Kainoa Higgins: Mantas and Megalopae, June 28, 2014

NOAA Teacher at Sea
Kainoa Higgins
Aboard R/V Ocean Starr
June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Northern California Current
Date: Saturday, June 28, 2014

Weather Data from the Bridge: Current Latitude: 45° 59.5’ N Current Longitude: 125° 02.1’ W Air Temperature:  12.7° Celsius Wind Speed: 15 knots Wind Direction: WSW Surface Water Temperature: 15.5 Celsius Weather conditions: Partly cloudy

Find our location in real time HERE!

Science and Technology Log:

Neuston Net and Manta Tow Today, the weather is pleasant but the sea seems more than restless. The show must go on! I step onto the open deck behind the wet lab just as Dr. Curtis Roegner, a fisheries biologist with NOAA, is placing a GoPro onto the end of an extensive net system.

Dungeness Crab – A Pacific Northwest Delight Photo Credit: http://www.smokeybay.com

While Curtis specializes in the biological aspects of oceanography, he is especially interested in the synthesis of the ocean system and how bio aspects relate to other physical and chemical parameters. He joins this cruise on the Ocean Starr as he continues a long-term study of distribution patterns of larval crabs. The species of focus: Cancer magister, the Dungeness crab; a table favorite throughout the Pacific Northwest.

While I have been known to eat my weight in “Dungies”, I realize that I know very little about their complex life cycle. We begin with “baby crabs”, or crab larvae. Once they hatch from their eggs, they quickly join the planktonic community and spend much of their 3-4 month developmental process adrift – at the mercy of the environmental forces that dictate the movement of the water and therefore, govern the journey of these young crustaceans. It has been generally assumed that all planktonic participants float wherever the waters take them. In that context, it makes sense that we have been finding large numbers of larvae miles offshore during our nighttime trawl sorting. Still, not all are swept out to sea. Every year millions make their way back into the shallows as they take their more familiar, benthic form which eventually grows large enough to find its way to a supermarket near you. The question is: How? How do these tiny critters avoid being carried beyond the point of no return? Is it luck? Or is there something in the evolutionary history of the Dungeness crab that has allowed it to adapt to such trying conditions?

Dungeness Crab Megalopae
“Dungie” babies

Curtis tells me about recent research that suggests that seeming “passive” plankton may actually have a lot more control of their fate than previously supposed.  By maneuvering vertically throughout the column they can quite dynamically affect their dispersal.  Behavioral adaptation may trigger vertical migration events that keep them within a particular region, playing the varied movement of the water to their advantage.  Curtis believes the answer to what determines Dungie abundance lies with with the Megalops, the final stage of the larva just prior to true “crab-hood”. By the end of this stage they will have made their way out of the planktonic community and into estuaries of the near shore zone.

Kainoa and Curtis
Dr. Curtis Roegner explains the importance of his study

This continued study is important in predictably marking the success or failure of a year’s class of crab recruitment. That is to say, the more Megalopae that return to a region, the better the promise of a strong catches for the crabbing industry – and a better chance for you and me to harvest a crab or two for our own table!

As Curtis and I discuss his research, he continues preparing his sampling equipment. The instrument looks similar to the plankton nets we use in marine science at SAMI only it’s about ten times longer and its “mouth” is entirely rectangular, unlike the circular nets I am used to using. I’ve heard the terms “manta”, “bongo” and “neuston” being tossed around lab and yet I am unable to discern one from the other. It’s time I got some answers!

Curtis explains that the Megalopae he wants to catch are members of the neuston, the collective term given to the community of organisms that inhabit the most surface layer of the water column. The Neuston net is named simply for its target. It occurs to me that a “plankton net” is a very general term and that they can come in all shapes and sizes. In addition, the mesh of the net can vary drastically in size; the mesh on our nets at school is roughly 80µm, while the mesh of this net is upwards of 300μm (1 µm or micrometre is equivalent to one millionth of a metre).

Manta tow & Neuston net
The manta body design for neuston sampling. A specialized plankton tow.

I’m still confused because I am fairly certain I have heard others refer to the tool by another name. Curtis explains that while any net intended to sample the surface layer of the water column may be referred to as a neuston net, this particular net had a modified body design which deserved a name of its own. The “manta” is a twin winged continuous flow surface tow used to sample the neuston while minimizing the wake disturbance associated with other models. The net does seem to eerily resemble the gaping mouth of a manta ray. These enormous rays glide effortlessly through the water filtering massive volumes of water and ingesting anything substantial found within. On calm days, our metallic imposter mimics such gracefulness. Today however, it rides awkwardly in the chop, jaggedly slicing and funneling the surface layer into its gut. It’s all starting to make sense. Not only is this a plankton net designed to sample plankton, it is also a plankton net designed to sample only the neuston layer of the planktonic community.   The modified body sitting on buoyed wings designed to cover a wider yet shallower layer at the top of the water column further specified the instrument; a neuston net towed via manta body design for optimized sampling. Got it.

Collected Plankton Sample
A filtered sample of various crustaceans collected from the neuston

After the tow is complete, Curtis dumps the cod end of the net into a sieve, showing me an array of critters including more than a dozen Megalopae! Two samples are frozen to ensure analysis back at the Hammond Lab in Astoria. There, Curtis will examine the developmental progress of the Megalopae in relation to the suite of data provided by the CTD at each testing site. This information, along with various other chemical and physical data will be cross-examined in hopes of finding correlation – and perhaps even causation – that make sense of the Dungeness crabs’ biological and developmental process.

Analysing CTD Data
Dr. Curtis Roegner looks for patterns relating crab Megalopae and CTD data

The CTD 

CTD
The CTD measures conductivity, temperature and depth among other auxiliary measurements

Fundamentally, a CTD is an oceanographic instrument intended to provide data on the conductivity, temperature and depth of a given body of water. The CTD is one of the most common and essential tools on board a research ship. Whether it’s Jason exploring benthic communities, Sam hunting jellies, or Curtis collecting crab larvae, all can benefit from the information the CTD kit and its ensemble of auxiliary components can provide about the quality of the water at a given test site. In general, the more information we collect with the CTD the better our ability to map various chemical and physical parameters throughout the ocean. Check out the TAScast below as I give a basic overview of and take a dive with the CTD and its accessories.  

 

 

Personal Log:

Just when I thought I was beginning to get the hang of it…. Hold on, I have to lie down. As I mentioned above, the seas have been a bit rougher and I’ve been going through a phase of not-feeling-so-hot for the first time this trip. It’s odd because we hit some rougher ocean right out of Eureka and it didn’t seem to faze me much. I stopped taking my motion sickness medicine a few days in, and though I’ve picked it back up just in case, I’m not entirely convinced it’s the only contributing factor. I think it has more to do with my transition onto the night shift and all the plankton sorting which requires lots of focus on tiny animals. The night before last was particularly challenging. In the lab, all of the papers, books and anything else not anchored down slid back and forth and my body felt as if it were on a giant swing set and seesaw all at once. In addition, each time I looked out the back door all I could see was water sloshing onto the deck through the very drainage holes through which it was intended to escape. I remember wondering why there were so many rolls of duct tape strapped to the table and why chairs were left on their side when not in use. Well, now I know. Earlier today we made a quick pit stop in Newport, Oregon – home of the Hatfield Marine Science Center as well as NOAA’s Marine Operations Center of the Pacific. In short, this is where NOAA’s Pacific fleet of vessels is housed and the home base to several members of my science team, including Chief Scientist, Ric Brodeur.

The NOAA Pacific Fleet
The NOAA Pacific fleet at rest in Newport, OR.

I remember the anticipation of seeing the R/V Ocean Starr, a former NOAA vessel, for the first time. Growing up in Hawai’i, I remember these enormous ships making cameo appearances offshore, complete with a satellite dome over the bridge, only imagining the importance of the work done aboard. Now here I was, walking amongst the giants I idolized as a kid – the difference being that my view was up close and personal from behind the guard gate, a member of their team. I’m totally psyched even though I attempt to pretend like I’ve been there before. As much as I could have spent all afternoon admiring, I needed to make the most of our two hour layover in the library uploading blog material. Unfortunately the satellite-based internet is incredibly finicky out at sea. It’s a first world problem and understandably a part of life at sea, I realize, but all the same, I apologize to all those anticipating regular updates. I continue to do the best I can. I can say, however, that the Hatfield Marine Science Center boasts a fantastic library. I look forward to exploring the rest of the facility upon my final return in a little over a week. ‘Till then, BACK TO SEA!

Kainoa Higgins: Jelly Fishing and C.U.F.E.S-ing! June 26, 2014

NOAA Teacher at Sea
Kainoa Higgins
Aboard R/V Ocean Starr
June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Northern California Current
Date: Thursday, June 26, 2014, 2000 hours

Weather Data from the Bridge:
Current Latitude: 42 ° 34.7’ N
Current Longitude: 124 ° 37.6’ W
Air Temperature:  13° Celsius
Wind Speed: 25-30 knots
Wind Direction: North
Surface Water Temperature: 14.6 Celsius
Weather conditions: Partly cloudy

Find our location in real time HERE!

Science and Technology Log:

Jelly Fishing

Jelly fishing
Patiently waiting for an opportunity to sneak up on an unsuspecting jelly

I feel a bit silly standing on the stern deck of the RV Ocean Starr with a long-handled dip net designed to skim the surface of your average suburban swimming pool. It is now my fisher net and I’m hunting jellies (which are not, in fact, fish). In my head I chant, ‘Here jelly jelly jelly’ as my squinting eyes strain to peer through the fertile layers of seawater for any sign of gelatinous zooplankton.

Sea Nettle
The Pacific Sea Nettle

I am assisting Sam Zeman, a graduate student at the University of Oregon, as she attempts to “reel in” the big one. We are keeping our eyes peeled for Chrysaora fuscescens, the Pacific Sea nettle supposedly common to these waters. Supposedly. Sam abides by the motto, “plankton are patchy” and so jelly hunting can be verrrrry frustrating.

Aggregation of Sting
Aggregating Sea nettles

Jelly aggregations are frequently seen at and around convergent zones, where one body of water meets another, each unique in physical and/or chemical characteristic (salinity, temperature, turbidity, etc). There are many such zones throughout the California Current, a classic example occurring near the plume of the Columbia River as it enters the Pacific Ocean. While these aggregating patterns have been observed there is still much to understand concerning the behavioral mechanisms creating and sustaining these patches.

In the fishing community, jellies are generally perceived as nuisances, ripping apart gear thanks to sheer numbers and collective weight. There is evidence suggesting jellyfish compete with commercially important fish species and have the potential for making a dent in zooplankton stocks when they are abundant. That being said, more evidence needs to be gathered to support or refute these claims.

Sam is diving net first into this investigation. She wants to answer questions such as: What are the jellies eating? What time of day do they eat? If they feast continuously does the preferred prey change throughout the daily cycle? What significance do seasons have? Statistically, how much of a nuisance are they? These are all fundamental yet essential questions to better understand the niche that jellies occupy in their ecosystem and what impact that might have on humans.

Sam will take her collected samples of Chrysaora back to lab for further analysis. She hopes that by examining the gut content of these jellies, she will better understand the feeding dynamics of large scyphozoans along the Oregon coast. Surrounded by various instruments designed to assess jellyfish response to flow, Sam will continue to seek the answers to the most fundamental questions: Why do jellyfish aggregate around convergent zones and are they as big of a threat as we make them out to be?

Jelly
Sam Zeman hauls in her first Sea nettle!

 

Catching Eggs – The C.U.F.E.S

I stumble into the wet lab after a restless day of sleep expecting to find the usual hustle and bustle over box corers, CTDs and neuston nets. Instead I find Ric and Curtis consumed with a piece of scientific kit I had yet to see in action. After a brief morning greeting I am introduced to the Continuous Underway Fish Egg Sampler, C.U.F.E.S (pronounced Que-Fess) for short. Underway Fish Egg Sampler. In short, it is designed to collect eggs from the top two meters of the water column near the bow of the ship as we travel throughout the day. The water is piped back to the wet lab and collected in a wire mesh. The consolidated sample of eggs is then added to a vial which will be saved for further examination in the lab. The CUFES is essential to making predictions about future stock of commercially and ecologically important species of fish and it is not long before my sleeves are rolled up and I am honing in on the rhythmic and repetitious process.

Check out the video below to get a play by play of the C.U.F.E.S in action.

Personal Log:

I can feel myself evolving, adapting to life afloat the big blue. I’ve mentioned a variety of fundamental struggles associated with life at sea, struggles that I now feel I’m getting a handle on. I’m finding that small adjustments go a long way. For example, I’ve recently discovered a rope handle hanging above my bunk intended to assist both mount and dismount from bed. I’m not sure how I failed to notice it before but it sure beats having to power push-up in and out of bed each night. I still feel like I’m cliff hanging, one hand on the rope, toes outstretched as they struggle to find floor in the darkness. I’ve learned to shift my weight as the ship pitches and rolls. It’s funny to watch everyone’s body take a 45 degree angle in relation to the deck when we encounter a steep swell broadside. When seas get rough as I try to snooze, I wedge myself between my mattress and the wall to keep from rolling out. Believe it or not, I’ve even gotten a couple loads of laundry done. As a result of these changes and more, I’m beginning to feel more at home even though I’m not anywhere close to it.

Worlds Collide
Day and Night crews come together to greet the first trawl haul

My schedule has also altered slightly. What used to be a 12:00pm-12:00am run has now shifted toward the latter. While it was great to be a part of the day’s activities: box corer, CTD, neuston net and what-not, I was only catching one or two night trawls. I was so excited to see what mysterious creatures would come from the depths in the next haul I rarely called it quits before 3 am anyway. I am now a member of the grave shift, the “nights watch” we’ve come to call ourselves, on official duty between 6:00pm and 6:00am.   I sleep until roughly 2:00pm at the latest so that I can catch the last few day tests before heading to our first trawling station of the night. I spend transit time doing a bit of this and that and then the whole night sorting trawl hauls with a fun and invigorating team. Breakfast is ready as soon as the shift ends and I grab a bite before conking out for as long a sleep as weather permits.

I am also enjoying getting to know everyone on board, both science team members and the ship’s crew. I discovered that I share Hawaiian ties with a handful on board; small world. There are more than a few here who have spent much of their professional careers on the water and so are full of captivating stories.   Recently, I sat with Jerry, an Ocean Starr engineer, who told of his career as a professional treasure hunter in Florida. Though he kept from sharing the exact location of his findings he assured me there was still a plethora for the taking! As he reinvigorated my childhood fantasies of chests filled precious gems and pirate gold, he advised, “If you want to make a small fortune, put a large fortune into hunting treasure.” Hmmm, on second thought, maybe I’ll just start with a metal detector and a side-hobby.

Teaching in the field
SAMI students and I in the ideal classroom

There is a great dynamic amongst our team and I am learning a so much from these passionate scientists. Not only is everyone incredibly versed in their field of study but I’m finding their company to be enjoyable in general. I’ve been warmly accepted onto the team and they have asked just as many questions about SAMI and this program as I have about their research, and believe me, I’m asking a lot of questions.

As a science educator I sometimes forget that I’m a part of the “the team”. Occasionally I catch myself feeling like the kid on the outside of the fence looking in and wishing he could play ball with everyone else. This experience is helping me to realize that just because I’m not in the field doesn’t make me any less of a valuable asset to the scientific community. We are the recruiters, striving to engage, develop and inspire the scientists of tomorrow.  We are responsible for convincing the general populous and particularly the generation of next that they should care about what’s happening in our ocean, to learn something about it and then grow into leaders that will do something about it. I have never felt more value in what I do.

Notable Critters Spotted: Humpback Whales, Blue Whales (that I continue to miss), Mola Mola (Sunfish), Porpoises, SEABIRDS!!!

A Mola mola, or Ocean sunfish

Poll Answer:  W.R. & W.C. stands for Wash Room and Water Closet as seen below

W.R. & W.C.
It’s the Bathroom!

 

 

Kainoa Higgins: Hard Core Box Core, June 24, 2014

NOAA Teacher at Sea
Kainoa Higgins
Aboard R/V Ocean Starr
June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Northern California Current
Date: Tuesday, June 24, 2014

Weather Data from the Bridge:
Current Latitude: 42° 30.2’ N
Current Longitude: 124° 49.5’ W
Air Temperature:  12.8° Celsius
Wind Speed: 10 knots
Wind Direction: S
Surface Water Temperature: 16.0 Celsius
Weather conditions: Overcast and Misty

Find our location in real time HERE!

Science and Technology Log:

The Box Corer

I walk into the wet lab after a night of rocking and rolling and find the day shift team prepping for and executing their respective projects. I sit down with Jason Phillips, a fisheries biologist with Oregon State University at the Hatfield Marine Science Center, to talk about his focus aboard the RV Ocean Starr. Jason serves as lead scientist on the box core sampling project.  The box corer is a piece of equipment used to literally “grab” a sample of the seafloor for analysis both of sediment grain size as well as benthic (seafloor) life.  It is reminiscent of an old candy grab penny arcade where a crane’s claw is used to scoop candies from a floor of goodies.  I don’t anticipate the pay load of this scoop to be as deliciously appealing.

An Offshore Wind Turbine
An Offshore Wind Turbine

Jason explains that he joined this cruise off the coast of Oregon to learn more about the seafloor along a specific series of coordinated sampling stations. These sites are aligned perpendicular from shore and increase in depth as we move further along the continental shelf away from the coastline. The ultimate goal of his project is to better understand the communities of organisms that may be impacted by the commercial development of renewable wind energy. Yes, I’m talking about giant wind turbines anchored to the seafloor, not unlike the terrestrial wind farms seen throughout the country. Before any ground is broken on such a project, the potential impacts have to be investigated. Enter Jason and the rest of his team at Oregon State University. By establishing a fundamental understanding of baseline benthic communities as well as characterizing bottom types, Jason hopes to better explain how the ocean floor changes as we move across the continental shelf.

Jason asks if I’d assist in the deployment of the next box corer and I jump at the opportunity to get my hands dirty. We step onto the stern deck where most of the scientific equipment is kept. There, in all of its silvery splendor, sits the box corer, securely resting in a heavy-duty metal cradle.  Weighing in at 450 lbs. when empty – it’s even heavier when filled with a core sample of seafloor sediment. The ocean is a bit rough today so Jason assigns me a supporting role. Using a thick rope attached to a handle on the box corer my job is to keep it from swinging uncontrollably as it is raised from its resting cradle and lowered into the water.  I’m warned to keep all extremities out of the way as it wouldn’t take much for this piece of scientific kit to become a glorified wrecking ball capable of devastating blows to both ship and its operators.  The winch begins to tighten the slack on the cable line and the box core rises from its cradle. Though it swings slightly from side to side, it cleanly enters the water and starts its decent into the dark depths.

This time it will collect a sediment sample at 200 meters, and takes nearly six minutes to reach the bottom. When it does, its gravity-release mechanism triggers and the shovel-like claws propped open on the surface close as the wire is wound back in, scooping a load of seafloor and any organisms living in or on that substrate. About 10 minutes later, the box corer returns to the surface draining gallons of water as we maneuver the even heavier steel trap back to its cradle.

Once secure, Jason collects a raw sample in a small jar, labels it and sets it aside for grain size analysis in the lab. Using a ruler, he measures the depth of the total sample. I learn that sample size depends largely on grain size. The further away from shore, the deeper the water, and a lower impact by waves and surface currents. The result is the settling and compacting of fine particulates. Conversely, seafloors closer to shore “feel” the more of the effects of these ocean forces, which allows for less settlement, and lighter particles are washed further offshore. There we would find sandier substrates. This sample is incredibly “muddy”, made up mostly of clay.

Box Core Sample
Top left: Peanut worm (emits terrible stench), Bottom left: Dr. Ric Brodeur and Jason Phillips assess an inky worm. Right: Jason Phillips quickly returns an unexpected skate.

Once the seafloor “muck” is extracted from the box corer, Jason uses a small wire mesh and a garden hose to sluice the sediment, breaking up the larger chunks as he hunts for signs of life within.  Any critters found are carefully extracted using tweezers then added to neatly labeled jars for further analysis back in lab at Hatfield. Invertebrates dominate the small haul of benthic life: feather worms, polychaetes and echinoderms are numerous. Occasionally the box core delivers unexpected tag-a-longs. On two separate occasions a large fish and a skate that, of all the places on the bottom of the ocean, happened to be in the wrong place at the wrong time and took the ride a lifetime.

It was an exciting hands-on experience and I quickly learned that the tighter the leash the more stable the box. I am thankful to report that no limbs were lost in the sampling of the seafloor.

Katherine Dale, Hollings Scholar

Later, I sit down with Katherine Dale, a student intern aboard the RV Ocean Starr. Kat currently attends the University of Miami and will be entering her senior year after which she will have successfully earned B.S. degrees in Biology and Marine Science with a Minor in computer science to top it all off.

She arrived on the Ocean Starr as a result of being named recipient of the Ernest F. Hollings scholarship by NOAA. Applying in her sophomore year, Kat received a generous $16,000 towards her junior and senior years of study. The intangible value of the scholarship is in NOAA’s expectation of awardees to participate in a paid internship with a NOAA affiliated mentor and/or facility with the intention being to introduce undergraduate students to NOAA as a potential career path.

Kat has chosen to spend her summer at the Hatfield Marine Science Center under the mentorship of Ric Brodeur, the chief scientist on this cruise. She is here with similar intentions as I have; gain field experience on a NOAA research cruise. Unlike me, this is not her first time at sea. A year ago she toured the Bahamas on a month-long research trip with the Southeast Fisheries Science Center, a regional NOAA research lab based in Miami, Florida.

I ask Kat what she would advise a younger group of marine enthusiasts just starting out. She suggests that budding students should not be afraid to pursue diverse experiences and keep an open mind. There will be great jobs and some not-so-great jobs, but it is all experience, and more experiences lead to more opportunities further down the road.

Kat isn’t quite sure what she wants to do with her laundry list of degrees but finds herself attracted to both the world of scientific research as well as that of science education. Perhaps a role in education outreach for a science organization is somewhere in her future.

Katherine Dale
Hollings Scholar Katherine Dale holding a eel larvae during trawl sorting.

Personal Log:

Adjusting to life on a ship like the Ocean Starr has been interesting. Not necessarily difficult but not easy either. It’s just, different. In my previous post I mentioned the struggles of using the restroom and just getting in and out of bed at night. I’ve since taken my first shower aboard this floating facility and to say it was challenging would be an understatement. When the ship rolls, I roll and when it rocks, I follow suit. I’m still working on those sea legs. It all gets amplified when it comes to anything bathroom related especially when the venue is communal. Trying to keep a change of clothes dry in the shower is hardest! I’ve made a few trips back to my stateroom in wet clothes.

Last night we ran into some rougher waters and falling asleep was nearly impossible. Each time I even began to doze off, the ship would roll so violently that I would be forced into the wall or the railing on the bunk. Being a side-sleeper it’s difficult. I realized the side-to-side motion is generally a result of three major sources: our northbound travels, the bow-to-stern orientation of my bunk and the west-east flow of the swells toward shore. Eventually I gave up attempting to find sleep in my own berth and decided to roam about the ship in search of a more stable locale. In the crew lounge, I found an enormous couch which just so happened to have an orientation to match the swells. Although with each roll I could feel a slight bit of added pressure at my head or toes, I was not long rolling side-to-side. Proud of myself, I fell asleep immediately.

Let me clarify the my tone as I describe the trials above.  In no way do I consider any of these experiences to be “bad”.  I signed up for life at sea and it wouldn’t be realistic if I didn’t struggle to adapt somewhat to such a foreign lifestyle. I am embracing every moment as a unique investigation into the life of not only a scientific research team in the field, but also the life of the crew that keeps us running.  Besides, the immediate perks far outweigh the struggle of adaptation.

The food is delicious.  I realize that in that statement I echo just about every other Teacher at Sea in TAS history. All the same, the food is delicious.  I suppose it’s one of the small comforts that both crew and science team look forward to on a regular basis and Crystal, the head chef, and her partner Liz take great pride in the meals they prepare. Already I’ve gorged myself on freshly- made pizza, gyros, fruit-filled pastries, stir-fry dishes, quiches, steak and potatoes and swordfish just to name a few! The galley is the ship cafeteria and is always stocked with an assortment of goodies: pop, juice, coffee, fruit, and an array of granola bar-type pocket snacks for when you need a quick pick-me-up on the job. There’s even a salad bar with a variety of toppings to choose from. That’s not even the best part!

Aside from usual dinning occasion: breakfast, lunch and dinner, there is a midnight rations service simply called “mid-rats” onboard. It is a meal with naval ties designed to satisfy the hunger of those getting off or just starting their shifts in the middle of the night. Many onboard swear mid-rats to be the best meal of the 24 hour period. I can’t decide, it’s all so tasty! All this and I haven’t even mentioned the overstocked freezer dedicated to nothing but ice cream! I thought, being at sea, I’d drop a few pounds but with four meals a day all the snacks I could ever want, I don’t see that happening. I’ll be lucky to break even.

Chef Crystal
Top: Galley complete with World-Cup Soccer in the background. Bottom: Mid-Rats Menu–Stuffin’ Muffins, Spinach, Parsnippers, Baked Apples in Caramel.

My current shift runs from roughly 2:00 pm – 2:30 am. This time frame allows me the opportunity to participate in a variety of sampling activities that happen only during daylight hours, as well as to help sort a few trawls into the wee hours of morning. Generally speaking, I fall asleep by around 3:00 and wake up for breakfast at 6:00. I love breakfast. I head back to bed for another four hours give or take, depending on how rough the ocean is beneath me. Around 10:00 I’ll wake up and grab some coffee and check in on various projects, lending a helping hand if needed. I’ll generally take my coffee to the flying bridge checking in with Amanda in regards to any recent sightings.

On that note, we stumbled across a hunting group of Stellar sea lions yesterday. They followed us for a bit, as did a flock of gulls, I imagine because they mistook us for an active fishing vessel and were just looking for a free meal.

The Crew Lounge
Not bad living in the Crew Lounge

Day time activities: CTD, box core, neuston net tow, bongo tow, jelly fishing, etc. generally wrap up between 2:00 and 4:00 and at that point we begin transit toward the next trawling station. The commute time can be anywhere from 4 to 6 hours depending on conditions and the team finds various ways to pass the time. Some take naps or watch a movie in the lounge while others play cards, grab a snack, or join Amanda on the flying bridge to look for marine animals. I generally use this time to chat with those around about their projects and think about how to synthesize these encounters into blog posts. I’ve also found myself collecting so much great footage that I spend some time slicing and dicing a short film here and there featuring the day’s happenings.

Once we arrive at the first trawling station the night team sets up shop. We trawl and sort samples throughout the night with the last trawl wrapping up at about 5:00 in the morning. So far, I’ve only made it through the first two or three trawls before turning in for the night. The evening is always an adventure. Just last night while we sorted krill from rockfish, a bird flew into the wet lab and landed in a large bucket full of catch; this guy was a storm petrel, which are apparently attracted to and disoriented by lights, making this a relatively common event. We were able to get it out the door and back onto the ocean both swiftly and safely.

I wrap this post up as I sit atop the flying bridge on an overcast day off of the Oregon Coast. I can faintly see the famous sand dunes framing the coastline.  No more than ten minutes prior to typing these very words did we watch four humpback whales breaching clear out of the water less than 300 meters from the bow of the Ocean Starr; an absolute thrill to see!

Strange Symbols
What does it all mean?

Kainoa Higgins: Atop the Flying Bridge! June 20, 2014

NOAA Teacher at Sea
Kainoa Higgins
Aboard R/V Ocean Starr
June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey
Geographical Area of Cruise: Northern California Current
Date: Friday, June 20, 2014, 1500 hours

Weather Data from the Bridge:
Current Latitude: 42 ° 34.7’ N
Current Longitude: 124 ° 37.6’ W
Air Temperature: 12.8 Celsius
Wind Speed: 25-30 knots
Wind Direction: North
Surface Water Temperature: 11.3 Celsius
Weather conditions: Clear Skies

Find our location in real time HERE!

Science and Technology Log:

As we exit the harbor in Eureka, CA I join Amanda Gladics of Oregon State University perched at her post on the flying bridge, scanning the surrounding surface waters for signs of seabirds and marine mammals.

Amanda- Observations
On the flying bridge Amanda Gladics scans the water for signs of marine life

Amanda earned an undergraduate degree at OSU in natural resources. Soon after, she completed a Master’s program with a focus on marine resources, also through OSU. She now serves as a faculty research assistant for Oregon State University at the Hatfield Marine Science Center.

On first hearing, her role aboard the RV Ocean Starr sounds relatively simple but is actually a critical contribution to a long term survey of seabird and mammal life observed in waters along the Northern California Current. The study is an example of collaboration between the Southwest Fisheries Science Center (SWFSC) and the Northwest Fisheries Science Center (NWFSC), both NOAA entities, and Oregon State University. Amanda’s observation data, combined with the monitoring of the southern reaches of the current system, will add to the ongoing collection of information that will serve as a point of cross-reference for a host of other research initiatives including the principal mission of this cruise, the juvenile rockfish survey. In addition, the collected information furthers our understanding of the upper trophic predators of the region. The length of the time over which data has been collected by observers, 25+ years, makes for an exceptionally valuable time series.

I take a captain’s seat next to Amanda and help scan the horizon for signs of life. I quickly point out a small … black and white-ish bird … off the right side of the bow. My bird doesn’t count. Amanda tells me to imagine that our surrounding is broken into four quarters with sections I and II ahead of us on the left and right and III and IV behind us, respectively. Because the study assumes that the observer sees ALL seabirds and marine mammals possible it is important to narrow the range of scope to increase confidence. For the same reason, animals beyond 300 meters in distance do not count towards data collection either. I’m immediately critical wondering how one could possibly tell whether a bird or other was in range. Amanda reveals her trusted “rangefinder”. It’s not a fancy device – in fact, it more strongly resembles a glorified piece of kindling than anything else. Amanda explains that by taking into the account the height of her location on the ship in relation to true water level and the horizon, she can use basic trigonometry to calculate distance. When she holds the top of her rangefinder in line with the horizon she can estimate the animal’s distance away from the ship based on values she has marked on the stick. She records all observations both in writing and digitally. It goes to show that good science doesn’t always require expensive equipment. It’s not long before I begin to get the hang of it all. We soon see a small pod of harbor porpoises and not long after, a humpback whale spouts on the horizon.

Rangefinder
Amanda’s “Rangefinder” is used to estimate how far away from the boat a sea bird or marine mammal is.

While I help to point out black-footed albatrosses here and marbled murrelets there, Amanda explains more specifically her role with the Hatfield Marine Science Center at the Oregon State University. The focus of her current research revolves around an attempt to reduce, or stop altogether, the bycatch of albatross by commercial fisheries. The process is simple and sad:

Albatross hone in on fishing boats hoping for of an easy meal → Long line fishing vessels use a series of hooks on which they attach a piece of bait (generally squid) and send down said long line into the water in series → The birds attempt to steal the bait from the hook as it leaves the boat and occasionally snag themselves → If unable to get free, they are dragged underwater with the gear and drown. It is an unintentional and seemingly unavoidable process.

Streamer lines create visual barrier against scavenging seabirds
Streamer lines create visual barrier against scavenging seabirds (photo courtesy of Amanda Gladics)

Of the 22 species of albatross in the world, 19 are considered endangered. In the North Pacific there is special concern when it comes to the short-tailed albatross of which there are less than 4,000 world-wide. In many parts of the world, fishing vessels are required to use a simple device to scare the birds away from the baited hooks: a “streamer line”. If there is hope, it is in the “streamer line”, a device extended during the release of hook lines which creates a visual barrier to the relentless albatross — keeping them out of harm’s way. Amanda and her program are currently working on testing and modifying this preventative measure so as to continue to reduce the number of fatal encounters off the West Coast.

Streamer line
Albatross and others kept at bay (photo courtesy of Amanda Gladics)

Amanda has had many adventures in her field studies but most notably recalls spending time with albatross colonies on Midway Island in the Northwest Hawaiian Islands as well as a leading a two-person expedition to monitor puffin colonies and other critters in the Alaska Maritime National Wildlife Refuge on an uninhabited Aleutian island in Alaska.

Amanda encourages young scientists to pursue their passions and be enthusiastic. Volunteer a lot and be willing to take low-paying jobs. Look for opportunities to work close to home with local agencies and initiatives; it’s all about connecting with people in a field of study you are interested in.

Amanda Midway
Amanda in her front yard on Midway Island in the Northern Hawaiian Islands (photo courtesy of Amanda Gladics)

Personal Log:

I’m not even sure it has sunk in…I am sailing off the coast of Northern California with a field research team thanks to this once-in-a-teacher’s-career NOAA opportunity. Wow. When I arrive at the ship I am immediately greeted by various members of both the ship crew and research team, all incredibly welcoming. I meet Captain Bud right away and he warmly invites me to explore the Ocean Starr and “make myself at home”. I did so right away. The first thing I did was head straight for the highest point. The view will be unprecedented! I’ve never been that high over the water. I was immediately fantasizing about whales breaching

Collection of Intro Pictures
Top left: View of the cobb trawl net on open deck at the stern. Top right: Teacher at Sea Logo (NOAA). Bottom Left: RV Ocean Starr. Bottom right: CTD device at drop point on deck.

in the sunset and dolphins riding the wake of the bow. I would later learn this top observation deck is referred to as the flying bridge. Wandering the halls I meet Toby, the right hand man of Ric, the chief scientist on the mission. He shows me to my stateroom. It’s Cozy, especially for a guy at 6’2” and 225 lbs. This is home for the next two and a half weeks.

Ric arrives and I meet the rest of the team. Everyone I meet continues to be exceptionally friendly, talkative and happy to share their focus of research and role on this cruise. It’s exciting to hear about all the different things that will be happening while I am onboard: bongo nets, box cores, trawls, CTDs, manta tows – the list goes on…

Delvan, my cabinmate, has no preference on bunk and so we let a coin toss seal our fate. I get the top. I look forward to the top because my brother and I shared bunk beds as kids and I rocked the top then as well, though I do recall the ceiling being a bit taller. I hit the sack ready to greet the sunrise and the 5:00 am departure bright eyed and bushy tailed. I sleep hard and fast.

5:30 A.M. I awake to the blast of the ship horn calling all final passengers on board. Not realizing what the sound meant in the moment, I fear I had already missed the shove off the dock. I spring out of bed and throw on deck-worthy clothes as quick as possible. We are still tied up on dock. Adrenaline is pumping in anticipation of the adventure I snag a delicious and filling breakfast. Before I know it, we’re moving. It’s begun!

Things are a bit wobbly. I grew up fishing and working off my dad’s boat in Hawai’i. That boat was 17ft. The Ocean Starr is over ten times bigger both in length and width. Its pitch and roll are slower and relatively docile in comparison but unsettling all the same. I put one foot in front of the other as I make my way up to the flying bridge. From the best view in the house, I soak in the slow ride out of the harbor and am enamored by the striking terrain of the Eureka/Arcata region in the early sunlight. As we exit the entrance to the harbor the wind and waves pick up. A few swells break the bow of the boat. The pitch and roll of the boat continues to increase as do the winds. By the afternoon winds are reaching 25 knots, approximately 30 mph. It is a windy bumpy ride. I am glad I decided to take motion sickness medication after all.

After chatting with Amanda about her role on ship and contributions to the oceanographic world on a larger scale, I decided to perform my first “TAScast” from the flying bridge and nearly lost my prized Teacher at Sea hat in the high winds. The sound quality of the video is halfway decent thanks to the $3.00 lapel microphone attached to my GoPro.

Sorting catch from various tows.
Top: Sorting catch from a mid-water trawl.  Bottom left: Megalops stage of Dungeness crab caught in the manta tow.  Bottom right:  Sifting through copious amounts of krill to find the rock fish.

We enter a holding pattern on the first afternoon due to the high winds and are unable to begin operations of any kind until the evening when the weather calms down. Once lifted, we hit the ground running and over the next 24 hours, I participate in a variety of experiences: Ken gives me a tour of the dry lab computer station where all of the data relayed from field instruments is collected. I watch Jason and Curtis drop box core sampling devices to examine the contents of the seafloor. I help Sam spot and net sea nettle jellies for gut content analysis. I also evaluate resulting footage of Curtis’s attempt to mount a GoPro in cod end of a Neuston net. So far either the camera has refused to stay in position or debris has muddled the view. We’ve recently modified the mount and will see if that footage comes out any better after the next tow. The highlight of the evening is sorting the trawl catch. Each new station promises to bring a slightly different sample of critters on board and the suspense is invigorating.

Though some on board are struggling to adapt, I am just fine when it comes to motion sickness. That being said, I am slightly regretting not having a bit more of an opinion on the bunk situation because getting in and out of a top bunk on a rocking ship can be challenging. Those are the only moments where I feel a bit…uneasy; the moments when I have to engage physically and mentally when I am half asleep in tight quarters. Taking showers and standing still enough to use the bathroom are also incredibly taxing. Though the ocean was placid all of yesterday, the seas picked up overnight and I recall a bit of tossing and turning that was out of my control. I am also adjusting to my shift which has modified since the beginning of the cruise. Originally the thought was that I would work noon – midnight but because I want to catch more of the trawl catches, which only happen on the night shift, I’ve begun working from about noon – 2:00 am catching a nap here and there if necessary and we have the time.

I sit here finalizing my thoughts as my computer and chair slide back and forth across the table and floor and I see the horizon appear and disappear out the porthole across from me and I love every minute of it! I can’t wait to share more of my experience with you!

Sunset
Our first sunset at sea

Critter Spotting Report:

Seabirds: Common Murre, Sooty Shearwater, Western Gull, Black-Footed Albatross, Immature Gull, Northern Fulmar, California Gulls, Pink-Footed Shearwater, Heerman’s Gull, Buller’s Shearwater, Cassin’s Auklet, Caspian Tern, Marbled Murrelet.

Marine Mammals: Humpback Whale, Blue Whale, Stellar Sea Lion, Harbor Porpoise.

Specimens in Trawl Haul #166: Krill, Northern lampfish, Blue lanternfish, Sergestid Shrimp, California Headlight Fish, Pyrosome, Gonatid Squid, Pacific Sanddab, Rex Sole, Stoplight Loosejaw, Blacktip Squid, Various Rockfish, Speckled Sanddab, Chiroteuthis squid, Pacific black dragonfish, Longfin dragonfish

A Stoplight loosejaw complete with photophore spotlights and unhinged jaw
A Stoplight loosejaw complete with photophore spotlights, angler appendage and unhinged jaw

Something to think about:

Where 5,280 ft. is equivalent to 1 statute (standard) mile, 1 nautical mile is equivalent to 6,000 ft. Perhaps when one says, “Go the extra mile!” they might instead say, “Go the nautical mile!”

 

TAScast:  From the Flying Bridge

Kainoa Higgins: Preparing to Set Sail! June 15, 2014

NOAA Teacher at Sea

Kainoa Higgins

(Almost) Aboard the R/V Ocean Starr

June 18 – July 3, 2014

Mission: Juvenile Rockfish Survey

Geographical Area of Cruise: Pacific Coast

Date: June 15, 2014

Personal Log

Aloha from the great Pacific Northwest!  My name is Kainoa Higgins and although I was born and raised on the island of O’ahu, Hawai’i, I have spent the last 10 years calling Tacoma, Washington home.  I am incredibly excited to have been selected as a 2014 NOAA Teacher at Sea and can’t wait to climb aboard the R/V Ocean Starr in a matter of hours!  I will be participating in two legs of research during my two and half weeks on ship.

During the first leg, I will be assisting scientists with conducting a Juvenile Rockfish Survey as they examine groundfish populations off the coast of the Western Seaboard of the North America.  Though I have been attempting to get caught up to speed, I currently only understand the program at a general level.  There are many species of rockfish, all of which are commercially valuable, and keeping track of their populations and distributions is essential for conscious management.  Having spoken with my Chief Scientist for this leg, Ric Brodeur, on several occasions leading up to my departure, I understand that my job will entail any, some or all of the following: mammal/bird observational surveys and plankton analysis by day followed by sorting of trawled collections analysis of the catch in the wet lab by night.  I’ll be able to share more as the adventure unfolds.

In the second leg, I will connect with Laurie Weitkamp who will take over as chief scientist with a fresh research team and research focus.  In a recent e-mail Laurie explained that this leg will be “experimental”.  In short, we will be trying a variety of modifications to a marine mammal excluder device to see how it fishes and influences the catch.  I’m not sure, exactly, how the MMED is used, but I would be willing to take a guess at it’s purpose.  I imagine it has something to do with an attempt to maintain commercial fishing operations without the interruption of marine mammals (dolphins, porpoises, seals, whales, etc.) in close proximity.  Through some sort of “deflection”, its goal would also be reduce unintentional by-catch.  Once again, I’ll know more concretely a bit further down the road.  According to Laurie, in addition to help work up the catch, I will be helping with “marine mammal watch” before and during fishing.  Since we will use a surface trawl during the day, it is possible that we could catch a marine mammal (e.g., seals and dolphins). To minimize this risk, I will help serve as a lookout  before we set and when the trawl is out, and are required to immediately stop fishing if any are spotted nearby.  I look forward to spending some time on the bow scanning the horizon for marine mammals.

Plankton
One of my favorite pics of marine diatoms (phytoplankton) from the Puget Sound. Taken with iphone camera though microscope eyepiece.

A bit more about myself and the school I represent.  I grew up loving the ocean.  Much of my life as a child was spend in or around it.  Whether snorkeling, surfing or fishing my brother and I were raised to respect and appreciate all that the ocean had to offer.  After all, my name, Kainoa, means “free as the sea”.  There is a saying in the islands, Malama ‘aina, Malama i ke kai, meaning ‘to care for the land and care for the ocean’.  After graduating from Punahou School  in Honolulu, Hawaii I headed for the great Northwest to attend the University of Puget Sound.  I participated in Athletics, Lu’au, Senior Theatre Festival and even Greek Life.  I studied Biology and spent a semester abroad in Christchurch, New Zealand.  Even though I took Marine Biology in one of the most amazing diverse systems in the world, my favorite class had to be “The Diversity of Algae”.  It opened my eyes up to the beauty and importance of micro life for the first time.  This led to my passion for – and borderline obsession with – plankton.

After earning a Master’s in the Arts of Teaching from UPS, I began my career at the Tacoma School of the Arts teaching entry level biology.  After my second year, I was asked to join our recently founded sister school, the Tacoma Science and Math Institute (SAMI) located in Point Defiance Park on the North Tacoma peninsula.  SAMI  is built around a particular vision: we believe that students make the most of their learning when they take ownership of their education—when students intentionally choose to take on the challenge real learning entails. We further believe that this ownership most naturally develops within a learning community, encouraged by others who share that commitment.  We theme our curriculum around the math and science and emphasis the integration of disciplines and staff collaboration all the while perpetuating the pillars on which the schools were founded: community, empathy, thinking and balance.  SAMI has allowed me to pursue my passion for marine science.  We are a two minute walk to the waterfront which makes the learning opportunities for myself as students invaluable.  Between this field resource and collaborations with the University of Washington in the High School program and the University’s School of Oceanography I am in a position to offer my students a world-class learning experience.

I think it is important that teachers are always looking for opportunities to improve their practice and better educate themselves in ways that will better prepare their students for the world ahead of them.  The Teacher at Sea opportunity is an incredible way to engage myself as a life-long learner and will help me to better engage and inspire my students.  I look forward to designing and offering lessons derived from real-time science and experiences.  I am very grateful for this opportunity and can’t wait to share it with you.

See you soon,

Kainoa

 

SAMI Students
SAMI Students reflecting on a trip to Dungeness Spit, WA.
Pups
The men of the house in my absence
Sandys
A relationship founded on respect