Joan Shea-Rogers: Land Ho! (Home), July 12, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-10, 2018

 

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 12, 2018

Weather Data from Springfield, IL.

Latitude: 39.7817ºN

Longitude: 89.6501ºW

Humidity: 49%

Wind: s 7mph

Visibility: 10 miles

Air Temperature: 88ºF

Sky: Sunny

Science and Technology Log:

Planned Trackline for 2nd Leg of 2018 Trawl Survey

Planned Trackline for the 2nd Leg of the 2018 Trawl Survey

Dutch Harbor, AK is one of the main shipping ports in the United States. It is part of the town of Unalaska, AK and located in the middle of the string of Aleutian Islands. It is a 2 hour flight from Anchorage, AK. It is a rugged and desolate location in some respects. Everything must be flown in. Prior to boarding the plane for Dutch Harbor, each of the passengers had to be weighed with their carry on baggage. Twenty four of our bags could not be taken on our flight. Once we arrived at Dutch Harbor, we assumed our bags would be on the next cargo flight. On that flight, they carried mail so our bags were not able to be brought to us for another day. Even then there were no promises that our bags would arrive before we set sail. Luckily, they did.

When it was determined that our ship had to return to Dutch Harbor for needed repairs, I held out hope that a quick fix would allow us to return to sea in a matter of days. But, things do not work that way in Dutch Harbor. It will be another week before the necessary specialists can be flown to Dutch Harbor. It will take several days to assess  the needed repairs. Then, equipment and supplies will need to be ordered and flown in. Needless to say this is not going to be a quick fix. The Acting NOAA Corps CO called a meeting of all hands (all the personnel on the ship) to let us know that it would not be possible to finish this leg of the cruise. The Scientists and Teachers at Sea would be making plans to return home.

Personal Log:

Although I am disappointed that my time aboard NOAA Ship Oscar Dyson was cut short, I am grateful for the opportunity to participate in this Teacher at Sea experience. I learned so much about the Bering Sea ecosystem, fisheries management, life at sea, the mission of NOAA, the mission of the NOAA Corps, and the mission of the Teacher at Sea program.  I loved being at sea! It was a great adventure for me. But what was an adventure and learning experience for me is a career for the people who work aboard this vessel. I was struck by their dedication and professionalism. I got to know the Scientists, the NOAA Corps officers, the Chief Boatswain, the Deck Crew, the Chief Steward, the Observers, the Survey Techs, the Acoustics Engineer, the Electronics Technician, and the Engineers. Everyone was passionate about what they do and it comes at a great sacrifice for them. Being at sea for weeks or months at a time means that they leave family, friends and duties at home, in order to do this work.  They miss get togethers with family and friends, their children’s activities, birthdays, holidays etc. I have the utmost respect for them and the work they do. In leaving so quickly, I was not able to let them know in person how much I admire and appreciate them. They serve as  stewards of our oceans and atmosphere and I am grateful for all they do.

Joan Shea-Rogers, Lanphier HIgh School, Teacher at Sea

Joan Shea-Rogers, Lanphier HIgh School, Teacher at Sea

Did You Know?

NOAA Corps officers serve on the sea, on land, and in the air to support NOAA’s environmental science and stewardship mission. They are one of two unarmed branches of the United States Services. Public Health Service is the other.

Joan Shea-Rogers: Do You See What We See, July 10, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

 

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 10, 2018

 

Weather Data from the Bridge

Latitude: 53ºN

Longitude: 166ºW

Sea Wave Height: 1.5 feet

Wind Speed: 25 knots

Wind Direction: SW

Visibility: 15 Miles

Air Temperature: 52º F

Barometric Pressure: 1010.61mb

Sky: Overcast

Biological Trawl Data:

Letting the Net Out to Sea

Letting the Net Out to Sea

Trawl hauls are how fishing is conducted. A large net is dropped into the water for a specific amount of time. By catching exactly what is in the ocean, the acoustic backscatter can be identified (what the various colored pixels on the echograms represent). Below is an echogram on the screen, the black line is the path of the trawl through the backscatter, the little red circle indicated where the camera was, and the picture at left is pollock passing by the camera and into the back of the net at that point.

Echogram

Screenshot of an echogram. The black line is the path of the trawl through the backscatter, the little red circle indicates where the camera was, and the picture at left is pollock passing by the camera and into the back of the net at that point.

Samples of pollock and other organisms can be studied and other biological data collected. By counting, measuring, and weighing the pollock and other animals caught in each haul, calculations can estimate the amount of fish in a given area. Acoustic data can be used to determine the number of fish by dividing the measured backscatter by the backscattered energy from one fish (target strength, discussed in the last blog). That gives the number of fish:

To get the backscatter from one fish for the above calculation, we need to know the size and species of the fishes. The trawl provides that information. In the fish lab, species including pollock are identified, lengths are taken, and the number of fish at each length is entered in the computer. Also, the animals including pollock are weighed and a mean weight is determined. The number of fish computed from the acoustic and trawl data multiplied by the mean weight of a fish equals the biomass of the fish (total weight of the population in a given area).

The fisheries biologists developed the software used for all these calculations. This information coupled with the echograms can answer those earlier questions…Where are the pollock in the Bering Sea? How many are there? How big are they? How many adult pollock are there (fish that can be caught) and how many young pollock are present (providing information about future availability and how healthy the population is)?

When I first boarded the ship, I asked the fisheries biologists how they would describe what they do. They responded that they count fish, it’s not rocket science. But you know what? It kind of is!

 

At Work in the Fish Lab

TAS Joan Shea-Rogers at work in the Fish Lab

 

What is this information used for?

This information is used to manage the Pollock fishery. Numerical data is given to the entities that set the fishing quotas for the Bering Sea area. Quotas are then divided up between the commercial and individual fishing companies/boats. Once fishermen reach these quotas they must stop fishing. This protects the fishery to ensure that this food source will be healthy and strong for years to come. A similar example from my home state is that of the Illinois is the Department of Conservation. One of their responsibilities is to manage the deer population. Then they can determine how many deer can be harvested each season that still allows for the deer population to thrive.

 

Personal Blog:

In my last blog post, I talked about preparing for and “weathering the storm”. As with most things at sea and on land, things don’t always turn out as we plan. The stormy weather began with wave heights between 8-10 feet. The ship continually rocked back and forth making walking and everything else difficult. You can tell the experienced sailors because they were much more graceful than I was. I held on to every railing and bolted down piece of furniture that I could. And even then, I would forget and place a pen on the table, which immediately rolled off. While eating I held onto my glass and silverware because as I ate and placed my knife on my plate it rolled off. Dressing was a balancing act, which I was not good at. I finally figured out it was better if I sat in a chair. Luckily for me, my patch for seasickness worked.

While I was sitting in the mess hall (dining room) an alarm rang. The engineers got up read the screen and left. The decision was made by the acting CO (Commanding Officer) that we would have to go back to Dutch Harbor. And now, as I write this, we are docked in Dutch Harbor waiting for word about the status of our voyage. Out here in Dutch Harbor, everything must be shipped in. We wait until parts and people are flown in. The fisheries biologists also have to determine the validity of the data collected on such a short voyage. They also must decide in a timely matter, can this data collection continue after returning to port?

For me, I am holding out hope that all these factors are resolved so that we can go back out to sea. Since November when I turned in my application, this voyage has been such a focal point of my life. If it doesn’t work out (I’ll try not to cry), I will still have had the adventure and learning experience of a lifetime. So here’s hoping……

NOAA Ship Oscar Dyson at Port in Dutch Harbor, AK

NOAA Ship Oscar Dyson at Port in Dutch Harbor, AK

 

Joan Shea-Rogers: Do You Hear What They Hear, July 8, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 8, 2018

Weather Data from the Bridge

Latitude: 53º N

Longitude: 166ºW

Sea Wave Height: 1.5 feet

Wind Speed: 25 Knots

Wind Direction: SW

Visibility: 15 miles

Air Temperature: 52ºF

Water Temperature: 46º F

Barometric Pressure: 1010.61mb

Sky: Overcast

Science and Technology Log

What kinds of fish live in the Bering Sea? How many pollock are in the Bering Sea? Where are the pollock in the Bering Sea? How big are the pollock in the Bering Sea?

Those are just a few of the questions that the fisheries biologists on NOAA Ship Oscar Dyson work to answer during each voyage. In my last blog, I talked about the need to manage the pollock fishery in order to protect this important ocean resource because it provides food for people all over the world. It is important, then, to be able to answer the above questions, in order to make sure that this food source is available each year.

How do they do it? There are two main sources of information used in the Acoustics-Trawl (or Echo Integration Trawl) survey to determine the abundance and distribution of pollock in a targeted area of the Bering Sea. One is acoustics data, and the other is biological-trawl data.

Acoustics:

Acoustic data is continuously collected along a series of parallel transects with a Simrad EK60 scientific echo integration system incorporating five centerboard-mounted transducers (18-, 38-, 70-, 120-, and 200- kHz). In other words: There are 5 sound wave producers (transducers) attached to the bottom of the ship, each one emitting sound waves at different frequencies. This allows scientists to look at different organisms in the water column. Different types of organisms reflect different amounts of energy at different frequencies. The amount of acoustic energy reflected by an individual animal is called the target strength, and is related to the size and anatomy of the species. For example, a fish with a swimbladder (like pollock) reflects more energy than a fish without a swimbladder because its properties are very different from the surrounding water. Some ocean dwelling organisms don’t have swim bladders. Flatfish stay on the bottom so they don’t need the buoyancy. Floating organisms like jellyfish don’t have them. These organisms will look differently than pollock on an echogram because they have a smaller target strength.

Transducer

Transducer

Transducers convert mechanical waves (sound waves) into an electrical signal and vice versa (like both a loudspeaker and a microphone combined). They contain piezoelectric materials sensitive to electricity and pressure: if a voltage is applied to them, they make a pressure or sound wave (transmit), and when a sound wave passes over them, it produces a voltage (receive). When a sound wave (echo from a fish) is received, electoral signal is sent to a computer, which displays the signals as pixels of varying colors as the ship moves along (depth changes up and down on the left of the image, and time and location changes along the bottom of the image). This datum is used to estimate the number and type of fish in the water column, and to determine where the ship should fish next.

The size and colors on the images (called echograms) represent the backscatter at different depths and is related to the density of fish and their target strength. But, since they are dots on a screen, specific identification is not possible. The scientists assume certain strong signals are pollock based on the information they have but, those dots could be other fish. To determine what kind of fish are in the water column at this location, how many are there, and how big they are, other data must be obtained. Biological Trawl Data provides that additional information. More about that in my next blog post……I bet you can’t wait!

Personal Log

The Calm Before the Storm:

So far my trip has been smooth sailing, literally. As NOAA Ship Oscar Dyson sails across the Bering Sea there is a bit of rocking the ship experiences at all times. This is easy enough for one to get used to and sometimes it even becomes comforting, like being rocked to sleep as a child. You adjust to the motion. Over the past couple of days I have been hearing talk of a storm coming our way. On a ship, there are many preparations that occur in order to get ready for a storm. Many items are always secured, such as shelves that have a wall in front so that things don’t fall off. There are “handle bars” in showers and next to toilets (think about that). Along hallways and stairways there are handrails on each side. Mini refrigerators in staterooms are bolted to walls. In fact most things are bolted to walls or stored in containers that are bolted to the wall. In the mess hall (dining room) condiments on tables are in a box so they can’t slide off.

Why do you think this coffee mug is shaped like this (wider at the bottom than the top)?

 

At-Sea Coffee Mug

At-Sea Coffee Mug

Ans. The wider bottom of the mug above prevents it from sliding as the ship rocks.

Our bulletin board reminds us to secure for bad weather. This morning, I put small items in drawers, stowed books on shelves and packed my equipment (phone, laptop, camera, chargers and small items in a backpack that can be safely secured in my locker (the “closet” in my stateroom).

In talking to my shipmates with at sea experience, I am getting lots of helpful hints about storm preparations and strategies to use during the storm. Here are some of those suggestions:

*always hold on to railings with both hands when walking or going up steps. At all other times, remember to keep one hand for you (to do whatever you are doing) and one hand for the ship (to hold on).

*keep something in your stomach at all times, even if you are not feeling well

*eat saltines

*drink lots of water

*when sleeping in your bunk, place pillows between you and the edge so as not to roll off (I will definitely follow this one, as I am on the top bunk) It also depends upon which direction the ship is rolling. Pillows may need to be put between your head and the wall to prevent head bumps

*go to the lower parts of the ship because the top part will sway more with the waves

I also have been wearing patches to prevent seasickness. Hopefully they will continue to help. Only time will tell how we weather the storm (pun intended). Let’s hope it moves through quickly.

 

 

 

 

 

 

 

 

Joan Shea-Rogers: Ready, Set, Go… Fish, July 6, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA ship Oscar Dyson

July 1-22, 2018

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 6, 2018

Weather Data from the Bridge

Latitude: 56º20.3730N

Longitude: 170.39 7756W

Sea Wave Height: 3-4 feet

Wind Speed: 18.87 Knots

Wind Direction: 126º true

Visibility: 2miles

Air Temperature: 8.7ºC

Barometric Pressure: 1002.0 milibars

Sky: Overcast

Science and Technology Log

Note: This Walleye Pollock Acoustic Trawl Survey is a way to estimate the amount of fish that are present in a targeted area of the Bering Sea. NOAA Scientists have been conducting these surveys since the 1970’s. It is important work necessary to manage the pollock population. (Pollock is a billion dollar food industry, thus a very important ocean resource.) These population estimates are part of the information used to determine how much fish can be caught in the Bering Sea (fishing quotas, MSY-Maximum Sustainable Yield) that still allows the population to reproduce and survive in adequate numbers.

Ready:

What does it take to prepare for an Acoustic Trawl Survey?

The fisheries scientists plan their sampling area based upon past surveys so that each part of the Bering Sea is covered over a period of time, in this case June through August;decisions must be made about who will be going on which leg of each trip. They also determine what research projects will be conducted, what specimens should be collected, and what information they need to obtain from this work. Other scientists also make requests, such as specimen collections or oceanography equipment deployments in target areas to obtain information for their own research projects. A document called Project Instructions is developed to include these cruise objectives and a list of all the supplies and equipment needed to conduct the research projects. Once the Project Instructions document is complete, it must be sent for review to NOAA administration, then to MOC-P (Marine Operations Center-Pacific)- which is a home location for NOAA to monitor its’ fleet of NOAA vessels. Now on to the NOAA Corps officers who are also preparing the ship for this cruise. In cases of requesting to sample the western Bering Sea (near, but outside of Russian waters), the State Department must approve it. Once this plan has been approved, many preparation activities begin.

 

 

SET:

A detailed spreadsheet is developed that lists all supplies needed for the fishing and research work. This includes vials for sampling, chemicals for preserving, tools needed to conduct research, and fishing gear. Some supplies are loaded on the ship when in port in Dutch Harbor or Kodiak, but other supplies are shipped in shipping containers or flatbed trailers. A large ship carries these on the ocean from Seattle to Dutch Harbor, and then tractor trailers bring the nets to the ship.

Go:

Then scientists work with the ship’s crew to make final decisions regarding haul locations. While the general area to fish is determined prior to setting sail, specific haul locations (along survey tracklines or transects) are determined as the scientists monitor the location and distribution of fish using sonar readings during sailing.

Personal Log:

I am enjoying life at sea and settling into the maritime routines that ensure the ship runs smoothly. NOAA ship Oscar Dyson is a small city with each person having very specific responsibilities for safety and operations. There are approximately 30 people on board. My work shift is from 4pm – 4 am each day. (There are no days off.) The ship has 5 labs (Wet lab, Dry lab, Acoustics Lab, Chemical Lab, Fish Lab) I spend my work shift after each haul, in the fish lab. There we identify the species that are caught, collect specimens for research and record weights and measurements of targeted species. This allows calculation of the amount of each species caught, which are used to calculate population estimates. (This is called processing the catch.) I also spend time writing blog posts, planning lessons about the work here, and interviewing staff on board to learn about their career paths. I will also use this information to teach students about the science related to this work and the career opportunities in this field. Well, a net is being pulled up now, so off to the fish lab I go.

A Sunny Day Out On the Deck

A sunny day out on the deck of NOAA ship Oscar Dyson

 

Joan Shea-Rogers aboard NOAA ship Oscar Dyson

Joan Shea-Rogers aboard NOAA ship Oscar Dyson before sailing

Did You Know?

Sonar readings can be used to “see” what is in the water column. This is due to sound waves that bounce off what is in the water (“echoes”). Strong echoes come from pollock because sound waves bounce off the gas in their swim bladders. These echoes can be shown on a computer screen as the ship sails along, making a plot called an “echogram”.

 

Echogram

An example of an echogram

Joan Shea-Rogers: Teacher at Sea becomes Student at Sea, June 19, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

 

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 19, 2018

Personal Log

I must begin by trying to convey how honored and excited I am to be a part of NOAA’s Teacher At Sea program.  I will be sailing aboard NOAA Ship Oscar Dyson with another teacher, Lee Teevan. What an adventure! More importantly, it’s an opportunity to gain knowledge about the management of the Bering Sea Fishery, the commercial fishing industry and how these forces impact both the ocean ecosystem and our lives. It is an opportunity to educate my students and community about these factors and the career opportunities that support them. It also demonstrates the fact that, life long learning opportunities come in many forms.

For the last five years I have been teaching at Lanphier High School in Springfield, Illinois. I look forward to bringing lessons into the classroom that can spark an interest in an unfamiliar aspect of scientific research and its real-life implications. Through these lessons, I also hope to expand student awareness of the related realm of job opportunities associated with this work.

I graduated with a Bachelor’s degree in Biology and a concentration in Fishery Science. I earned my Teacher Certification in Biology and the Sciences. Following graduation, I chose a career in teaching. Through my education at the University of Wisconsin – Superior, I became interested in the Foreign Fishery Observer Program. I was a Foreign Fishery Observer on Japanese fishing ships that fished primarily for Arrowtooth Flounder in the Bering Sea. This involved sampling the catches, and determining how much of each species of fish were caught to guard against exceeding their assigned quota. I spent a month and a half aboard 3 different ships. The opportunity to work on NOAA Ship Oscar Dyson will allow me to learn about the Fisheries Management aspect of the Bering Sea.

I returned to school to earn my Special Education Teaching Certification and earned a Master’s Degree in Educational Administration. As a teacher, I continued going to school and learning about many topics that supported my work. In order to increase my knowledge about Fishery Science, I took a class in which I created a teacher’s manual (An Aquatic Organisms Educational Module for the Therkildsen Field Station at the Emiquon Wetland Area on the Illinois River). This manual allows teachers to bring students to the field station, collect plankton samples and use the labs to study the results of their sampling. Students learn about the many aspects of the wetland ecosystem and even calculate estimates of the planktonic biomass of the wetland. How fun is that!

TAS Joan Shea-Rogers and a Glacier

Traveling and Learning About the World Around Me

I hope with my introduction, I peak your interest in this aspect of our world. I invite you to be a part of my experience in order to continue your life long learning journey as I continue mine.