Jacob Tanenbaum, October 16, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 16, 2008

Falcon
Falcon

Science Log

This bird came by for a visit. I think is a type of hawk or a falcon. Can anyone identify it for me? We have been trying but can’t seem to figure out what kid of hawk this is. In any case, it stopped by and perched on the bow just out of the blue when we were about 80 miles from shore. I wonder how it got here? Was it blown out to sea by a storm? Did it follow a ship looking for food? Is it lost? I hope it finds its way back.

It was foggy during the early morning and the ship had to blow its fog horn. I found out that ships use a code when they sail. One long blast means we are steaming ahead. One long and two short blasts means we have equipment such as nets in the water and cannot manuver as quickly. Listen by clicking here.

We found more spoon armed octopi. Can you see that one of the arms has a little spoon like object at the end? The male has an arm shaped like a spoon. Can you see it in this picture?

Octopii
Octopii
This baby skate has a yolk sack still attached to it. The baby uses the yolk as food while it grows. Usually this happens in the skate case. I wonder what happened with this little guy.
This baby skate has a yolk sack still attached to it. The baby uses the yolk as food while it grows. Usually this happens in the skate case. I wonder what happened with this little guy.
This is a red gold-bordered sea star. Isn't it amazing how many different kinds of sea stars there are in the ocean!
This is a red gold-bordered sea star. Isn’t it amazing how many different kinds of sea stars there are in the ocean!
This is a red gold-bordered sea star. Isn't it amazing how many different kinds of sea stars there are in the ocean!
This is a red gold-bordered sea star. Isn’t it amazing how many different kinds of sea stars there are in the ocean!
This is a shrimp close up. Can you guess what the blue mass is under her back end? Post your answers to the blog.
This is a shrimp close up. Can you guess what the blue mass is under her back end? Post your answers to the blog.

A sea anemone. This opens up and tenticles appear. They wave their tenticles in the water to collect food. When fish like Nemo, the clown fish, go into a sea anomone, it will sting the fish, so the clown fish backs in which helps it tolerate the sting.

Sea anemone
Sea anemone

Here is an interesting story: We were approaching a station where we were expecting to take a sample from the water with our nets. Do you see the note in the chart that says “Unexploded Ordinance?” (you can click on the chart to make it bigger). that means there are bombs from an old ship that may still be active! We decided to move our trawl to a nearby area. When we did, look what came up in the nets! Part of an old ship! The coordinates are Latitude: 42°27’23.65″N and Longitude: 68°51’59.12″E. Here is that location on Google Earth. What could have happened way out here? CLE students, tell me the story of that wreck. Be creative. Please print them out and leave them for me on Monday. Make them fun to read. I am bringing back what came up in the net for you to see. When I get back, we will see if we can do some research and find out what really happened!

Now lets meet Phil Politis, our Chief Scientist on board the Bigelow. I asked him to tell us about his job. Here is what he said:

chart2-740911The main job of a chief scientists is to meet the goals and objectives of the the scientific mission. In our case, that is, to pair up with the ship Albatross in as many stations as possible, following their route. My day to day job is to coordinate with the officers, and crew, setting the nets properly, make sure that the samples are processed properly and solving problems as they arise. Say we have an issue with the nets. It is the chief scientists job to decide what to do next. I can accept the tow, code it as a problem, or re-do the tow. I have to look at each issue individually. If we tear on the bottom, will it happen again? Is there time to re-tow? I also coordinate with the other vessel.

My title is fisheries biologist, but I am a specialist in the nets. My background is in trawl standardization. We have to ensure that our nets are constructed, maintained and that we fish same way each time. Small changes in nets can effect how the nets fish and that effects the study. That way we can compare this years catch to next years catch. Remember, this study is called a time series. Over time, you can see changes to fish population. The only way you can trust those numbers is if the nets are the same each time we put them in the water year after year, tow after tow. We have to document what we are doing now so that in the future, people know how and what we were doing. This way the time series remains standard. We have to standardize materials the nets are made of, way they are repaired. We inspect the nets each time we come on here. We train the deck crews in the maintenance and repair of our nets.

——————————-

IMG_6818-772778In answer to many of your questions, I will be back to SOCSD on Monday. I’ll be in WOS on Monday and CLE on Tuesday. See you then.

Mrs. Christie-Blick’s Class:

You asked some AMAZING questions. I’m so proud of you guys. Drl Kunkel was impressed as well. Here is what He told me:

You asked: What is your proof that these lobster shells are softer than other lobster shells? How do you measure hardness:

We have an engineering department at U Mass and one of the projects they have to do to become materials engineers is to test for hardness and they do an indentation test. Another way is to shoot x rays at shell and we can tell how hard it is by how the x rays scatter.

You asked: What is causing the harmful bacteria in the water?

We don’t know if they are harmful bacteria. My theory is that it could be the same normal bacteria that are on the backs of healthy lobsters. We think it is the weakness in the new lobster shells because of environmental influences south of Cape Cod that causes the trouble.

You asked: Can you get rid of the harmful bacteria?

It is possible to reverse the environmental conditions that have been created by us or by mother nature.

You are right about these sources of pollution. Good thinking. And yes, Dr. Kunkel believes that one or more of these factors may be hurting the lobsters. The problem area is south of Cape Cod. Look on a map today and count the number of cities between New York and Boston. Is this an area with a lot of people and pollution or is this an area that is sparsely populated?How would you expect this area to compare to areas where the lobster population is healthier off of Maine and Nova Scotia? Do the problem areas for the lobster and the pollution occur in the same area? If they match, scientists say there is a correlation between the two and they wonder if one is causing the other. What do you think?

Hag fish did gross me out a little. Interestingly, there is no way to determine the age of this fish as there are with others, so I’m not sure we can even tell you how long they live.

Several of you asked about the red dots on the lobster. They are a disease. It is called shell disease.

The lobster on the right is healthy. I just love this picture so I thought I would share it.

SR, the water temperature is about 16 degrees C last time I checked.

MF, nice to meet you. It is really cool to be a Teacher At Sea.

DTR, my favorite thing about this trip is working with you guys from the middle of the ocean.

MR, Snuggy and Zee are having loads of fun touring the ship.

CF: I will try to count the teeth of a fish and tell you what I find. Sometimes they are hard to see. I do not know if I am going back next year, but I hope so. I like being at sea. The truth is, I like being on land too. Both are nice. Thanks for writing.

BS: No, we find mostly adults, but some babies. Many creatures are small as adults.

BV: We have seen lots of jellyfish. We had so many we had to hose down the lab at the end of our session the other day. They were everywhere.

GS: We will continue to take samples here.

TL and Many Others asked how long we put the cups down for: We put the cups down for about 15 minutes. That includes the time it takes to lower the CTD to the bottom. When it gets to the bottom, it comes right back up. Thanks all for writing.

AS: Right you are!

Good job calculating all those who got 984 feet!

MM, I love the adventures I’m having here and the people I am meeting. It has been fun. I like being on land too.

JS, Dr. Kunkel took samples from some lobsters so he could help cure the disease.

KF: Could the hag fish bit us? Yes, Mel Underwood, our Watch Chief was very careful as she held the bag and backed her hands up when the fish got close to her hands. Mel is very experienced working with sea life and I have never seen her back off the way she did with this thing.

HRF: Go for it! It is a cool job!

CF: Good question. No, your bones are a lot stronger than styrofoam, so you would have to go down many miles to hurt yourself, and you could not swim that far without gear. When divers get hurt from pressure changes, it is usually something different called the bends. This happens when you are swim up to fast and certain gases in your blood stream expand as the pressure increases and form bubbles that can hurt you. Divers have to swim up slowly (the usual rule is don’t go up faster than the air bubbles next to you) in order to avoid getting the bends.

DC: Good questions: The dots are not bacteria on the lobster, they are the result of the bacteria eating away parts of the shell. The actual bacteria are too small to see. Good question about he temperature relating to growth. It is a bit more complex than that. There are many factors at work. The factor that may be causing more bacteria are chemicals like fertilizers from land getting into the water.

Dr. Kunkel came on board to study lobsters. He is a biologist, not a medical doctor. There are many scientists on board working with us, and me with them.

The quadrent is an old invention. People have been able to find their way with the stars for thousands of years. It is an ancient art. It was fun to practice it here.

SF, VF and others: The fish stayed in the bag. We made sure of that. From the bag, we put it back in the sea.

SD, sorry, I can’t help you there. I don’t think a pet skate would survive the trip back to NY.

Several of you have asked if I have gotten sick. No, I have not.

How many lobsters have we caught so far? Lots!

SS, sleeping on a boat if fun. If the waves are small, they rock you to sleep. If they are huge, however, they throw you out of bed!’

CP: bacteria infect the shells of the lobsters. This destroys the protection that the lobster should have. They grow weak and die of other causes. Good question!

Why do we work at night? Because ships work 24 hours a day so that no time is wasted. I ended up on the night shift. Why do we wear suits? To stay warm and dry on deck.

The hagfish eat shrimp and small fish, though they are scavengers and can eat large creatures as well.

Mrs. Christie Blick’s Class, you guys are doing some great work. I check on the skates for you. Some skates have protection, like thorns or spikes. They also have some interesting fins that look almost like feet. They use these to “walk” along the bottom searching for food. I know you asked about skates, but I have to mention the ray I worked with yesterday. It is related to the skate and could shock with an electrical charge for both protection and for hunting prey. Cool!

Jacob Tanenbaum, October 15, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 15, 2008

Using the sextant
Using the sextant

Science Log

Our study of creatures on the bottom of the sea has been done every year for 45 years. In fact, it is the longest series of data for fish, in the world. Why is this important? I asked Dr. Michael Fogarty, head of the Ecosystems Assessment Program, at the Northeast Fisheries Sciences Center in Woods Hole, MA.

Mr. T: This is the longest uninterrupted time series of a trawl survey anywhere in the world. Is that important?

Dr. Fogarty: Really important because the changes that we are observing occur over long periods of time due to fishing and climate and other factors, so we need to track these changes to see how individual fish species are doing and to see how the ecosystem itself is responding to these changes.

Mr. T: What have you found?

Processing samples
Processing samples

We have found overall in the 45 years that we have been doing this survey, the number of fish has remained the same, but the types of fish have changed. In Georges bank, we would have mostly cod, flounder in the past, now we have small sharks, skates, which are relative of the rays.

Mr. T: What does that mean in terms of the ecosystem?

Dr. Fogarty: It has changed the entire food web because, for example, these small sharks we are seeing are ferocious predators. Because these dog-fish prey on other species, they keep the fish we usually like to eat down in number

Mr. T: Why is that happening?

Dr. Fogarty: Our hypotheseis is that because the some fish have been hurt by too much fishing, the other fish have come in to take their place.

IMG_7042-735252I thought about that for a while. It means this ecosystem has been effected by something called Overfishing and something called climate change. I started wondering about all the different factors that might have effected the environment we are studying. There are so many! Let’s look at some of the may things that human beings have done that have changed this ecosystem in the 45 years we have been doing this study. Dr. Fogarty and I talked about this and then we created talked about this mini website for you. Click each problem area to learn more.

Remember the other day when I tried to use a sextant to fix our position? I could not even get close, so today, I took a lesson with one of the NOAA Corps officers on board, Lieutenant Junior Grade Andrew Seaman. Click here to come along.

IMG_6866-762848Elsewhere on the ship, Snuggy and Zee paid a visit to the dive locker on the ship. This is the area on the ship where SCUBA gear is stored. We are not using SCUBA on this trip, but it was fun to visit the locker and see all the gear. Snuggy and Zee learned that the crew can actually fill up the air bottles they need right on the ship. They have all the equipment they need to do work underwater right here on the ship.

We had a fire drill yesterday. I know you are all familiar with fire drills, because we have them at school. When we do them at school, we often practice evacuating the building and calling the fire department. Well, at sea, things work a little differently. We have to get away from danger, but then, we have to practice putting out the fire as well. After all, there is no fire department to call way out here! Click here for a video.

Finally, so many of you asked about dangerous creatures that we have caught. This torpedo ray does have an electrical charge to it. The ray can zap you if you are not careful. I used rubber gloves to keep from getting hurt. The hardest part was holding the thing while we took the picture. I kept dropping it becuase it was so slimy!

————————–

AT: I have not been frightened by anything on the ship or in the sea that we have seen. The hag-fish did seem gross. Very gross. Other than that, no.

Hi SP, I enjoy Korean food very much and have eaten lots of crab roe. It does not gross me out at all. Thanks for writing.

NV, Zee and Snuggy are just fine. Thanks for asking.

Mrs. B’s Class: I’m glad you liked the blog. We found the dead whale 100 miles or so off of Cape Cod. There are no sea snakes here. The water is too cold. I’m kind of glad about that!

Hello Mrs. Graham’s Class. I am staying nice and warm. Even working on deck, it is not too cold. We could stay out for several more weeks without a problem. Do you know what we use to make electricity? See if you can figure that out. We have to go back to port before we run out of that.

Mrs. Christie Blick’s Class: Very interesting. Our chief Scientists says that they can tell the whales don’t like barnicles because whales without them don’t behave in quite the same way.
This particular fish, which we call a monk fish or a goose fish has all the adaptations you mentioned. You did very well thinking those up. The Chief Scientist, Phil Politis and I are both impressed. He says that the fish hides in the mud (that is why it is brown), which keeps it hidden from predators. It has another adaptation, the illicium which we are calling a fishing rod. This adaptation lures smaller fish to the monkfish. Since it does not move around as much as many other fish, it can stay safer from predators.

Hello to Mrs. Coughlin’s Class, Mrs. Berubi’s Class. I’m glad you like the blog.

NN, I’ll be back next week. Because the crew and I, as well as a few birds are the only land-creatures we have seen out this far! Thanks for writing.

Hi Jennnifer. Thanks for your kind words and thanks for checking in on the blog.

Jacob Tanenbaum, October 14, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 14 2008

Here is Doctor Kunkel collecting samples with Watch Chief Mel Underwood.
Here is Doctor Kunkel collecting samples with Watch Chief Mel Underwood.

Science Log

Dr. Joseph Kunkel from the University of Massachusetts at Amherst is investigating a mystery on board our ship. In the last few years, fisherman and biologists have all noticed that lobsters are disappearing from waters south of cape cod near shore. This includes Narragansett Bay and our own Long Island Sound. Why? Thats’ what Dr. Kunkel is trying to find out.

He and other scientists have found that the lobsters are infected with a bacteria. Dr. Kunkel has a hypothesis. He believes that some lobsters get the bacteria because their shells are not as strong as other lobsters and don’t protect them as well. He is here collecting samples to test his hypothesis.

Shellfish are affected by acid rain
Shellfish are affected by acid rain

He has even made a discovery. He and another scientist, named Dr. Jercinovic, discovered that this shell fish actually has boney material in certain places in the shell. The boney material helps make the lobster strong enough to resist the bacteria. Effected lobsters may not have as much bone, so their shells are weaker. Why are the shells weaker? There may be a few reasons. The water South of Cape Cod is warmer than it normally is. Climate change may be to blame. The water has a lot of pollution from cities like New York and Boston. There are many streams and rivers pouring into the area that are Affected by acid rain. All of these things may effect the lobsters in the sea. They may effect other creatures in the sea as well. Can you think of things that are happening in our neighborhood that may contribute to this problem? Post your ideas on the blog and I will share them with Dr. Kunkel. What does shell disease look like? Can you see the red spots on the photo on the right? That is shell disease. It can get much worse. Thanks Dr. Kunkel for sharing your work and your photograph.

Cups are ready!
Cups are ready!

The art teachers, Mrs. Bensen in CLE and Mrs. Piteo in WOS had groups of students decorate Styrofoam cups for an experiment on the ship involving technology, water pressure in science and perspective in art. You probably have felt water pressure. When you swim to the bottom of the deep end of a pool, you may have felt your ears pop. This is water pressure. It is caused by the weight of the water on top of you pushing down on you. Well, a pool is only 10 or 12 feet deep. Just imagine the pressure at 600 feet down. We wanted to do an experiment with water pressure. Since Styrofoam is has a lot of air in it, we wanted to see what happened when we sent the decorated cups to the bottom of the sea. Click here for a video and see for yourself. If you decorated a cup, you will get it back when I come in next week.

Here are some more interesting creatures that came up in our nets overnight. We have been in deeper water and some some of the creatures have been quite interesting.

This “sea pen” is a type of soft coral.
This “sea pen” is a type of soft coral.
Two sea-hags
Two sea-hags

This is a sea-hag. It is a snake-like fish that has some amazing teeth. We put one inside a plastic bag for a few minutes to watch it try to eat its way out. Take a look at this video to see what happened.

Spoon Arm Octopi
Spoon Arm Octopi

Here are three Spoon Arm Octopi. Each octopi has three hearts, not one. One pumps blood through the body and the other two pump blood through the gills. There are three octopi in this photo. How many hearts to they have in all?

Red fish
Redfish

This redfish are also an interesting criters. When they lay eggs, you can see the babies inside. They live in deep water. We caught this one at a depth of 300 meters. How many feet is that?

Squid and sea star
Squid and sea star

Here is a bobtail squid and a sea-start. The squid looks like an octopus, but it is not.

Skate case with a baby skate inside
Skate case with a baby skate inside

This skate case had a baby skate inside. Here is what it looked like as the tiny creature emerged.

Crab and eggs
Crab and eggs

Finally, the red on the underside of this crab are the eggs. Biologists call them roe.

Zee and Snuggy paid a visit to the ship’s hospital to take a look around. The hospital is amazing. They are able to treat a wide variety of injuries and ailments without having to call for help. They can even put in stiches if they need to. In cases of serious injury, however, the Coast Guard would have to take the patient to land with the helicopter or fast boat. Zee and Snuggy had a great time touring the hospital, and all three of us are just fine.

IMG_6859-737787

Jacob Tanenbaum, October 13, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 13, 2008

Old fashioned navigation
Old fashioned navigation

Science Log

Happy Columbus Day everyone, and, since were in Canada, Happy Thanksgiving. Yes, that’s right, Thanksgiving. Here in Canada, Thanksgiving is celebrated on the second Monday in October. So a special note to my son Nicky: Happy Canadian Thanksgiving!  Back to Columbus Day, though. Since that’s probably what your all talking about at home. In honor of Columbus Day, I thought I would try something interesting.

I made a replica of the instrument Columbus used to navigate his ship. It is called a Quadrant. Columbus would sight the North Star with his quadrant and measure its angle above the horizon. That angle is equal to your latitude. He used a quadrant to measure that angle.

A quadrant
A quadrant

This is what a quadrant looks like. You hold it up so you can see the star you want in your site. The weighted rope simply falls over the scale of numbers and indicates the angle. What instrument in math looks like this? Post your answers on the blog if you think you know. So did I beat the GPS? You will have to watch this video to find out.

Want to try sighting the North Star yourself? Here is how: Find the Big Dipper. Trace an imaginary line from the spoon up. The first bright star you come to is the North Star. Want to find our more about using the stars to find your way, or Celestial Navigation, click here.

We are fairly far out to sea right now. There is a point of land in Nova Scotia, Canada about 100 miles to our north, but most land is around 200 to our west. We are seeing a lot of off-shore birds like the Shearwaters pictured here. These little birds spend most of their lives in the open water feasting on fish. They come on shore only to breed, so landlubbers don’t see them very much. What a treat. They were part of a large flock that was foraging in the nets yesterday afternoon during a tow.

Seabirds
Seabirds

We also have a few land birds on board. They may have been blown out to sea by storms and have stopped on our ship for a rest. Several were eating what they could find out of the nets on deck yesterday. The nets on the Bigelow have 6 sensors, each reporting different variables, such as depth, the width of the net opening and the height of the opening back to the scientists on deck. One of the sensors stopped working and had to be replaced yesterday. Take a look at this video of how the repair was done.

The water temperature outside is changing. It is now much colder than it was. When we were further west, we were towards a warm current called the Gulf Stream that moves north along the east coast of the USA. The water was about 63 degrees. Now we are in a cold water current called the Labrador Current. This current brings water south from the Arctic along the Canadian coast and ends in the Gulf of Main. The water here is about 55 degrees or so. We are not seeing the dolphins anymore and some of the science crew thing the water temperature may be too cold for them. Take a look at this map of the water temperatures. Brighter colors are warmer in this picture. We have moved from the warmer greener colored water into the cooloer blue colored water. The red line represents our course.

Water temperature illustration
Water temperature illustration

WOS students who have not had a chance yet, should compare our ship to the one Columbus Sailed. Go back and look through the blog at the pictures of Snuggy and Zee in the different parts of our ship to help you. Post your answers on the blog. Finally, something very interesting came up in our nets today. We got this off the bottom in 1000 feet of water. It is wood. Clearly cut and shapped by a person and for a purpose. It appears to have been down there for a long time. How do you think it got there? Post your answers on the blog!

CLE students, try using these images of ships in the past as a story starter. Write me a short story about a trip on an old sailing vessel and incorporate some of what you have learned about their technology in your story. Can you tell me the story of how that wood ended up on the bottom of the ocean? Please don’t post these to the blog. They will be too long. Print them and show them to me when I get back on land next week.

———————-

IMG_6782-766424And now some answers to your questions:

RM – Good question: A sea spider is a sea-creature related to the horseshoe crab. It just looks a lot like the spiders we see on land.

Have we seen any sharks? We have seen a lot of dog-fish, which are a type of shark, but are not very ferocious. Our captain saw a great white off the bridge. Unfortunately, I was working below decks at that moment and did not get out to see it in time.

Jacob Tanenbaum, October 12, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 12, 2008

Science Log

Here is a sample of what has come up in the nets overnight.

Sea stars and baby invertebrates
Sea stars and baby invertebrates

Here are several different types of sea-stars. I am always amazed by the wide variety of these creatures that exist in the ocean.

a brachiopod
a brachiopod

This little fellow might not look like much, but it has an interesting history. This creature is called a brachiopod. It belongs to one of the oldest family of creatures on earth. There have been brachiopods in the sea for at least 550 million years. That is long before there were even plants on land, let alone animals and dinosaurs. It is a simple shelled animal that has a single stalk that helps is stay attached to the rocks around it. Click here to learn more about this amazing creature.

a brachiopod
a sea cucumber

Here is a sea cucumber. They live at the bottom of the sea and can be found all over the world. They are used to make medicine in some countries in Asia.

Sargassum up close
Sargassum up close

Remember that large raft of sargassum weed we saw yesterday? Some came up in the nets today. Here is what it looks like close up. She the little pockets that hold air? They help the sargassum stay afloat.

This is a sea spider.
This is a sea spider.

And of course, there is always garbage. We keep getting bits and pieces each time the nets come up. Here is a sampling. We found one entire Butterfinger candy bar with the chocolate still inside (no, we did not eat it), as well as some rope. How do you think it got here?

Let take a closer look at a sensor called a CTD. That stands for conductivity, temperature and depth. Remember the drifter buoy that we released a few days ago? It measures temperature on the top of the water and it can drift all over the ocean taking readings. A CTD takes its measurements as it descends through the water column and can go all the way to the bottom.

Trash pulled up with the rest of it
Trash pulled up with the rest of it

Have you ever seen barnicles move? They do. We found these huge barnicles in our net and we put them in water to encourage them to come out. Check out this video!

A lot of people have asked me about sea-sickness. Sea Sickness happens when your brain and body, which are constantly working to keep you balanced, get confused by the rocking of the ship. It is a terrible feeling, and I’m glad I have not been sea-sick at all on this trip. Some people do better than others on boats. I do not tend to get sea-sick unless the waves are very high, and I am used to the rocking of the ship now. The other night I was working on deck and I caught sight of the moon moving quickly across the sky. I wondered why it was moving so fast until I realized it was my ship that was moving in the sea and me with it. The moon only seemed to move. I guess that means I’m used to the rocking back and forth and hardly notice it now.

——————–

More marine debris
More marine debris

MLL, SPL and MCL, Snuggy and Zee are having a great time and none of us are sea-sick. I put more information about it in the upper part of the blog entry. Thanks for writing.

SQ, CS, KM and VM: It is nice fall weather. Not too hot, not too cold. I love it. I have not felt uncomfortable even when I am working out on the wet deck of the ship.

GG: It is not hard to sleep at all most nights. There was only one night where the waves were high and I bounced around too much to sleep well. The rest of the nights were fine. The ship rocks me to bed at night. I do miss WOS. See you soon.

Jacob Tanenbaum, October 11, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2009

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 11, 2008

Science Log

Greetings from Canada, my son Nicky’s favorite place! We are now in Canadian waters. We have crossed the international boarder. More amazing things keep coming up in our nets. Today we had some interesting sea-stars. Take a look. The larger ones are called Sun-Stars. Do they look like the sun to you? Sea stars are scavengers. They will move around the bottom looking for whatever food is laying around. The legs of the sea star have small tentacles that push food towards the mouth in the center.

Can you find the mouth?
Can you find the mouth?

Did you know that squid can change color? Often male squid change color to attract a mate or to scare off other males who are competing with them. If there are two males near one female, they able to turn one color on the side facing the female, and then turn another color on the other side facing the male.

Squid
Squid

We had more dolphins circling the ship last night. We think our lights may be attracting certain fish or squid, then the dolphins come to eat that. They are not with us during the day at all. One of the benefits, I guess, of being on the night watch. I cannot shoot still photos due to the low light, but have wonderful video. The sounds that you hear on the video were recorded with the ship’s hydrophone. This is a special microphone that can record sounds underwater. The sounds were recorded as the dolphins swam around the ship. You can hear the sound of them swimming by as well as the sound of their sonar as they locate fish to eat. Click here to watch and listen. Thanks to survey technician Pete Gamache for recording this for us. Click here to see the video. Don’t miss it!

Floating Sargassum mat
Floating Sargassum mat
Close up Sargassum
Close up Sargassum

We drove past some seaweed called sargasum weed. It normally grows in an area towards the middle of the Atlantic called the Sargasso Sea. We are well west of the Sargasso, but this seems to have drifted our way. Sargasum Weed grows on the surface of the water. These huge mats of seaweed support an entire ecosystem of sea creatures. Many come to seek shelter in the weeds. Many more come to feed on smaller creatures hiding there.

Snuggy and Zee paid a visit to the fantail of the ship.
Snuggy and Zee paid a visit to the fantail of the ship.

The fantail is an area by the stern of the vessel where the nets are deployed. The photos show the area where the work gets done. Our ship works all night long, of course, and trawls are done at night as well as during the day. Take a look at this video which explains how trawls are done.

NOAA Ship Albatross
NOAA Ship Albatross

Our ship is shadowing another NOAA ship, the Albatross. Why? The Albatross is an old ship and will be replaced by the Bigelow in the years to come. At this point, the ships are trawling in exactly the same place to see if they get similar results in their surveys. Making sure the vessels measure the same thing the same way is called calibration. Right now we are doing calibration with the Albatross.

—————————————————–

IMG_6425-724011Now some answers to your questions:

RM – No we did not see Nantucket yet. We were too far out to sea. We may see it on the way back. Thanks for writing.

T – I love Block Island too. Thanks for the warning about rough seas. I am glad you and your mom are both enjoying the blog as much as I enjoy writing it for you. I’m used to the 12 AM shift now. I that I finally got 8 hours of sleep.

AR – There were TONS of skates in the water.

Hello to Mrs Eubank’s Class. Its great to hear from you. Great questions. Now for answers:

— Amanda, I think fish can get smaller pieces of plastic confused with tiny plankton, but our buoy is too large for that. I don’t think it will hurt fish. I think they will stay away from it.

–Tiffany, this is a tough question and a very good question. I guess over time, our buoy will stop working and will become floating trash. The truth is all science effects the environment you study. The trick is to do more good with your work than harm. Our buoy will help us understand our environment better so that all of us will do less harm in the future. Our ship also burns fuel as we study the ocean. That pollutes a little, but hopefully through our work, we do more good than harm to what we study.

Weston, It felt like the drifter weighs about 35 pounds or so.

Bryce, we use a large net to scoop along the bottom. The opening is about 4 meters wide.

Luke, we have not, nor do I expect to find new species. Our purpose is to learn more about the species that we already know about.

Bryce, we were about 140 miles from the nearest land the last time I looked.

RJ, some scientists made our drifter.

Weston, there are about 1000 drifters right now in the open sea.

I enjoyed your questions. Thanks for writing.

Mr. Moretti’s class, I’m not sure what killed the whale, but remember, all things the live also die. We cannot assume that something human beings did killed that whale. With all the pollution we create, we cannot assume, however, that we did not hurt it. We should stop polluting just to be sure we do not hurt other living things.

Many of you have are working hard to figure out our math question from the other day. Here is how it works. If we are going 8 knots for 24 hours, we multiply 8 times 24 and get 192 knots in a day. If we want to convert that to miles, we multiply again by 1.15 because each knot is 1.15 miles. We get 220.8 Congratulations to all who got this correct. It was a tough question.

Several of you have asked how long I would be on the ship. I will be here until the end of next week. I leave the ship on Friday October 17th.

LP – I enjoy the show Deadliest Catch very much. I think it is cool that scientists sometimes do that same kind of exciting work.

SD, there is no way for me to videotape under that water, but tomorrow I will show you how our sonars (we call them echosounders) work. That is one way to see under the water.

DT from SOMS dont’ worry, there is no light pollution out here. I am on the back deck of a working ship, so right where I am there are lights. I need them to do my job. I just have to go to the upper decks to get away from it or ask the bridge to shut them down for a bit.

Jacob Tanenbaum, October 10, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 10, 2008

IMG_6354-743446Science Log

Did you figure out the answer to yesterday’s question? Those creatures were the real cast of Sponge Bob Square Pants TV Show. We saw a sponge, like Sponge Bob, and sea stars like Patrick, plankton, like Sheldon Plankton, some squid like Squidward, a crab like Mr. Krabs next to a sand dollar (because Mr. Krabs loves money), a lobster like Larry the Lobster and a snail like Gary. All the creatures in the program actually exist in the sea, except for squirrels, and we have seen them all on this adventure. Amazing creatures keep coming up in our nets day after day. Let’s take a look at a creature called a skate. The skate makes those funny black rectangles that you find on beaches. Take a look at where those rectangles come from and what is inside of them. Click here for a video!

Skates also have interesting faces. They live along the bottom of the sea. Their eyes are on top of their head to spot predators and their mouthes are below to eat what is on the bottom. They have two nostril -like openings above their mouth called spiracles. They look just like eyes but actually help the skate breathe. Here are a few interesting skate faces.

IMG_6247-720301

This sea robin uses three separate parts of its pectoral fin, called fin-rays to move, almost like its walking along the bottom of the sea as it looks for food. This helps is move very quietly, making it able to sneak up on prey unobserved.

Sea Robin
Sea Robin

These two baby dog-fish show different stages of development. This one is still connected to an egg sack. The other has broken loose from it, but you can still see where it was attached just below the mouth. Usually in this species, just like most fish in the shark family has eggs that develop inside the mother’s body. She gives birth to the pups when they have hatched from their eggs and are ready for the open sea.

Dogfish egg sack
Dogfish egg sack

IMG_6374-789593Many people have asked me about garbage. Here is some of what we have found so far. We caught part of someone else’s fishing net. Here is a Styrofoam cup and here is a plastic bag, which we caught 140 miles from the nearest land. How do you think it got here?

Finally, we were visited by some dolphins last night. They were eating smaller fish and as they came in for their attack, you can see the smaller fish jumping straight out of the water into the air to try to avoid being caught. Click here for a video.

IMG_6125-731150

IMG_6383-764446Snuggy and Zee decided to visit the kitchen today. Here are Zee and Snuggy with our chief Steward Dennis M. Carey and our 2nd cook, Alexander Williams. The food here is fantastic. See how large the kitchen is? We have a lot of people to feed on this ship, and the cooks here work hard. You have seen a few of the many different jobs that people can do on a ship like this. You have seen the scientists at work in the labs, you have seen the engineers who make the engine go. You have been to the bridge where the NOAA Corp officers run the ship. You have been to the kitchen where the cooks keep us so well fed. Tomorrow, you will see how the deck crew trawl our sample nets through the water. Keep checking the blog this weekend. There will be lots to see.

~~~~~~~~~~~~~~~~~

Now, some answers to your questions and comments:

Hi to KD and to Derek Jeter. We are staying safe. Thanks for writing.

Hello to St. Mark School in Florida. I’m glad you are enjoying the blog. I really enjoyed your thoughts about what these fish have in common. Great work. Here are some answers:

If a ship hit a drifter, the drifter would probably be broken. But the ocean is a big place, and that does not happen very often.

Can your school adopt a drifter? Of course! Take a look here: http://www.adoptadrifter.noaa.gov/. In the mean time, you are welcome to follow the adventures of our buoy. Keep checking this website!

I have Snuggy because some of my kindergarten classes asked me to take a bear with me to sea. So I did!

How heavy are the drifters? It weight 30 pounds or so, I would guess. Enough to make me work to pick it up.

I knew the whale was dead because part of it was decomposing. We could see it and we could smell it. Yuck.

Did any fish try to bite me? Yes. One scallop closed its shell on my finger. I had to be quick to get my hand out of the way in time. Other than that, no.

At 8 knots per hour, the ship could travel 192 knots, or about 220 miles in a day.

Congratulations to all who calculated correctly. The truth is that we have to stop for sample trawls every hour or two, so we seldom make our top cruising speed when we do work like this. So, we usually travel less than we could.

Oh, and to all those who asked, so far I have not gotten sick. Yet.

Thanks all for writing. Keep checking the blog!

Jacob Tanenbaum, October 9, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 9, 2008

DSCN3867-789283Science Log

Hello everyone. I hope you are all enjoying your day off today. Since you have time off from school, I bet many of you are spending time observing these sea creatures…

Can you guess what they all have in common? Post your answers on the blog.

Need a hint? That crab is standing right by a sand dollar. Money. Hmmm.

This angler fish is an interesting character. It sits on the bottom of the water and blends in with its surroundings. It has a small hair that sticks out of its face that is use to lure prey closer to its mouth (just like its cousin from deeper waters, the angler fish). When the prey get close by it strikes. With all of those rows of sharp teeth it makes short work of smaller fish. Can you imagine a fish with a built in fishing rod. Very interesting. We came across a dead whale floating in the open sea. What an amazing sight (and smell). Yuk. Look how big it is next to the ship. The barnacles on its face were the size of baseballs.

A lot of you have asked what my stateroom looks like. Here are Snuggy and Zee in my “rack.” That’s what we call a bed. Do I have a roommate? Yes. Sean is very nice. I’ve only met him once or twice because he sleeps when I work and I sleep when he works, so we don’t run into each other much. That’s often how things work on a ship like this. The second picture is the door to the corridor. The locker to the right is where I keep my gear. The door on the left leads to the “head,” which is what we call the bathroom on a ship.

Many of you asked what the engine room is like. Joe Deltorto, our Chief Engineer, was kind enough to give me a tour. The Bigelow has an interesting engine room. Huge diesel generators make electricity. Lots of it. Enough to power all of our computers, sensors, lights, and even the ship itself. The propeller is turned by large electric motors. This makes the Bigelow one of the most quiet research ships anywhere. Why is that important? Sound is often used to see what is below the surface of the water. Sonars push sound through the water and listen when it echos back. That’s often how boats see what is under them. The Bigelow has a more sophisticated version of this called an echosounder. It can see much more, but still uses sound to see. So the engines have to be super quiet.

Today we will deploy our Drifter Buoy. This is an instrument that we are adopting. It will float in the open sea for the next 14 months or so and tell us where is has gone and what the temperature of the water around it is. Drifters are an important way that scientists measure. Keep watching here. I will update the blog when I deploy the drifter.

~~~~~~~~~~~~~~~~

Here are some answers to your wonderful questions and comments.

Have I gotten sea-sick? No. So far, the water has been very calm. I feel very luck. The ship has hardly moved at all.

Does it smell on board because of all the fish? Surprisingly, no. even the fish labs have lots of fresh ocean air coming through. There is no bad smell. When we came across a rotten whale floating in the ocean, then there was a smell! Oy!

The whales we have seen so far were all humpback. Even the dead one.

Have I seen fish that were new to me. Oh yes. Most of what we have seen has been new to me! That’s what makes these trips so much fun! I love learning new things.

What do I want to see that I have not seen yet? Dolphins.

In answer to so many of your questions, no, I have not fallen in yet. Either has anyone else. The Bigelow is a very safe ship. Everyone is well trained and very concerned for the saftey of themselves and all the others on board. I feel very safe here.

Hello to Ms. Farry and classes in TZE. I’m glad you are looking at the blog.

Hi Turtle. Nice to hear from you. Yes, I think we can work that out. We are on the shelf, so our deepest CTD deployment will be only be about 300 meters. Will that do?

FD and JEGB, thanks for your questions. No, so far we have not seen any 6 pack rings on any creatures. I did see some garbage float by many dozens of miles from shore. It was right where the whales were swimming. Sad.

IJ, cool idea, though I wonder, though if the water would carry toxins from the smoke into the streams rivers and oceans? Keep thinking maybe you will discover a way to solve this problem someday.

Mi Mrs. Bolte’s class. I’ll get you engine room photos very soon, and there is a photo of my stateroom for you today. I’m glad you like the blog.

MS, the people here are friendly, very professional and so helpful with everything I have needed for all my projects.

MH, yes I do miss my family.

MJ, we see lots of ships out here. Yes. It has been fun to see.

Several of you asked about cell phones. They do not work out here. We are way too far from land. All the crew were on deck as we left port making their last calls to their families. So was I.

Hello to Mrs. Ochman’s class, Mrs. De Vissers’s class, Mrs. Sheehy’s and TN’s class. I hope the pictures in the last few days answered lots of your questions.

Mrs. Christie Blick’s class, here are some answers to your questions: No, the clothes just keep you dry (and comfortable) when you are working. You get used to them. I am adjusting well to the time change. It is a little like going to New Zealand like Mrs. Christie-Blick did recently. I wake up at about 8:00 PM, go to work at midnight and then go to sleep in the early afternoon. Our time, that is. If I were in New Zealand, I would be on a normal schedule. I’ll post pictures for your soon for my stateroom. It is very relaxing here. There is not a whole lot to worry about. There is a lot of work, but it is not hard.

The zig in our course, by the way is probably where we stopped for a trawl. We sometimes circle around when we do that.

Hello Mrs. Benson. Thanks for checking out the blog. No artists here at the moment. I enjoy amature photography and what subjects there are out here!

Hello Guy D. Thanks for following the blog. I appreciate your support.

Jacob Tanenbaum, October 8, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2009

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 8, 2008

Science Log

Today we started working. My shift is 12 midnight to 12 noon, so I slept for a few hours in the afternoon and then worked overnight and into the morning. It is hard to get used to staying up all night. It feels a little like I took an unexpected trip to Europe. Our first haul took the longest to sort out because many of us were learning how things were supposed to work, but after a full day, it started to feel routine. Here is a sampling of some of the amazing creatures that came up in our nets:

Big fish!
It’s a shark!
This is a dogfish. It is a relative of the shark, but without all those ferocious teeth. So many people have asked me if I have seen a shark, I had to put these photos up for you!
This is a dogfish. It is a relative of the shark, but without all those ferocious teeth. So many people have asked me if I have seen a shark, I had to put these photos up for you!
This lumpfish is a related to the anglefish, which has a light and lives in deeper water.
This lumpfish is a related to the anglefish, which has a light and lives in deeper water.
Here is a squid, a sea-robin a baby dogfish that had just hatched and a flounder or two.
Here is a squid, a sea-robin a baby dogfish that had just hatched and a flounder or two.
This is a skate.
This is a skate.
These are the skate egg cases. Have ever found one on a beach? Now you know what it grows into.
These are the skate egg cases. Have ever found one on a beach? Now you know what it grows into.
This is a long horned sculpin. These creatures buzz when you hold them and stick their fins up to scare you off. Amazing!
This is a long horned sculpin. These creatures buzz when you hold them and stick their fins up to scare you off. Amazing!
The largest lobster I have ever seen. Can you guess why I'm smiling in the picture? Here is a special shout out to my favorite lobster (and clam) fans, Simon and Nicky Tanenbaum!
The largest lobster I have ever seen. Can you guess why I’m smiling in the picture? Here is a special shout out to my favorite lobster (and clam) fans, Simon and Nicky Tanenbaum!

And finally, we saw whales!

~~~

NOAA Ship Albatross, also working on this survey
NOAA Ship Albatross, also working on this survey

On a personal note, this is a very comfortable ship. Zee and Snuggy will continue to show us around each day. Several of us watched the presidential debate on live satellite TV in the lounge tonight. Here are Snuggy and Zee having a quick meal.

Cottage Lane students, we are traveling about 8 knots per hour right now. Can you calculate how for we can travel in a day? Remember, the ship works all day and all night. How far can it go at that speed? Post your answers on the blog, then watch the video. Would you like to do this kind of work? Let me know.

I have enjoyed reading your comments very much. We are going to have a little delay in my responding to comments today as I get used to working the midnight shift. You are all correct when you say that the Bigelow has a LOT more technology than the Eagle. Consider this: I went on deck at about 4 in the morning to do some work and found that I could not see the stars because the electric lights on the ship were so bright! I guess we have to have a GPS when you reach that point! Celestial navigation just will not work on a ship with lights so bright!

Mascots in the galley
Mascots in the galley

A lot of you were focusing on what sailors then and now need to survive: Food and water, for example. Did you know old sailing ships had to bring their entire supply of fresh water with them in barrels. Today, our ship can take the salt out of seawater to make it safe to drink. Technology has changed the way we live on ships!

To my fellow TAS from the Delaware: Thanks for writing. We are doing bottom trawls and are looking to survey the entire benthic community here. Thanks for the sea-sickness tips. I may need all the help I can get if the weather decides to change.

Lynn: thanks for reading the blog. Zee is fine, and so far so am I. With luck, the weather will hold! If not, Zee may do better than I do. We could see Cape Cod earlier today. Beautiful!

Jacob Tanenbaum, October 7, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

This one shows our ship under the bridge leading into Newport.
This one shows our ship under the bridge leading into Newport.

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 7, 2008

Science Log

Our first day at sea is a day of mainly travel and drills. We are moving east around the island of Martha’s Vinyard towards our first tow of the day.

Did you know that ships like the Bigelow have all kinds of safety procedures? We had two drills today. In one the crew all went to the back of the ship and put on our survivial gear. This suit will help us survive and be spotted by rescurers in the event we have to abandon ship. It is called an abandon ship drill.

On the gangplank!
On the gangplank!

During a fire drill, we go to our assigned safe spot for attendance – we call it muster. And the officers and crew practice putting out a fire. A fire on a ship can be dangerous. There are no fireman to call, so crew have to learn to put out fires on their own. That takes practice.

Snuggy and Zee also had their own tour of the ship. Each day they will visit a few places and show you pictures so you can see what different parts of the ship look like. They came in on the gangplank this morning. Just like all the sailors do.  Tomorrow, WOS students, please tell me what other parts of the ship we should visit. CLE students, you had lots of good ideas about how Columbus’ ship and mine are different. Technology is at the top of the list. Imagine crossing the ocean with just a compass, a steering wheel and a quadrent. What an adventure. We live in luxury even on our working ship. My quarters even have carpet! Keep those ideas coming. Good night to them both. It’s four in the afternoon and time for bed. I get up at 11 and start work at 12 midnight.

Zee and Snuggy on the bridge.
Zee and Snuggy on the bridge.
The nets are ready for our first day of fishing. Zee and Snuggy are ready to help.
The nets are ready for our first day of fishing. Zee and Snuggy are ready to help.

————————

Safety gear
Safety gear

Hello to all who wrote so far. Mrs. Christie Blick’s class, Mr. Connaughton’s class and others want to know when we start our survey work: We will begin our experiments late today after I have gone to bed, so I will tell you what we catch tomorrow. And I will send you LOTS of photographs! What do we want to catch? Well, different scientists need different things for their work. One of our scientists is studying lobsters. I hope we catch more than he needs so I can have a few for myself!

CP and others, it is not likely that we will see anything new in the water that has never been discovered. Sceintists study this area in detail every day to look for changes to the number of fish or patterns in where they live. we have a good idea of what is doen there.

AR, I will try to answer all your questions in the days to come. I have a bed called a rack here on the ship. I have a small quarters and one very nice roommate. I’ll show you around soon.

The weather here is perfect. The water is not cold or hot. It is just right. By the way, I will not be going to the bottom. We will lower nets to the bottom and see what we bring up.

EA, this ship is 210 feet long.

My brother David asks if I bring music along. Yes. I have my whole collection on my computer. Including all your discs!

Jacob Tanenbaum, October 6, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 6, 2008

Now here is a view of the bridge of NOAA Ship HENRY B. BIGELOW.
Now here is a view of the bridge of NOAA Ship HENRY B. BIGELOW.

Science Log

I made it to Newport and am writing from the ship. It was an interesting trip, can you find Newport, RI, on the map?

Remember its’ Columbus Day next Monday and we are going to spend some time on this cruise comparing this ship to the one Columbus was on. I stopped off to see an old Square Rigger Sailing Ship run by the Coast Guard. It is called the Eagle and it is based in New London, Connecticut. Here is what the bridge of the Eagle looks like.

How do the crew of the Eagle know where they are? They use the sun and the stars. In fact, it is the only Coast Guard Base where Celestial Navigation is still taught. Here a friendly Coast Guard Officer, Lieutenant Lally, shows us how to use a sextant. See the tables below? He needs those to convert his sextant sighting to a latitude.

Masts of the ship
Masts of the ship

Thanks to Lieutenant Lally and to the entire crew of the Eagle for their hospitality. Fourth graders tomorrow should work in pairs and post 4 ways the Eagle and the Bigelow are the same and 4 ways they are different to the blog. Then you can work on the navigation part of this website. Don’t miss the simulation of the tool you just saw demonstrated.

Newport is also famous for mansions an beautiful sea coast. Here are a few photos of the mansions. Thank you to Harle Tinney and her wonderful staff at Belcourt Castle for letting me take photos of the inside for you. She told me something else about the Castle. The weather vane at the top of the castle was marked on the maps sea captains used back in the old-days. From that weather vane, they could calculate their position and avoid crashing on the rocks nearby.

See you tomorrow.

~~~~~~~~~~~

Navigation instrument
Navigation instrument

Response to your questions and comments: Thanks to all for your good wishes. MAB – I will tell you all about what we catch. OG, we are not permitted on deck while work is going on unless we have a life jacket. Everyone here cares about safety. CB, the ship holds about 36 people. I’m not sure how many are sailing on this cruise. About half the crew are scientists. Several of you asked how long I would be gone for. I’ll be gone for about two weeks. We come back on the 17th of October. Many of you suggested I bring warm clothes. Yes I did. I brought just one suitcase (there is not a lot of room on a ship for extra stuff), but it is full of clothes. I brought lots of layers as well.

Hello to Miss. William’s Class: I am very excited to be going to sea again. I love it. I’ll be back in two weeks, but while I’m away, I’ll tell you all about what we catch and what we do while I am out.

Oh, and to everyone who asked, If I get sick, I’ll tell you that too! I promise! Thanks for writing.

J from TZE, I’ll show you about the cups in a few days. We are going to do an experiment with them. Keep watching!!

MH you asked a lot of great questions. Thanks for writing. I’ll try to answer all of them over the next few days. As for where I’ve been. Well, I spent the last two voyages in Alaska, so this will be very different. And much warmer.

Oh, and I did bring a few things to read. Most of them are on my computer to save space. There are a few books.

Keep watching the blog and keep writing! I’ll respond to your comments as best I can either personally or in the text of the blog now and in the days ahead. Remember, students should just use their initials when commenting.

Jacob Tanenbaum, October 5, 2008

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Henry Bigelow
October 5 – 16, 2008

Mission: Survey
Geographic Region: Northeast U.S.
Date: October 5, 2008

The mascots
The mascots

Science Log

I am packed and ready. Here is a photo of Zee, our High School Mascot and Snuggy on their way to Newport to meet the ship. Monday, I will leave early in the morning and will post a blog entry from Newport, Rhode Island before we leave on Tuesday.

Next to Zee are the styrofoam cups our 4th graders and 1st graders made for an experiment. Some of our 4th graders also decorated my hardhat. It looks great! Thanks for helping keep me safe and in style while I work on deck, and thanks for all your comments and suggestions. You really helped me remember what to bring!

Styrofoam cups ready for the depths
Styrofoam cups ready for the depths

Jacob Tanenbaum, Kodiak, Alaska, May 28, 2007

NOAA Teacher At Sea: Jacob Tanenbaum
NOAA Ship MILLER FREEMAN
Mission: Fisheries Oceanography Coordinated Investigations
Day 10: May 28, 2007

IMG_8737-793551

Last night we stopped survey operations and sailed for the Coast Guard Station in Kodiak, Alaska. We went through a part of the island called Whale Pass.

We saw whales blowing in the distance, sea otters drifting with the tide and a spectacular Alaska sunset that seemed to go on forever.

IMG_8695-790625

We pulled into port and found another NOAA Ship, called the Fairweather. They were on the pier right next to us. Lieutenant Sean set me up with a tour. Imet ENS Matthew Glazewski who took time from a busy morning to give me a tour. What an amazing ship! They do work mapping the bottom of the sea with allkinds of interesting sonar equipment. I as glad I had a chance to go on board.

This morning, I said some sad goodbyes to the crew on the FREEMAN and left the ship along with the science crew. The scientists departed by plane forSeattle while NOAA Ship MILLER FREEMAN prepared to leave later in the afternoon for a transit south. The crew are leaving for warmer waters off the west coast of the USA. They will spend a few days in transit, a few in port and then pick up more scientists for studies along the west coast of the USA. The crew have had a long spring in the cold Bering Sea and Gulf of Alaska. I think they all will be grateful for some bright sunny warm days. I wish them pleasant journeys and thank each and every one of them for all their support and hospitality and for a wonderful 10 days.

IMG_8939-721133Today I had a day on Kodiak Island while I wait for my flight out tomorrow. What an amazing day. I tried to rent a car in the airport and was unsuccessful.

I was sad at first, and then set out to make the best of it by exploring on foot. I started with some lunch. What a treat! For Memorial Day, Kodiak had something called a Crab Festival. There were rides, treats, and of course, Alaska King Crab. Take a look a lunch today!

I next set off on a long hike through the areas near the town of Kodiak. Lieutenant Sean had given me a list and guide to the town, and using that, I visited the harbors near town, and then a park just outside of town where I was able to hike through spruce trees covered with moss, and then find isolated beaches full of birds, including eagles.

IMG_9025-795884
Squirrel
IMG_9082-798379
Eagle

IMG_8964-752672

IMG_8991-730876

Next, I decided to hike to the top of a mountain overlooking Kodiak, again, following Lieutenant Sean’s recommendation. I found myself on top of a peak overlooking one of the most beautiful views I have seen on the trip so far. In fact, I took almost 500 photos today and had a very hard time selecting what to show you on the blog. I’ll put more on the gallery when I get back to New York, so you can see more soon.

IMG_9119-724271 IMG_9129-750746

On the way down, the weather started to grow cold. Suddenly the clouds opened up and rain began pouring down. I still had miles to go to get back to town and shelter. And I thought they called this DRY land! Fortunately, I was “rescued” by the Kelly family, who were driving down the gravel road I was walking along. They offered me a ride and then asked if I would like to join them for dinner. When we got to their beautiful house in Kodiak, we found that one of their friends had left a treat for us. Fresh red salmon, caught just down the road. What a feast!

I was also amazed when they brought fresh vegetables out to make salad. I found out that the vegetables are brought to the island by barge from the west coast. We had a great time learning about each other’s home towns. Thank you to the Kellys, and thank you to everyone who made this such a spectacular voyage.

Tomorrow I’ll be traveling, but will check the blog on Wednesday when I get back into the New York area, so please write comments. I’ll see you all in school soon.

If you could travel anywhere you wanted to, where would you decide to go? Why?

Jacob Tanenbaum, Final Day of the Survey, May 27, 2007

NOAA Teacher At Sea: Jacob Tanenbaum
NOAA Ship MILLER FREEMAN
Mission: Fisheries Oceanography Coordinated Investigations
Day 9: May 27, 2007
IMG_8653-709575
Snuggy in the captain’s chair
Weather Data from the Bridge:
Visibility: 10 Miles
Wind Speed: 20 Kts.Sea Wave Height: 2
Water Temperature: 4.7 Degrees Celsius
Air Temperature: 6 Degrees Celsius
Pressure: 1010.7 MbsPersonal Log

We reach Kodiak in the morning. I am excited to be seeing Kodiak, but sad to be leaving the ship. It has been a wonderful 10 days at sea. Please check back
tomorrow. I should be able to do a blog entry from the hotel in Kodiak and I can show you this incredible island. My heartfelt thanks to everyone on the
ship who gave me such a wonderful welcome and who gave such support to this project.

Here are a few last photos from around the ship: Snuggy in the Captains chair and Snuggy at the wheel of the ship.

Snuggy steering the ship
Snuggy steering the ship

Science Log:

Today was an important part of the cruise. On section, in addition to thebongo nets, we also deployed an instrument called a CTD array. This array allows the scientists to sample water at different depths. This is very importantin oceanography because the water lower down is very different from thewater higher up in the water column. The chemistry changes as you go down, the temperature changes and the creatures living at each depth may be different from the creatures above or below. Want to learn more about this important research? Click here for a video. We also stopped to have some fun with the CTD.

CTD
CTD




We attached someStyrofoam cups to the array and watched what happens when the pressure at depth presses in on them. Click here for a video.

IMG_8648-703079
Presurized Styrofoam cup

 

We are coming to the end of the cruise now. We deployed the bongos 125 times and have done 8 CTD’s, and released one drifter buoy. The scientists had
wanted to do more. They had planed 169 bongo deployments, but the bad weather forced us to change our plans. “That is the way things go out here,” says
Chief Scientist Annette Dougherty. Lets talk to her more about what we have learned so far on this cruise:

Tell us what you have learned so far:

On the standardized grid we have been doing, the numbers of Pollock are low, but spread out across the grid. The fish are also small. 4.5 to 6.5 mm. Which
is considerably smaller than last year.What does that mean?

It is a colder year and a very turbulent year, with a lot of storms, and what that can do is flush things out through the strait we are sailing in. The
fish may have spawned late. Or we could be catching the end of the hatching. It is hard to predict how many Pollock return as spawners if you can’t be out
here all the time.

So what does the survey tell us?

This is a colder year, and the growth rate has been slow. They are eating, so it does not mean they will not survive. There is a lot of stuff out there.

The study mainly tells us about the early life history. About what the fish goes through from hatch to spawning. The egg is the strongest stage these fish
have. After they hatch, they have a short time to use their yolk sack before they have to start to feed. If they can learn to feed! Some fish are stupid
and they can’t figure that out and just die. Most figure it out because they have to grow. There is mortality around every corner for these fish. They flow
with this current stream – well what if there is not food where it takes them? What if they don’t develop as fast as the fish up stream? They will be
competing for the same food. There is a lot against these fish, and they manage to survive. Females produce thousands of eggs, but very few survive. There
are a lot of hungry mouths out there!

What happens next in the study:

The database that we have been entering numbers into will go into a centralized database. I will also build a cruise report from that. It will state
general numbers and what grid stations they occupied. The numbers that we put in are preliminary estimates of the population. We wait until the samples
come back from Poland. They will be very meticulously sorted. Those final numbers are what we use for larval abundance (the number of Pollock babies).

How many years has this study been going on?

The study has been going on for 21 years now.

What have you learned in that time?

It is amazing how much things vary from year to year. It is hard to predict, based on a few environmental variables what will happen to these fish. You
have to have patience. This could be a good recruitment year. We could have missed them.

When will you know for sure if it was a strong year?

We will have to wait for 3 to 4 years to decide how many will spawn. Next year in the March survey, we will be able to see how many we catch as
one-year-olds. They go through their first year, which is very hard for them.

What is next for you?

I have a whole lot of otoliths (ear-bone samples) to read from another survey. I come back in September with Mat Wilson to see these same fish as what we
call age-zero. They do a lot of growing between now and then. They don’t have a vertebra right now. They can’t swim against the current yet. At about 12
millimeters, they will begin to grow bones. That is the beginning of juvenal transformation. They will look like miniature adults in September. They are a
beautiful golden bronze.

Jacob Tanenbaum, A Tour of the Ship, May 26, 2007

NOAA Teacher At Sea: Jacob Tanenbaum
NOAA Ship MILLER FREEMAN
Mission: Fisheries Oceanography Coordinated Investigations
Day 8: May 26, 2007

IMG_8576-791393 (1)
Calm seas are a great time to see whales


 

Weather Data from the Bridge:
Visibility: 2 Miles

Wind Speed: 3 kts

Sea Wave Height: 1 Foot (Whew)

Water Temperature: 5.7 Degrees Celsius
Air Temperature: 7.2 Degrees Celsius

Pressure: 1007.2 Mbs

Personal Log

The sea finally calmed down. Calm seas are a great time to look for marine mammals, like whales and dolphins. In calm water, they are easier to
spot. The picture above is a fin whale. Here is some video of a few Dall’s Porpoises that came by.

IMG_8610-738380

Ships like this are very different from our homes. First of all, everything is made of metal. So be careful. The walls are very hard. The ship hasa lot crammed into a small space. So it may seem small in some ways, but there are lots of places to go and explore. The ship we are on actually has 5 decks. Would you like to take a trip around the ship? Click here for awalking tour. Tell me, is the ship larger than you thought? Smaller? Write me a comment and let me know.

Science Log:

We are continuing to wait for data from Excalibur. It may have flipped itself over during the storm a few days ago. Come on, Excalibur, let us know
where you are!

In the mean time, the survey continues. We have deployed the bongo nets over 100 times so far on this cruise. Here is a photo of Chief Survey
Technician Phillip White and I bringing in a bongo. Take a look at some of the creatures we are finding:

Jelly Fish
Jelly Fish
 An arrow chaedognath (brissle mouth) eating the larvae of a krill

An arrow chaedognath (brissle mouth) eating the larvae of a krill

 

We think this might be a salp They are tiny creatures made of what looks like jello.
We think this might be a salp They are tiny creatures made of what looks like jello.
Copepods. You can really see what they have been eating. It is the green line running through its body.
Copepods. You can really see what they have been eating. It is the green line running through its body.
Copepods
Copepods 
We saw one of these yesterday. It is called thecosomate pteropods, or winged foot. Here you can see the foot extended. It really does look like a wing.
We saw one of these yesterday. It is called thecosomate pteropods, or winged foot. Here you can see the foot extended. It really does look like a wing.

 

 This is the larvae of a krill.
This is the larvae of a krill.

Question of the Day:

How would you like to live on a ship? Write me and let me know what your thoughts are.

Answers to Your Questions:

The water temperature yesterday was 41.18 degrees Fahrenheit. The air temperature was 42.8.

Hello to Ben and family in California. Great to hear from you. Thanks for your kind words. I’m glad you are enjoying the blog.

Jacob Tanenbaum, The Survey Continues, May 25, 2007

NOAA Teacher At Sea: Jacob Tanenbaum
NOAA Ship MILLER FREEMAN
Mission: Fisheries Oceanography Coordinated Investigations
Day 7: May 25, 2007
Weather Data from the Bridge:
Visibility: 8 Miles
Wind Speed 11 Kts:Sea Wave Height 4 Feet:
Water Temperature: 5.1 Degrees Celsius
Air Temperature: 6.0 Degrees Celsius
Pressure: 1004.2 Mbs
Personal Log:
The low pressure system over our heads just will not let up. The seas are a little flatter today and I could sleep last night without feeling like I was going to wind up on the floor. In any ship, the sections at either end, the bow (front) or stern (back) move up and down the most with the heavy seas. I’m way up in the bow. My cabin really moves. What does a cabin look like on a research ship? Well here is mine. Tomorrow we will take a tour of the entire ship.

IMG_8561-799324

Stateroom
Stateroom

I am also including some unique views of the ship while out at sea. As you can see from the photos, the weather just does not want change.

Science Log:

The work on the survey continues. The ship is moving in a kind of search pattern around the northern section of the Gulf of Alaska. We are looking for Pollock larvae and we are finding many. We are also finding lots of other cool creatures in our nets. Here are a few:

We are still waiting to hear more data from Excalibur, though it has returned some. Keep watching the drifter site for more information. In the mean time, here are some intersting creatures from today’s catch. You can double click the photos to make them larger.

Segmented Worm
Segmented Worm
Segmented Worm
Segmented Worm

This segmented worm usually stays near the bottom. When it is ready to lay eggs, it swims up into the water and scatters its eggs in the water as it goes. We must have caught this one as it moved up off the bottom to lay eggs. Can you see the eggs in the photos?

Crab Zoea
Crab Zoea

These are crab zoea. They will become like the crabs we think of later in their lives. The long spines may prevent preditors from eating them.

 

A smiling face
A smiling face
Copepod
Copepod

This little copepod hasn’t been eating crabbie paddies! You can see its dinner both before and after it has been eaten in this photo.

Thecosomate Pteropods.
Thecosomate Pteropods.

 

The shell fish here are called thecosomate pteropods. Theco means shell and somate means body. ptero means wing and pod means foot. So they look like
shelled winged feet when they move. They eat phytoplankton (tiny plants).

larvaceans
larvaceans

 

The long white creatures are larvaceans. They move their tails to make a current that moves food into their bodies. Look how many different kinds of
creatures there are in these samples we are bringing up!

Question of the Day
I gave you the water temperature and air temperature in Celsius. Can you find them in Fahrenheit?Answers to your Questions

The ship was pointed at 51 degrees and moving at 355 degrees because the wind was blowing against the side of the ship.

Yes, Morgan, we do experiments 24 hours a day, 7 days a week. Work continues today as always. Toby, I’ll be back next week.

Marty. Great to hear from you. I will say hello to all. Thanks for the great information.

Hello to Mrs. Bolte’s Class, Amanda and Ms. Stern’s Class. Great to hear from you all.

Mrs. Freeley’s Class, we catch only baby fish, but have seen many other kinds besides Pollock. The scientists, however, are mainly interested in Pollock.
We eat lots of different kinds of fish. Last night, we had halibut. Tonight, we are having shrimp. And I’m hungry.

We do take showers, but you have to hang on when the ship moves or you wind up leaving the shower a little before you planed on it.

How do we sleep? In a “rack,” which is ship-talk for a bed. It is kind of fun in high seas to lay flat on your rack and look at your feet going way up
above your head as the ship rolls over the waves. It takes a little getting used to. There is a picture of my cabin on the blog today for you. There are no
animals on the ship this year.

Thanks to all for writing.

Jacob Tanenbaum, What are we seeing?, May 24, 2007

NOAA Teacher At Sea: Jacob Tanenbaum
NOAA Ship MILLER FREEMAN
Mission: Fisheries Oceanography Coordinated Investigations
Day 6: May 24, 2007
Weather Data from the Bridge:
Visibility: 3 Miles
Wind Speed: 23 Kts.Sea Wave Height: 6 Feet
Water Temperature: 4.2 Degrees Celsius
Air Temperature: 6.6 Degrees Celsius
Pressure: MbsScience LogLast night around 2:00 AM Alaska Time, we reached the point in the cruise where we were in the right position to deploy our drifter buoy. We stood
on the back deck and gently lowered it over the side of the ship and watched it disappear into the Alaska night. Bon Voyage, Excalibur! Click here for the video. We heard from the buoy several times overnight
and now are having trouble reaching the website. I will download data as soon as I can.

It was wonderful to see Excalibur in the water. I’m proud of each and every student in Mrs. O’Brien’s Class who worked so hard to put this buoy
together. I can’t wait to get back and see the data from the buoy with you.

Another gale has blown in and we are again facing winds above 30 kts. And heavy seas. The work has been tough but we have been able to continue.
Well, you have seen how the nets work, you have seen how the lab works. Today I would like to show you some of the incredible creatures that have
come up in our tiny nets. The little bowl of reddish liquid you see here holds an incredible array of creatures which make up the plankton
community in the Gulf of Alaska. Lets meet a few. We will need a microscope to do it. All of the pictures you see here were taken with a camera
mounted to a microscope. But first, will the real Sheldon Plankton from Sponge Bob, please stand up…

Sheldon Plankton
Sheldon Plankton
This is what Sheldon Plankton really looks like. He is a copepod. And he eats phytoplankton (plants), not crabby patties.
Baby Crab
Baby Crab

This is a baby crab. The female carries the eggs. When they hatch, the float around for a few weeks eating phytoplankton. They go through 3 major
stages. This is the last one. At this stage, the crab settles to the bottom and starts to begin life as a bottom dweller. At each stage, these
creatures shed a shell, swell with water, form a new shell and then expel the water they absorbed before they grew the new shell. They use the extra
space to for real grow before they have to shed again.

Pollock larvae
Pollock larvae

This is a pollock larvae. That may be the yolk sack from the egg under its mouth! It absorbs the yolk and then must begin to look for food on its own. You
are seeing this pollocks first real meal.

Baby Sculpin
Baby Sculpin
This is a baby Sculpin. At this stage, the fish begin to settle to the bottom. It now begins to have the colors it needs to hide from predators above.
The don’t have fins quite yet. They are not really able to swim against the current. Right now, since it is too young to swim, it is considered
plankton. Look how large they eyes are. Why do you think they need such large eyes?

Hatched Shrimp
Hatched Shrimp

This is what shrimp look like, when they first hatch. Shrimp like this look red to us, but in deeper water, where there is less sunlight, the red looks
black, not red. What great camouflage!

Pollock larvae
Pollock larvae

Another pollock larvae. You can clearly see the eye and mouth. This pollock does not have a yolk sack, so it has been eating on its own. Do you see the
food in its stomach? I wonder what it has been eating. Take a guess and write a comment. There are no real fins at all on this fish, yet. See how small the
stomach is? These fish have to find food and find it fast. They cannot store energy in their bodies yet.

Zooplankton and Phytoplankton
Zooplankton and Phytoplankton
hyperiid amphipod
hyperiid amphipod

Several different types of zooplankton gather around some phytoplankton. Here is the beginning of the food web. The algae in this photo serve as food for
many little creatures in the sea. The copepods and other small creatures eat the tiny phytoplankton, and in turn are eaten by small fish.

This is a a creature called a hyperiid amphipod. It is related to a sand flea. They live in plankton. These particular ones will borrow into the surface of
jellyfish and ride around on them. They are tiny hitchhikers. They have plates on their abdomen are where the babies stay when they are young.

Personal Log

The storm is really raging now and the seas are getting bigger. I am NOT seasick! That is because of Lt. Sean. He gave me some medicine which seems to
be working. Now it is kind of fun to be out her since the waves don’t’ bother me any more. I kind of enjoy the ride now. We are REALLY moving up and
down.Question of the DayThis is a complex one, but an important concept if you ever sail. The ship was facing 51 degrees (North East) when we let off the buoy, but the ship
was moving 355 degrees (almost true north). Why would the ship face one way and travel a slightly different way?

HINT: Think about how the storm affects the ship

Answers to your Questions

The answer to yesterday’s question was 12.5 x 24 or 300 kts. or about 345 miles. Congratulations all who got this one correct. Of course, we stop a lot
here to take measurements, so we do not go that far in a day.

Many of you asked how much we are finding. I’ll tell you about that in a day or so when the scientists have a better idea of what the data is showing.

We have not seen any sharks. That’s OK with me.

Was it scary to be at sea in a storm? Not really. You get used to the waves after a while. They are really rolling along right now. But people here are
used to it and go about their lives as people do.

What was the deepest ocean we have sailed over so far? 240 meters. We will sail over deeper water in the days to come.

Josh, I’m not getting sea-sick anymore, and there are not many people on deck right now because of the storm. Most of us are inside unless we have to
work.

Amanda, good question. I don’t really feel the tides, but I know they are there. They just move us around a little, but what I really feel are the
waves from the storm.

Hello as well to Lt. Sean’s family. Thanks so much for writing. I’m glad you are enjoying the blog.

Hello to Nazilla and Earnest in Seattle. Thanks for writing.

Jacob Tanenbaum, June 20, 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

eagle-727518Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 20, 2006

Personal Log 

Click here if you would like to look at the results from the Pollock Study.

This will be my last blog entry for the trip. As the project draws to a close, I would like to evaluate how effective it was. There is a link to an electronic survey. I would like to ask students, teachers, parents, and other visitors to the site to take a few moments to let me know what you think of this idea. The survey is all electronic and only takes a minute or two to complete. Thank you in advance for your time. Click here to access the survey.

Wild horses
Wild horses

Today we arrived in the port of Dutch Harbor, Alaska early this morning. Dutch Harbor is a fishing village full of interesting sites to see and people to meet. It is also where the fishing vessels featured in the TV show “Deadliest Catch” are based, so a lot of you may have heard of it. The highlights of an incredible included a herd of wild horses. Their ancestors were released here by US soldiers stationed here after World War 2. We couldn’t figure out what they ate until… 🙂

Climbing in mountains full of wildflowers.
Climbing in mountains full of wildflowers.
Standing on the glacier
Standing on the glacier

An incredible end to an incredible journey. Thanks all of you for sharing it with me.

Final Thoughts:

I would like to express my profound appreciation to everyone on board NOAA Ship MILLER FREEMAN. Every single person on board the ship welcomed me and helped me in every possible way with this project. The scientists and ships personnel answered every one of mine and your thousands of questions and opened the entire ship up to us all. Many of the people on board shared the blog with their families back home, and the notes I have gotten back from them touched me deeply.

To Commander Gallagher, Lieutenant Commander Boland, Dr. Paul Walline and the everyone on board, thank you for making this project possible and for all you have done to welcome me on board the ship these past weeks.

Thank you as well to the Jennifer Hammond, Elizabeth McMahon and everyone at the Teacher At Sea program for creating this wonderful opportunity and for all of your support before and during the project.

Thank you as well to all of you back home for taking part in this experiment. Teaching and learning with you from the Bering Sea has been one of the most rewarding experiences of my 19 years as an educator.

Have a great summer vacation everyone.

Jacob Tanenbaum, June 19, 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 19, 2006

Mountains in the clouds
Mountains in the clouds

Weather Data from the Bridge

Visibility: Less than 1 mile
Wind Speed: 14 miles per hour
Sea Wave Height: 2 feet
Water Temperature: 44.06 degrees
Air Temperature: 41.36 degrees
Pressure: 1018 Millibars

Personal Log

NOTE: We will arrive in the port of Dutch Harbor, Alaska on June 20. As the project draws to a close, I would like to evaluate how effective it was. There is a link to an electronic survey. I would like to ask students, teachers, parents, and other visitors to the site to take a few moments to let me know what you think of this idea. The survey is all electronic and only takes a minute or two to complete. Thank you in advance for your time. Click here to access the survey. I should be able to send one more blog tomorrow from Dutch Harbor. Check back and I will let you know what being on land again feels like. Dutch Harbor should be an interesting place.

Large sea stars from the bottom trawl
Large sea stars from the bottom trawl

We passed the Pribilof Islands. Home to one of the largest worlds largest gatherings of marine mammals in the summer time. I got up to see the islands at midnight and again when we passed a second one at 4:00 AM. We were covered in fog both times, so we will have to come back another day. At midnight, the sun had not yet set. Our sun set last night at about 12:15 and it took a long time to grow dark after that. The sky began to grow light at about 5:00 and it came up a little after 6. A short night.

Science Log

Last night we had another bottom trawl. This one had some of the largest sea stars I have ever seen. One was close to a foot long.  In addition, there is a coral here called sea raspberry. It is common along the Bering Sea Shelf. I thought coral was only in tropical seas, but here it is in the Bering Sea. Since it is our last day at sea, I spoke to our Chief Scientist Dr. Paul Walline from the Alaska Fisheries Science Center in Seattle Washington about what we have learned so far.

Coral called a sea raspberry
Coral called a sea raspberry

What does the data tell you so far? 

What do you expect to see in the next legs?

What will happen to the data at the end of the cruise? 

Finally, we were testing a platform today that can open nets at different depths. We lowered the platform to about 390 feet before a technical problem forced us to raise it back up to the surface. As an experiment of my own, I tied a bag of Styrofoam cups to the platform to see what the pressure at that depth would do to them. Want to see more? Click here for a video

Question of the Day:

What was your favorite part about participating in this project. Please write and let me know.

Jacob Tanenbaum, June 18, 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 18, 2006

mike-781281Weather Data from the Bridge

Visibility: 10 miles
Wind Speed: 9 miles per hour
Sea Wave Height:2 feet
Water Temperature:41 degrees
Air Temperature:40.8 degrees
Pressure: 1013 Millibars

Personal Log

NOTE: We will arrive in the port of Dutch Harbor, Alaska on June 20. As the project draws to a close, I would like to evaluate how effective it was. There is a link to an electronic survey. I would like to ask students, teachers, parents, and other visitors to the site to take a few moments to let me know what you think of this idea. The survey is all electronic and only takes a minute or two to complete. Thank you in advance for your time. Click here to access the survey.

Sea cucumbers
Sea cucumbers

By now, you have met many of the interesting people aboard NOAA ship MILLER FREEMAN. There are three groups of people aboard these ships. The officers on the ship are part of the NOAA Corps. This is a uniformed service of the United States consisting of about 300 officers who complete rigorous training and hold ranks, like ensign, or commander. They are in charge of ships operations and stand watch on the bridge. The scientists aboard are mostly from NOAA research labs, like the Alaska Fisheries Science Center in Seattle. Many of the other members of the crew are civilian wage mariners. These are professional sailors who handle many of the day to day operations of the ship. Some, such as Chief Engineer Bus, have made their home on this ship for close to 30 years. Other sailors are contract workers who come aboard for a few months, go home and take a break, then join the crew of another ship for a different sort of cruise. Sometimes they are on research vessels, sometimes they are on freighters, sometimes they are on tankers. Today, lets meet able-bodied seaman, or AB Michael O’Neal. Click each question to listen to the answer.

Mud star
Mud star

What do you do on board the NOAA Ship MILLER FREEMAN?

Tell us about what you have done and where you have gone on some of the other ships you have been on.

Where are some of the other jobs you have had at sea?

What does it take to be an able-bodied seaman?

Science Log:

Smile! Here are big mouth sculpins. Once close up and one in the hands of Dr. Mikhail Stepanenko.
Smile! This is a big mouth sculpin.

We had another in a series of amazing bottom trawls last night. When the nets trawl along the bottom out here, some of the most interesting creatures of all get swept into our nets. Creatures that live on the bottom are often stranger looking for a few reasons. They are adapted to blend into the bottom so that predators cannot see them. They often wind up looking like rocks or plants as a kind of defense. They are also adapted to an environment with higher pressure and less light than the surface. Some of their adaptations can also make them look very different from other fish. Since they don’t have to worry about predators below them, these fish may be flat and have both their eyes sticking up. These creatures often do not need to be fast swimmers, since their defense is to blend into the environment rather than swim away when predators approach. The basket of sea cucumbers was one of the strangest things I’ve seen so far. These sticky blobs are not plants. They are sea creatures that live on the bottom of the sea and sift through the sand or water to find food. There are several different kinds of sea cucumbers in this basket. Can you see the different types? Mud stars, on the other hand, are soft and sticky, not like the sea stars we have at home. It may be called a mud star, but I think looks like Patrick from Sponge Bob.

Here is another kind of sculpin with large fins that look like the wings of a butterfly, called a Butterfly sculpin.
Another kind of sculpin with large fins that look like the wings of a butterfly, called a Butterfly sculpin.

Question of the Day

Now that you have seen some of the different jobs aboard NOAA Ship MILLER FREEMAN, if you were on a ship, which job would you prefer? Write me a comment on the blog and let me know!

Answer to Yesterday’s Question

Look at the movements of the ship described above. When the ship drives into the wind and waves, sailors call it a corkscrew motion. Can you think why?

A corkscrew motion occurs when the ship is struck by waves in such a way that it moves in several motions at once. In other words, it may pitch, roll, surge, and sway all at the same time. I’m getting a funny feeling in my stomach just thinking about it!

Answers to Your Questions

Sorry that I left off the link from Friday where you can see the position of the ship. Here it is. Fair warning, the site was down for most of today, so if it does not work, just try again later.

http://info.nmao.noaa.gov/shiptracker/Ship.aspx?ship=Miller%20Freeman

After we put in to port, I’ll have a day or two in Dutch Harbor to look around, before I can get a flight in to Anchorage. After that, I’ll be visiting some friends and family out west before I head back east. Thanks for writing. 

Jacob Tanenbaum, June 17, 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 17, 2006

Smooth Lumpsucker fish.
Smooth Lumpsucker fish.

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed: 25 miles per hour
Sea Wave Height 7: feet
Water Temperature: 44.06 degrees
Air Temperature: 44.96 degrees
Pressure: 1009 Millibars

Personal Log

NOTE: We will arrive in the port of Dutch Harbor, Alaska on June 20. As the project draws to a close, I would like to evaluate how effective it was. There is a link to an electronic survey. I would like to ask students, teachers, parents, and other visitors to the site to take a few moments to let me know what you think of this idea. The survey is all electronic and only takes a minute or two to complete. Thank you in advance for your time. Click here to access the survey.

Well, we had pea soup for lunch today, also called storm soup by sailors. Legend is that when you serve pea soup, the weather will turn stormy, and sure enough, a gale is blowing nearby and the waves are picking up. The soup was great, though. As the ship rocks and rolls to the rhythm of the waves, lets take a closer look at how it moves. Sailors have lots of different terms for ships movement:

Pitch – refers to the up and down movement of the front, and back, or bow and stern of the ship

Yaw — when the ship spins from side to side.

Heave — When the entire ship moves up and down.

Roll — When the ship rocks from side to side.

Surge – When the ship jumps forward or backward.

Sway – When the ship jumps sideways.

Happy Father’s Day to all. A special hello to my own father, Elias, and my two son’s Nicky and Simon. I miss you, guys.

Science Log

Our trawl nets picked up the smooth lumpsucker fish near the bottom last night. This fish tends to say near the bottom and can inflate itself with water as a defense against predators. A good defense, I would say. Would you want to eat it?

Our survey continues. We brought in two hauls of fish this morning. Tamara is having less time on the bridge looking for birds in the last day or so. Her time is limited because we are fishing more and a large group of birds following a fishing net is not considered a natural occurrence, so she does not count them in her study. If the waves are too high, she cannot see the small birds in the troughs of the waves, so she can’t count during heavy seas, and right now, the seas are fairly heavy.

Question of the Day:

Look at the movements of the ship described above. When the ship drives into the wind and waves, sailors call it a corkscrew motion. Can you think why?

Answer to Yesterday’s Question

It is about 8:00 AM on Saturday morning. If the ship uses 2100 gallons of fuel a day, how many gallons of fuel will we need to get to Dutch Harbor on Tuesday Morning at about 8:00 AM?

It will take 3 days to reach Dutch Harbor. Since the ship uses 2100 gallons of fuel a day, we have to multiply 2100 x 3 which equals 6300 gallons of fuel. Enough for my car to drive 157500 miles. Wow.

Answers to Your Questions

Hello to James H from yesterday.

Thanks for writing

Jacob Tanenbaum, June 16, 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Waves washing over the bow of NOAA Ship MILLER FREEMAN
Waves washing over the bow of NOAA Ship MILLER FREEMAN

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 16, 2006

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed: 27 miles per hour
Sea Wave Height: 7 feet
Water Temperature: 41.7 degrees
Air Temperature: 42.4 degrees
Pressure: 1013.8 Millibars

Plotting longitude and latitude
Plotting longitude and latitude

Personal Log

NOTE: We will arrive in the port of Dutch Harbor, Alaska on June 20. As the project draws to a close, I would like to evaluate how effective it was. There is a link to an electronic survey. I would like to ask students, teachers, parents, and other visitors to the site to take a few moments to let me know what you think of this idea. The survey is all electronic and only takes a minute or two to complete. Thank you in advance for your time. Click here to access the survey.  How do you find your way around when you can’t see any land? I spent some time with Ensign Lindsey Vandenberg, on NOAA Ship MILLER FREEMAN.

Plotting longitude and latitude
Plotting longitude and latitude

Every 30 minutes or so, the bridge officers take a “fix” on their position. How do they do it? When they are out at sea, they take the latitude and longitude from the GPS and plot their exact position on a chart. A GPS is a machine that uses satellites to display the exact longitude and Latitude on a screen. The charts also have the latitude and longitudes written on them, but there is a problem. The longitude and latitudes scales on the chart are on the side and bottom of the chart, not where the ship is located. Every so often, there is a line across the entire chart. The navigator must use a tool, like the same compass you might use in math class, to mark the distance to the exact point on a scale from a line on the chart. She can then use the same tool to mark the distance in the part of the chart where we actually are. This must be done for both the longitude and latitude of the ship.

Ploting the bearing on a map
Ploting the bearing on a map

When we are near land, we can use Terrestrial Navigation. This means we can use the distance to an object on the shore, such as a lighthouse, to find out wherewe are. With a large ship close to shore, it is very important that we know exactly where we are so that we don’t wind up in shallow water. Ensign Vandenberg uses a tool called an alidade to help her. She puts the alidade over a large compass outside of the ship. The instrument reflects the compass into the viewer so she can see both the object on shore and the exact compass heading. If she takes a few bearings to objects on shore, she can use tools to chart her exact position on the chart.

Science Log: 
I’ve been asking many of the people on the ship what becomes of the data that we are collecting. This survey will be used to set quotas for one of the most important fisheries in the world. Here is how it works. If too many fish are caught in an area, there will not be enough fish left for the species to come back the next year. That is bad for the fish, and bad for the fisherman. To prevent this “overfishing,”. A quota, or limit to the number of fish that can be safely caught, is established. Methods are put in place to make sure that all fishing boats in the area respect the quotas. Do you want to learn more? Take a look at this short video on the subject.

Question of the Day:
It is about 8:00 AM on Saturday morning. If the ship uses 2100 gallons of fuel a day, how many gallons of fuel will we need to get to Dutch Harbor on Tuesday Morning at about 8:00 AM?

Answers to Yesterday’s Question:
If our ship wants to do a trawl 50 meters below the surface, how much wire would it need.

The ship must put out two feet of wire for every one foot of depth. So you have to multiply 50 x 2 which gives 100 meters of wire. Each net has, not one, but three wires holding it to the ship. So you would need 3 wires. All three are 100 meters in length. That gives us 300 meters of wire to do our trawl.

Answers to Your Questions:
Hello to all who wrote today.

Colin, no seawater on the equipment yet. They have a couple of computers in the lab where we process fish that can be drenched with water and will still work. Maybe I need one of those.

Mrs. Z. Click here to see the route we have taken so far. I do not think it will give you exact miles, but you can get a good idea of our total.

Thanks for writing.

Jacob Tanenbaum, June 15 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 15, 2006

Jacob holds a monkfish
Holding up the catch

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed:19.5 miles per hour
Sea Wave Height: 4 foot
Water Temperature: 44.4 degrees
Air Temperature: 44.2 degrees
Pressure: 1018.8 Millibars

Personal Log

main_engine-702351I got to thinking the other day that the engines on this ship have been running since we left port almost two weeks ago now. I started to wonder how they could stay running for so long and so I decided to ask Chief Engineer Steve Bus to tell me more about them. So put on your ear protection, and lets go to the engine room. The engine room on NOAA Ship MILLER FREEMAN is like a small city below the deck. In addition to the 2100 horsepower diesel engine that moves the ship forward, there are generators sufficient to power a small town. A research vessel, after all, needs a lot of electricity to run all the electronics we need. In addition, the engine room has equipment to make it’s own drinking water out of sea water. We cannot drink sea water because it has too much salt for our bodies to handle. The machines in the engine room take the salt out of the water and, clean it, and make it possible for us to drink it.

sewage-793154There are boilers to heat water and make steam to keep the ship warm. There are also machines that process waste water. Finally, there is shaft alley. This is the part of the engine room where a long metal shaft connects the diesel engine to the propeller. Take a look at this video to see shaft alley. The ship burns 2100 to 2200 gallons of fuel on an average day. Who keeps it all running? Chief Engineer Steve Bus and his crew. They are responsible for the ship from bow to stern.
How do you prepare for an emergency at sea? The same way you do in school. By drilling over and over. Today, we had a fire drill where the some of the crew got into firefighting gear and practiced what they would do in an actual emergency. Want to come along? Click here for a video.

water-737525Science Log

We had some interesting returns on the echosounder this morning. Take a look at the screen. You can clearly see the top and bottom of the water column. You can clearly see the different groups of fish. The echosounders can tell us so much information. When we put the nets down near the surface, we knew exactly what to expect. We did a trawl along the bottom of the sea floor last night and brought up some of the most interesting creatures I’ve ever seen. Here are a few.

This is a basket star, a kind of sea star. Its branches are hard and are divided into many different branches. The basket star uses all of these to catch plankton. In the center is the mouth.

This is a basket star, a kind of sea star. Its branches are hard and are divided into many different branches. The basket star uses all of these to catch plankton. In the center is the mouth.

crab-726932 Next, we have a lyre crab. Have you ever seen a hermit crab without a shell? This one lost his on the way up from the bottom.

bottom-777997

This next photo includes a huge sea star, a sea urchin, a hermit crab without its shell, a tanner crab and several fish called poachers. These fish have scales that are hard, almost like bone or a shell.
h-crab-706029 This last one is my personal favorite. The fish at the top of the screen is called a big mouthed sculpin. It has the biggest mouth of any fish I’ve ever seen. This fish stays on the bottom waiting for smaller fish to come by, and then… watch out! When it came up in the net, it had a smaller fish in its mouth.

Finally, we brought up a creature called a brittle star. It is a kind of sea star with soft tentacles. It moves very fast for a sea star. The arms can break easily, but don’t worry, they grow back. That’s why they call it a brittle star. Here is a video of a brittle star moving across the lab table.

Later on the same day, our ship was visited by some dall’s porpoises. Click here for a video

Question of the Day

Look at the answer to yesterday’s question. Let’s try another one. If our ship wants to do a trawl 50 meters below the surface, how much wire would it need.

Answer to Yesterday’s Question

How much wire would the ship need to let out if it wanted to put the nets 200 feet below the surface? Make sure to watch the video on nets before you try to answer the question.

The ship must put out two feet of wire for every one foot of depth. So you have to multiply 200 x 2 which gives 400 feet of wire. Wait, we are not finished yet. Each net has, not one, but three wires holding it to the ship. So you would need 3 wires. All three are 400 feet in length. That gives us 1200 feet of wire to do our trawl.

Answers to Your Questions

Hello to all who wrote today.

The MILLER FREEMAN does seem like home to me now. I have gotten used to the constant rocking of the ship and the routines of the day. I really enjoy being at sea. By the way, they had pizza for lunch, but I asked the cook to make me some fresh pollock that we caught and filleted last night.

Do people eat jellyfish? I asked our chief cook, Mr. Van Dyke. He told me many species of jellyfish are poisonous. Even those that are safe to touch with your hands. So, no, we don’t’ eat them here, but in some countries they do. We have caught many tons of fish, but more importantly, we have seen many fish without catching them using our echosounder. This device allows us to survey fish without capturing so many.

There are 34 people on board with us for this cruise. That will change next week when we get to port.

The squid felt slimy, but not much more slimy than most fish seem. I don’t recall it spraying anything.

Jacob Tanenbaum, June 14 2006

NOAA Teacher at Sea
Jacob Tanenbaum
Onboard NOAA Ship Miller Freeman
June 1 – 30, 2006

Mission: Bering Sea Fisheries Research
Geographic Region: Bering Sea
Date: June 14, 2006

Orca off the port beam.
Orca off the port beam.

Weather Data from the Bridge

Visibility: 14 miles
Wind Speed:14 miles per hour
Sea Wave Height: 3 foot
Water Temperature: 5.3 degrees
Air Temperature: 6.2 degrees
Pressure: 1018 Millibars

Personal Log

The coffee pot. See the ring to keep the coffee from flying when the seas get rough?
The coffee pot. See the ring to keep the coffee from flying when the seas get rough?

A lot of you have been asking about the food on ship. How do we eat? What do we eat? Where do we get our food. All of these are great questions, so yesterday I spent some time with Chief Cook Russell Van Dyke to get some answers for you. He, along with the Chief Steward and the Second Cook, is responsible for preparing all the meals on NOAA Ship MILLER FREEMAN.

How do people eat on a ship? “With a knife and fork,” said our chief cook with a smile. Food is prepared and served on the ship in much the same way that you prepare and serve food athome. The main difference is quantity. Here on the ship, food is prepared for 40 people instead of just a few. “We don’t cook one, chicken, like you do at home,” said Mr. Van Dyke, “we cook 5 chickens. Here are some pictures of where the food is cooked, and where the food is served. On a ship, this is called the galley. Can you see the ring around the coffee pot? Can you guess what that is for? During storms at sea, when the waves are high, that ring keeps hot coffee from flying around the galley. Good idea!

Chief Cook Russell Van Dyke
Chief Cook Russell Van Dyke

Another interesting difference between food on a ship and food at home is that when you are out to see for a month, you cannot run down to the corner to get some milk if you run out. Each time NOAA Ship MILLER FREEMAN is in port, it must take on enough food to last for the entire journey to come. How do they keep all that food? Aside from being a great cook, Mr. Van Dyke and the rest of the crew are also experts in how to store food and keep it from going bad. NOAA Ship MILLER FREEMAN has not one but three refrigerators and two freezers. The refrigerators are kept at slightly different temperatures. The dairy products, like milk and cheese are kept at 37 degrees . The fruits and vegetables are kept in a separate refrigerator at 42 degrees. They keep the humidity in that refrigerator higher as well. Those slightly different conditions help keep the food fresh for a longer period. Meats and ice cream are kept frozen. Dry foods, like cereal are kept in a separate area. Put it all together and the crew on board eat great meals every day. The photo here shows the inside of one of the refrigerators.

Click below to listen to Chief Cook Russell Van Dyke describe cooking on board a ship:

The kitchen in NOAA Ship MILLER FREEMAN
The kitchen in NOAA Ship MILLER FREEMAN

Where does the ship get its food?

How do you cook on board a ship?

Does the crew have a favorite food? 

One more question: Does the crew eat split pea soup? There is a superstition among mariners that cooking split pea soup will bring on a storm. I asked Mr. Van Dyke about it. He told me they eat it all the time. This brave crew last had “storm soup” on May 27th and we may have it again in a few days. I guess the only thing they can’t do on board this ship at sea is have a pizza delivered.

The inside of one of the refrigerators. Look how big it is.
The inside of one of the refrigerators. Look how big it is.

Science Log

We continue surveying pollock and surveying birds as we move along the transact lines in the Bering Sea. Most of the surveying is being done with the echosounder, but from time to time, we put the nets into the water and trawl for fish. This helps the scientists know more detail about the fish they see on the echosounders. The nets on NOAA Ship MILLER FREEMAN work basically the same way that nets on large commercial trawlers work. We just catch far fewer fish. Would you like to learn more? Click here for a video on the nets.

The Galley where the crew eat
The Galley where the crew eat

Question of the Day:

How much wire would the ship need to let out if it wanted to put the nets 200 feet below the surface? Make sure to watch the video on nets before you try to answer the question.

Answer to Yesterday’s Question:

Look at the speed of the ship on this website: About how far would it go in 24 hours? To get your answer, you should multiply the speed you see by 24. Remember to express your answer in nautical m iles. At the moment, the ship is going about 12 nautical miles per hour. At that speed it will travel about 288 miles per day. The real figure will vary because of winds and currents that effect our speed, and because we sometimes stop to fish.

Rusty, the ships cat and Teacher at Sea Jacob Tanenbaum
Rusty, the ships cat and Teacher at Sea Jacob Tanenbaum

Answers to Your Questions:

I also had an email request from Marcelo for photos with Rusty and I. Here is one. I’m also putting a second photo on to show you one of Rusty’s favorite games. There is a mail slot in the door to the office where he spends a good part of his day. He loves to stick his paw through and introduce himself to passersby. Surprise!!

Mrs. McBride, thanks for your kind words.

To my Kindergarten friend, was the squid slimy? YES!!! 🙂

Getting the mail
Getting the mail