the steps that go into turning raw hydrographic data into a navigational chart. Beginning right after dinner, three, four or five, (depending on how many launches were out that day) survey technicians get right to work processing data. CTD casts are used to calculate sound velocity throughout the water column. Night processors take that sound velocity data and apply it as a correction to the raw bathymetry data collected by the launch. Next, the raw data is corrected for the heave of the boat (wave action), and finally for the influence of tides. Then all of this corrected data is merged, and a preliminary base surface (seafloor surface) is created for the bathymetry data.

A preliminary bathymetry chart posted in the Mess.
A preliminary bathymetry chart posted in the Mess.

To check the preliminary base surface, it is viewed with the corrected raw data overlaid. The night processor scans each line of the merged data and looks for anomalies, variations from the norm that might have skewed the base surface. This scan is a time-consuming process. To an outsider it looks a little bit like playing a computer game. Each survey line is divided into small increments and scanned in cross section. Any obviously anomalous data points are highlighted and eliminated. Once the day’s charted area has been scanned and cleaned, the new data is merged with other days’ work. Gradually, building day by day, an entire work area is charted.  To make this process manageable over a sizable area, the survey is divided into sections. Each survey technician is responsible for a section, or sheet. When all of the data has been collected and reviewed, the survey technician writes a scientific report that discusses any data quality  issues, and the work that was done. Other information collected, such as bottom sample data, is included in the scientific report. The sheet is compared with the existing, current chart and also with the bordering sheets. The completed field sheet is sent to the Pacific Hydrographic Branch (PHB) in Seattle where it is reviewed and checked for quality. Finally, the sheet is sent to the Marine Charting Division (MCD) in Silver Spring, MD. The Marine Charting Division chooses the actual soundings that will appear on the chart and publishes it.

An important exception to this step by step process occurs when a danger to navigation is discovered. Dangers are fast tracked, and the information is released to the public almost immediately.

The current chart on the Bridge. The red circle indicates the area in the bathymetric map to the left.
The current chart on the Bridge. The red circle indicates the area in the bathymetric map above.

Personal Science Log: There Ought to be Vents 

Each year my sixth grade science students at Crossroads Academy use one of the NOAA Ocean Explorer Expedition websites for a research project. The students ask a question, and then use NOAA resources to answer the question and write a lab report. This is a challenging project for sixth grade students, so I think some of my students will enjoy reading about how I have used the Teacher at Sea experience to “practice what I preach.”

Vocabulary: Hydrothermal vents -places on the seafloor where warm or hot water flows into the ocean. They are found in areas where there is volcanic activity. The hot, acidic fluids may carry dissolved metals that can precipitate to form ore deposits.

Pavlov Island volcano on the Alaska peninsula
Pavlov Island volcano on the Alaska peninsula, AK Observatory Program

I must confess that along with my Mission from NOAA to perform the duties of a Teacher at Sea (TAS), I came aboard Rainier on a mission of my own. I came to see volcanoes, and even more specifically, I dreamed of discovering volcanic activity or active hydrothermal venting on the seafloor. For as long as I can remember I have been interested in ore deposits that form at vents.

Before becoming a teacher, I mapped and studied ore deposits that formed millions of years ago. It would be very exciting to find evidence of an active vent here in Alaska. That evidence might be: cone shaped or cratered features on seafloor bathymetry maps; floating pumice; gas bubbling on the sea surface; local seawater color changes; and seismic activity (Carey and Sigurdsson, 2007).  By searching the NOAA Vents website I was able to confirm that anomalous values detected by the CTD (Conductivity, Temperature, Depth sensor) instrument (described in log 2) can also be used to help locate hydrothermal vents. Prior to the cruise, I researched the geology of the area as best I could without knowing the exact location of our work area. When I arrived at Rainier, I knew there would be active volcanoes nearby, and I was ready to go.

Approximate area of the current survey with nearby volcanoes indicated.
Approximate area of the current survey with nearby volcanoes indicated, Observatory Program

So far I haven’t seen evidence of hydrothermal venting, no floating pumice, discolored or bubbling water, and the Alaska Volcano Observatory, hasn’t reported seismic activity here within the last month. I have learned how to take a CTD cast, observed volcanic and glacial features in the local landscape, and studied the preliminary bathymetry posted on a chart in the Mess. I am not disheartened nor dissuaded from my quest. In fact, I am encouraged by news from the Office of Marine and Aviation Operations (OMAO) Newsletter for the weeks of July 21 through August 4, 2008 where I read the following report.

Oscar Dyson and Fairweather:  In late June, Oscar Dyson responded to a request from the Office of Coast Survey to investigate a reported area of discolored water outside Dutch Harbor. Dyson confirmed the discoloration during a transit and took a water sample that suggested a possible plankton bloom.  OCS and OMAO then tasked Fairweather to investigate the anomaly during a scheduled transit. Fairweather personnel also confirmed the discolored water, and surveyed the area with the ship’s hull-mounted multi-beam echosounder systems. This revealed a group of small mounds rising a few meters off the seabed in about 100 meters of water directly below the area of discolored surface water. The sonar trace indicated that at least one of these features appeared to be actively emitting a plume of fluid or material. Based on a chartlett produced from the scan, OCS does not believe that these features pose any hazard to surface navigation.  These results have been shared with the U.S. Coast Guard and the Alaska Volcano Observatory, as well as NOAA’s National Weather Service, Pacific Marine Environmental Laboratory, and Office of Ocean Exploration and Research.

Rainier and I are only about 200 miles east of active hydrothermal vents. I have resisted the urge to shout, “Turn the ship around and head west!” After all, when compared to the vast territory that is Alaska, Dutch Harbor is right next door.

References: Carey, Steven, and Sigurdsson, Haraldur. 2007. Exploring submarine arc volcanoes. Oceanography, 20, 4: 80-89.

To learn more about discovering hydrothermal vents and to watch a submarine volcanic eruption, check out the websites below.

Lisa Hjelm, August 4, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 4, 2008

Science and Technology Log: The Most Productive Hydrographic Vessel in the World 

Dive team heading out to test new equipment
Dive team heading out to test new equipment

After a week at sea my days are starting to have a rhythm. I still find myself on the wrong stairway or deck, or going back for my hard hat, but not as often. Each morning I check the Plan of the Day (POD) and head to the work/lesson planned for the TAS (pronounced TAZ), Teacher at Sea. I am not the only visitor or newcomer on the NOAA Ship Rainier. There are hydrographers visiting from South Korea, physical scientists from the NOAA office in Seattle and new crewmembers. The Rainier has proved to be a welcoming environment. This log will be about my introduction to working aboard ship. The first order of business upon arriving at our anchorage at Inner Iliasik Island was safety training, and instruction in ropes handling and releasing the launches. Every person on board has a station and job in case of an emergency. Drills are frequent and thorough. Fire drills require everyone to muster and simulate response to a detailed fire scenario. After the drill there is a debriefing, so efficiency can be improved.

Everyone on board, including the Teacher at Sea (TAS), must be proficient at handling the ropes. I learned to coil and throw a rope and to tie a bowline. I use those skills each day deploying and recovering the launches. In the morning my jobs are releasing the aft hook as the launch is lowered into the water and catching the aft line and securing it in the launch. In the evening I throw the line back to the ship and secure the aft hook, so the launch can be raised onto the ship. These are straightforward but very visible jobs. Many people are on deck assisting and observing. I made a point of practicing my line handling skills. Physically releasing and recovering the launches is handled by the Deck Crew. NOAA Ship Rainier uses a gravity davit system. The launches literally slide by the force of gravity into the water. The Deck Crew ensures that the slide is controlled and safe.

The divers arrive back on board at about 9:00 pm
The divers arrive back on board at about 9:00 pm

The organization of personnel aboard NOAA Ship Rainier was initially confusing to me. I’ve gradually come to understand that personnel are organized into five groups: NOAA Corps Officers, Survey Technicians, Deck Crew, Engineering, and Stewards. Each group has basic responsibilities. NOAA Corps Officers direct operations and navigate the ship. They also work on the survey team. Survey Technicians, the science crew, are employed by the Department of Commerce to conduct hydrographic surveys. Members of the Deck Crew fit my image of true mariners. They maintain the ship, deploy and retrieve the launches, assist with navigation and drive the launches. Engineering keeps the ship running and maintains the engines in the ship and launches. The stewards manage the food supply, and the food is excellent aboard the Rainier. These descriptions are somewhat oversimplified. In reality every crewmember seems to have a wide range of skills, and there is overlap amongst the departments. A great example is the divers. There are seven or eight certified NOAA divers on this leg. They come from all departments: officers, engineering, deck and survey. The Dive Master is a member of the Deck Crew and also part of the specially trained firefighting team. Divers are required to log a dive at least once every six weeks. They have opportunities when hull inspections are required, or tide gauges must be installed. Occasionally they dive on their own time, for fun. I took pictures of a Dive Team preparing to test some new equipment.

The engine room, which is the control center of the ship
The engine room, which is the control center of the ship

In the course of almost two weeks at sea, I’ve toured the ship from bow to stern and talked with most of the people on board. It has been fascinating to investigate the engine room, listen to stories and talk with mariners of all ages. Today, the engineering group enthusiastically showed me around below decks. In their words, “this is the control center,” and indeed they have a room-sized control panel with access to engineering diagrams and controls for the whole ship. Everything was scrupulously clean and accessible by bright red walkways. I saw the boilers, generators, engines, crankshafts, and plumbing and desalination systems. The desalination system produces the fresh water we use for laundry and showers by distilling salt water.

The ship’s engines
The ship’s engines

Next, we went to aft steerage, and I saw the giant crankshaft the moves the ship’s rudder. Everyone aboard seems to have a job that is both challenging and interesting. My daily work is with the survey group as I am aboard as a scientist. Everyone in this group has a science or technology background. As in all of the organizational groups, the science party spans a wide range of ages. Many of the survey technicians are in their twenties. They plan to work for a few years and then go on to graduate school. Several of us are considerably older.  It is worth noting that everyone seems to be actively learning new skills all the time, and NOAA provides opportunities for continuing education. There are jobs on NOAA ships for High School graduates and university professors. My roommate is the Chief Steward. She has been cooking and managing provisions aboard NOAA ships for twenty-nine years. Her job has taken her all over the world.

The beach at Inner Iliasik Island is made of pebbles instead of sand
The beach at Inner Iliasik has pebbles instead of sand

Personal Log: View from the Fantail 

My personal day begins and ends with what I think of as Volcano Check. I scan the horizon in all directions for plumes of smoke or ash. Next I examine all of the nearby visible craters. Just like the ensigns on the Bridge, I am On Watch. On Fridays I verify my personal observations by checking the Alaskan Volcano Observatory website, where a weekly update on volcanic activity is posted. There you can find detailed information and images of all the active volcanoes. There are instructions for collecting and submitting ash samples. If I were an Alaskan science teacher I would be on the lookout for opportunities to collect ash samples with my students.

I may use some of my free time looking at volcanic rocks with binoculars, but I am not the only one. There are at least five people with geology degrees, and an equal number of meteorologists. Out on the fantail the line between vocation and avocation blurs. Twice I have had the opportunity to see the rocks up close, once at a beach party on Inner Iliasik Island and once on an exploratory outing on one of the smaller launches. About once a week the Rainier hosts a beach party with a bonfire. I hiked to the highest point on the island for some beautiful scenery and a close up look at what turned out to be andesitic tuffaceous rocks. On our launch ride we explored caves at Arches Point and entered Long John Lagoon to see birds and bears (unfortunately my camera battery died). The ship also has satellite TV and movies, but on a summer night most people are outside.

NOAA Ship Rainier from Inner Iliasik Island
NOAA Ship Rainier from Inner Iliasik Island
A nearby volcanic crater
A nearby volcanic crater

Lisa Hjelm, August 3, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 3, 2008

Lowering a launch using a gravity davit system
Lowering a launch using a gravity davit system

Science and Technology Log 

This morning I awoke to my first cloudy sky. Although clouds line the horizon, the sky above is blue. The fine weather is holding steady. At 0815 three launches were deployed to continue surveying the deep water, central part of the channel. I watched them head out into open water, but today I am in the survey room observing the Survey Technicians (ST) as they process the multibeam sonar data. At the same time, the ship is underway to a new anchorage on the other side of the end of the world, or more properly, the other side of Inner Iliasik Island. After a full week I have a new perspective on this island and volcano world. I’ve learned the names of our islands, Inner Iliasik and Iliasik. From the launch I am able to orient myself by looking out at the islands, not just by looking at the map. I continue to learn more about navigation charts. Whenever I stop by the Bridge someone points out something new. Today I learned that this area was previously mapped during surveys from 1900 – 1939 and 1940 – 1969. That means that much of it was surveyed with single beam sonar just after World War II. It took twenty summer seasons to cover this area using single beam sonar.

The launch heads out to sea
The launch heads out to sea

Using modern, multi-beam sonar, NOAA Ship Rainier is the first ship to chart this area, and the survey should be completed by 2009, or less than two years from start of survey to final chart. As the ship transits to its new anchorage we are collecting bottom samples at specified locations along the way. To collect a sample, the ship stops and is maneuvered into position, so the sampler can be safely lowered. A metal container descends on a cable to the seafloor. When it hits bottom a spring loaded scoop closes and collects a bottom sample. The container is winched back to the surface, and the water drained out. Then, we open it up to see what’s inside. Today our samples have been turning up broken shells, sand and shells, pebbles and shells and sticky green mud. After the samples are logged they go right back into the sea. I collected some sand samples to dry out and examine under microscopes with students.

Bottom sampling from the ship
Bottom sampling from the ship

Bottom samples are used to investigate and confirm comments on the existing navigation chart. Examples of chart comments would be sandy, shells (s, sh), black sand (bk s), shoals, rocky, and my personal favorite, smoking volcano. Sample locations are selected to provide representative coverage of the areas that have been mapped, and the data will be used to update the charts. Soon this sample data along with reflectivity data (measured as changes in backscatter of the sound pulse that reflect the hardness of the bottom surface) from the surveys will be used to map the type of seafloor along with the shape of the seafloor. This would be similar to generating a preliminary geologic map of the seafloor. Tomorrow I expect to be back on a launch with a better understanding what goes in to compiling a navigational chart.

Personal Log: Observations from the Fantail 

Kayakers heading out to explore
Kayakers heading out to explore

Dinner is at 1700 (5:00 pm) prompt. After dinner people pursue their own activities. Some fish from the fantail. If the weather is calm, the smaller launches are used by fishing parties, and sea kayakers venture out to the islands to explore and hike. As I enjoyed the bright, warm sunlight on the fantail deck, I watched the progress of the hikers, tiny dots progressing steadily up the slope of Inner Iliasik Island. I gazed past the islands at the distant, hazy volcanoes, and spotted an ashy plume! With binoculars it was possible to see that smoke was rising from a small crater atop a conical volcano. Several of us rushed to the bridge to identify the volcano by locating it on the nautical chart. Our best guess, Dutton, which was not listed as presently erupting on the Alaskan Volcano website, http://www.avo.alaska.edu . Volcano watching is an exciting after dinner activity.

The catch of the day
The catch of the day

Lisa Hjelm, August 2, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: August 2, 2008

Lowering the launch
Lowering the launch

Science and Technology Log 

Hydrographic Survey – “Mowing the Ocean” 

Science surrounds me. Everywhere I look people are practicing the skills I’ve been teaching for the past twelve years. Today, I am practicing the skills of observation and documentation. The following are my observations of hydrography in action.

Important vocabulary
Hydrographic survey or Hydrography: the measurement and description of the sea bed and coastal area. These data are used to produce navigation charts.

CTD and CTD cast: “CTD” is the abbreviated name for an instrument package that has sensors for measuring the Conductivity, Temperature and Depth of seawater. The instrument is lowered to the bottom. It collects Conductivity, Temperature, Depth and density data for the entire water column. That data is used to make corrections in the hydrographic survey data.

Multibeam sonar: By measuring the time it takes for sound waves sent from a transmitter mounted beneath the launch to bounce back, scientists determine the depth to the seafloor. Multibeam sonar systems provide fanshaped coverage of the seafloor. Because the speed of sound in water is related to conductivity, temperature and depth the CTD data is used with the multibeam sonar data.

Recovering the CTD after a cast
Recovering the CTD after a cast

The day starts at 0800 (8:00 am) on the fantail (rear, lowermost deck of the ship) with updates, detailed weather forecasts for the areas that will be mapped, and instructions from the Commanding Officer (CO), Executive Officer (XO), and Field Operations Officer (FOO). Then, wearing flotation devices and hardhats, each crew assembles to board the launches. As each launch is lowered, it is stopped even with the deck, and its crew of at least three, two hydrographers and a driver, boards. A cooler and thermoses for lunch are handed over. The launch is lowered into the water on cables and unhooked from the ship. It speeds at about 15 knots to the area to be mapped. The survey begins with a CTD cast. The CTD is lowered to the seafloor to collect data on water conductivity, temperature and depth. It is necessary to conduct a CTD scan every four hours or whenever conditions change. For example, if the launch moves to deeper water or to a different area. That done, the crew engages the multibeam echo sounder system, and at 7 knots per hour, the launch begins collecting data,“mowing the ocean.” In order to completely map the assigned seafloor area, the launch ends up making a pattern very similar to the back and forth pattern made by a lawnmower. This sounds easy enough, but it takes about a year to really learn the job. Each launch needs a three man crew. The Coxswain drives the launch and keeps the towed equipment on the grid line no matter what the seas around are doing.

Driving the launch as we “mow the ocean.”
Driving the launch as we “mow the ocean.”

The two hydrographers take turns scanning and tweaking four computer screens that are monitoring data collection. The towed instruments are collecting real time data that has to be checked and stored. All of this work is conducted in a relatively small boat, in the open ocean. When you add that component, you quickly realize that this is not only exciting science by a true adventure at sea. These crews are highly trained professionals. The launch drivers are senior members of the Deck Crew and are very experienced mariners. So far, I have worked with a ferry driver, a commercial fisherman, and an outward bound instructor. I tried driving the launch for a little while on my first day out. With no experience at all, I found it quite difficult to keep the launch headed along the line. Any deviation of the towed instruments from their prescribed grid path causes missed spots called “holidays.” “Holidays” can be caused by other things as well such as unexpected software crashes or gaps caused when data points have to be removed during processing. For complete survey coverage, the launches must return to remap “holidays.” These are therefore holidays for the equipment not the hydrographers.

Inner Iliasik Island
Inner Iliasik Island

Hydrographers have both technical skills and nautical skills. Many of them are officers on the Rainier. They troubleshoot whenever the software malfunctions and fix anything that breaks on the ship during the workday.  I looked in the toolbox, and yes, there is duct tape. The launch crew also assists in deploying and retrieving the launches from the ship. This is an exciting and challenging job in an extraordinarily beautiful environment.  After the launches return and are recovered, the hydrographers immediately meet to report on the day’s work. Each team leader makes a report and any problems with data logging and equipment are documented and discussed. The Field Operations Officer (FOO) uses this information to plan for the next day. And last but not least, if you’ve read this far, you are wondering how the Teacher at Sea fits into this. Each day the Teacher at Sea becomes more proficient at her tasks. I am provided with training, and my understanding is growing. But, on that first day, my day of “shock and awe,” I spent my time taking pictures, asking questions, investigating my personal flotation device and standing aft (in the back of the boat) to avoid seasickness. Additional time was spent practicing standing steadily and walking around the small boat. In other words, I spent the day “getting my sea legs. “

Personal Log 

Pavlof Volcano and Pavlof Sister
Pavlof Volcano and Pavlof Sister

The second full day at sea we continued our transit to the survey area. Bright sunshine ignited an endless parade of snowy volcanoes. Off the bow, whale spouts dotted the horizon, and puffins bobbed and clumsily took off flashing their orange feet like small flags. At 2100 (9:00 pm), with the day still bright, nearly everyone gathered as the ship dropped anchor in a small bay at what appeared to be the end of the world. Two smooth, lawn-green islands connected by an isthmus marked the boundary. Beyond, on a hazy, distant horizon were the outlines of volcanoes. Behind, loomed the pointed, snowy Pavlof volcanic peaks. Perhaps Robert Frost was right.

SOME say the world will end in fire, Some say in ice. From what I’ve tasted of desire I hold with those who favor fire. – Robert Frost

Lisa Hjelm, July 29, 2008

NOAA Teacher at Sea
Lisa Hjelm
Onboard NOAA Ship Rainier
July 28 – 15, 2008

Mission: Hydrographic Survey
Geographical area of cruise: Pavlov Islands, Alaska
Date: July 29, 2008

As soon as we pulled away from the pier the incredible beauty of Alaska began to unfold all around us.
As soon as we pulled away from the pier the incredible beauty of Alaska began to unfold all around us.

Science and Technology Log 

We set sail at precisely 1300, in bright sunshine. Once we were underway everyone was busy. The gangplank and onshore equipment were stowed away. Survival suits, hardhats and lots of instructions were handed out to the newcomers. Before I knew it I had been in and out of a survival suit and knew my job and location in case of fire or any other possible emergency. I made sure I knew where my lifeboat was as well (#7). This is after all my first adventure at sea. As soon as possible I stationed myself on the Bridge where I spent most of my time during the transit from Kodiak to our work site at the Pavlof Islands. I was very interested in learning about the navigation of the RAINIER, but initially I was distracted by the islands, volcanoes and wildlife to be seen in every direction. Puffins, with their funny orange feet, were everywhere and in one of the narrow passages I saw at least ten sea otters. As we moved beyond Kodiak Island we frequently saw the spouts of whales. Our transit time was 32 hours at 13 knots, so I did get to spend time observing the Bridge in full operation.

Scenery in transit
Scenery in transit

There were always at least three people at work on the Bridge, usually more. Everyone worked a four hour shift, and they were alert, attentive, observant, and busy every minute of that time. The ship’s position was updated on a nautical chart every 15 minutes as was the weather log. I noticed there was a NOAA cloud identification chart posted on the wall, the same one I use in my classroom. Two Ensigns were responsible for directing the ship, monitoring radar, speed, weather, our exact location, updating the chart and using binoculars to scan the horizon in all directions. A member of the Deck Crew was at the helm steering the boat and providing a third set of eyes scanning the horizon in all directions.  There was constant communication amongst the three of them about what they were seeing and doing. We saw and monitored the progress of many fishing trawlers, an occasional log and whales. Whales were most easily spotted by their spouts and the RAINIER shifted course slightly whenever necessary to avoid them.

The Captain was on the Bridge whenever we went through narrow passages, and she was called when fishing boats got within a certain distance of the RAINIER. It was exciting to see people collecting data and using all of the skills taught in science. I was seeing science in action. It was absolutely clear that everyone knew his or her job and did it well. As a result, my first night at sea, I slept like a baby, rocked by the waves.

View of the Bridge, in transit from Kodiak to Pavlof Islands, AK
View of the Bridge, in transit from Kodiak to Pavlof Islands, AK

Personal Log 

When I arrived in Kodiak it was cool and drizzly. Patches of snow were visible on the tops of nearby hills and lilacs were just beginning to bloom, very different from NH weather in late July. Our lilacs bloom on Memorial Day. A van from the ship picked me up and Ensign Anna-Liza Villard-Howe showed me to my bunk and gave me a quick tour of the ship. After practicing climbing into and out of an upper bunk and stowing my stuff, I spent some time investigating on my own. My first impression was that NOAA Ship RAINIER was similar to Hogwarts, lots of narrow passageways and staircases that moved around when I wasn’t looking. Now that I’ve been aboard for a couple of days, I know it’s only the ship that moves, not the staircases, and I’ve learned the way to my favorite place so far, the Bridge.

Ensign updating the chart
Ensign updating the chart
NOAA Teacher at Sea, Lisa Hjelm, learns the ropes
NOAA Teacher at Sea, Lisa Hjelm, learns the ropes