Emina Mesanovic, Goodbye Pisces, August 1, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard NOAA Ship Pisces

July 20 – August 2, 2014

Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: August 1, 2014

Science and Technology Log

After the fish are weighted and measured some are returned to the sea and others are kept for further study. For the fish that are kept the Pisces scientists usually keep two parts of the fish the otoliths and a part of the gonads (reproductive organ).

As I mentioned in an earlier post the otoliths are the fish ear bones, which can be used to determine the age of the fish. The otoliths are located behind the eyes so scientists use a knife to cut through the head being careful not to break the otoliths. They are removed from the fish rinsed in water and put into a labeled envelops to be taken back to the lab for further study.

IMG_0761
White Grunt Otolith
imgres
Location of Fish Otolith. Picture from NOAA

Scientists are also interested in studying fish gonads to understand more about fish growth and reproduction, which is important for helping maintain a healthy fish population. You don’t want to catch fish before they are old enough to reproduce. The NOAA scientists use tissue teks to collect a small section of the gonads. Each fish is given a number based on the trap that it was caught in, this number is printed on the tissue tek and the envelop with the fish otoliths.

imgres-1
Diagram of fish gonads. Picture from marshall.edu
images
Tissue Tek, on the Pisces different species of fish get different colored tissue teks.

When the gonads are removed sometimes they are very small and thin and fit easily into the tissue tek but often times they have to be trimmed to fit. You don’t want to overfill the tissue tek because you may destroy the sample or cause it to spoil if the chemical preservative can’t get into the middle of the sample.

IMG_0878
Examples of tissue teks that were not properly prepared. Picture from NOAA.

Back at the lab scientists slice the tissue into thin strips and examine it under a microscope to determine development: presence of eggs, size of eggs.

Fish Gonads under the microscope. Picture from NOAA.
Fish Gonads under the microscope. Picture from NOAA.

Did you know that fish can be male, female or transgender. Some fish start out as females when they are young and become male as they mature.

Personal Log

I have to tell you, typing a blog while my body sways from one side to the other is very strange. I still have to take a Dramamine after I wake up and I have to sit down when the water gets rough, however life on the ship has gotten easier. We have been fortunate to have great weather for our two week cruise, it only rained on our last day out at sea. I can’t believe that tomorrow we will be back in Morehead City, North Carolina.

Sunrise on the top deck of the Pisces.
Sunrise on the top deck of the Pisces.

A warm thank you to all the crew and scientists aboard the Pisces. I have learned so much and will take back to my classroom a new excitement and love of the ocean. I will be able to introduce my students to what it means to be a scientist at sea and how what we learn in the classroom translates to what they can do in the future. I have enjoyed getting to know you and hearing about your lives. You are a talented group of people.

We saw some dolphins on Thursday night.
We saw some dolphins on Thursday night.

COOL CATCH OF THE DAY

a pair of butterfly fish (every time we have caught them they have come in a pair)
A pair of butterfly fish (every time we have caught them they have come in a pair)

Emina Mesanovic, The Dry Lab: Lights, Camera, Action! July 31, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA ship Pisces

July 20 – August 2, 2014

 Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 31, 2014

Weather Information from the Bridge

Air Temperature: 25.3C

Relative Humidity:98%

Wind Speed: 13.5 knots

Science and Technology Log

The dry lab is the technology center of the day shift. This is where chief scientist Zeb Schobernd works throughout the day to decide when and where to drop the traps. Dropping and retrieving traps is a real team effort, the night shift creates the maps, Zeb decides where to set the traps, the Pisces crew deploys and retrieves the traps and finally the fishery scientists collect and analyze the fish samples.

IMG_0763
Pisces crew deploying the trap
Pisces crew retrieving the trap.
Pisces crew retrieving the trap.

After 90 minutes in the water the traps are brought back to the surface and the wet lab gets to work on processing the fish while Chris Gardner a NOAA scientist takes the cameras into the dry lab for analysis. On this cruise we are trying to gather information on the fish populations off the coast of North and South Carolina. Fish can be an indicator of a good hard bottom habitat but what happens if the fish don’t go into the trap?

For various reasons fish may not go into the traps, this is where cameras come into play.Each trap has a large Cannon camera mounted on the back of the trap and a smaller go pro camera on the front.

IMG_0766

These cameras allow scientists to visually sea the sea floor as well as allowing them to see the fish that do not go into the traps. In the dry lab Chris plays the footage to confirm the habitat and fish presence. However the real work begins back in the lab when the scientists analyze the videos. Each video is watch and the number and type of fish is recorded. This data in addition to the caught fish gives NOAA scientists a better indicator of the quality of habitat in the Atlantic Ocean.

Sargassum Triggerfish
Sargassum Triggerfish
LIONFISH
Lionfish

The cameras are put into protective casing and the scientists have to make sure the case is fully closed to prevent any water from entering and destroying the cameras. The Go Pro camera has three different cases that can be use. From left to right they are the IQ Sub House Golem Gear which is approved for up to 150m, the middle case is called a Dive House and is approved for up to 60m and the far right case is the standard Go Pro Case and is approved for up to 40m. On this cruise we have been using the IQ Sub Golem Gear. You will notice that the camera has a number 5 written on it. Each camera is labeled (1-6) and corresponds with the traps that it will be attached too.

IMG_0828
Go Pro cases
IMG_0831
Go Pro camera

Personal Log

On Monday I was woken up at noon by the abandon ship drill. The ship does safety drills every week and for this drill we had to grab our life jackets and survival suits and head outside. I didn’t know what to expect from the drills since I was sick last Monday for the practice drills. We had to put on the life jackets but we didn’t have to put on the survival suits this time. The drill was over quickly and I headed down the wet lab to check out the traps. The cool catch of the day was a spiny lobster that wandered into one of the traps. Everyone was surprised to see the lobster!

COOL CATCH

Spiny Lobster
Spiny Lobster

SPOTLIGHT ON SCIENCE

Name: Adria McClain

Title: Survey Technician

Education/Training: Undergraduate degree in Biology; graduate degree in Meteorology & Physical Oceanography.

Where are you from? Born and raised in Los Angeles, California.

Adria with the Spiny Lobster
Adria with the Spiny Lobster

Job Description/Duties:  I am responsible for collecting, quality-controlling, and managing the ship’s meteorological data (temperature, atmospheric pressure, relative humidity, wind speed/direction) and oceanographic data (water temperature, salinity, current speed/direction, speed of sound in water). Additionally, I am responsible for the ship’s scientific equipment (e.g. conductivity, temperature, and depth (CTD) sensor, scientific seawater system) and the ship’s scientific software. I also assist the visiting Fisheries Biologists with sorting and measuring fish.

How long have you worked for NOAA? About six months.

How did you get into this work? I am also a commissioned officer in the U.S. Navy – I belong to the METOC (Meteorology & Oceanography) community. While I was on active duty, I did oceanographic surveys aboard the Navy’s research ships. I like doing science at sea so this job is a good fit.

What are your future plans (how long will you stay on the ship)? My crystal ball is a bit fuzzy right now so I don’t know how long I’ll be on this ship. I do plan to go back to grad school for a PhD in Earth Systems Science at some point in the future.

How many days are you out at sea? I believe we have 150 sailing days on the schedule for this fiscal year.

What is the most challenging part of your job? Being away from home for extended periods of time.

What do you do when you aren’t on the ship? U.S. Navy Reserve military duty. In my free time, I like to read and travel.

What is your favorite fish? The Smooth Lumpsucker (Aptocyclus ventricosus) 

Lumpsucker. Credit Adria McClain
Smooth Lumpsucker. Credit Adria McClain

 

Emina Mesanovic, Acoustic Lab: Let’s Make Some Maps, July 28, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA Ship Pisces

July 20 – August 2, 2014

 Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 28, 2014

Weather Information from the Bridge

Air Temperature: 27.5 C

Relative Humidity: 86%

Wind Speed: 15.03 knots

 Science and Technology Log

There is a lot of work that goes into allowing the fishery team to be able to set traps every day. The acoustics lab/ night shift is responsible for creating the maps of the seafloor that will be used the following day. The team consists of David Berrane a NOAA fisheries biologist, Erik Ebert a NOAA research technician, Dawn Glasgow from the South Carolina Department of Natural Resources and a Ph.D student at the University of South Carolina, as well as Mary a college student studying Geology at the College of Charleston and Chrissy a masters student at the University of South Carolina. This team is amazing! Starting at around 5:00 pm the day before they stay up all night mapping the ocean floor.

The night shift working together
The night shift collecting data

Every night Zeb Schobernd lets the night shift know which boxes they will work on. These boxes are created in the offseason by the research scientists, they base their selection on information from fishermen, the proximity to already mapped areas, weather and previous experiences. The first step in creating a bathymetric map is to create a line plan, which lets the ship know which area will be covered. The average line takes about half an hour to complete but they can take up to several hours. The ship drives along these lines all night long while the team uses the information that is gathered to create their maps.

So how do they get this information? The ship uses sonar to collect data on the water column and the ocean floor. The Pisces has a 26 multi-beams sonar system, which allows the research team to create a better picture, compared to using single beam sonar. The beams width is about 3 times the depth of water column. This means that depending on how deep the water is in any given location, it will determine how many lines need to be run to cover the area.

Multibeam sonar
Multi-beam sonar (picture from NOAA)

The picture below is one of the computer screens that the scientists look at throughout the night. It provides the sonar information that will then be used to map the floor. Sonar works by putting a known amount of sound into the water and measuring the intensity of the return. A rock bottom will yield a stronger return while a sand bottom will absorb the sound and yield a less intense return. In the image red means that there is a more intense return while blue and yellow signifies a less intense return. You will notice in the center screen there is a strong red return at the top of the beam this is because the ship is sending out the sound and it takes about four meters until you start recording information from the sea floor.

SIMRAD70 (multi-beam sonar)
SIMRAD (multi-beam sonar)

Finally before the maps can be created the team has to launch an XBT (expendable bathy thermograph) two times per box or every four hours. The XBT measures the temperature and conductivity of the water, this is important because sound travels at different rates in cold versus warm water. This information is then used when the scientists calculate the sound velocity, which is used to estimate the absorption coefficient of sound traveling through the water column.

 

Once the data is collected the team begins the editing process. First they have to remove random erroneous soundings in order to get an accurate map; they fondly call this process dot killing (this basically means getting rid of outliers). They do this by drawing a box around the points of data they want to remove and deleting the point. Next they apply tide data to account for the deviations in the tides, this information is obtained from NOAA and is based on the predicted tides for the area. Finally they apply the sound absorption coefficient.

Editing the data (killing dots)
Editing the data (killing dots)

The final product is put into GIS (Geographic Information Systems), which the chief scientists will use to determine where the traps should be set the following morning. On the map below blue indicates the deepest areas while red shows the shallowest. The scientists want to place the traps in areas where there is a large change in depths because this is usually where you will find hard bottoms and good fish habitats.

Finished map (red shallow, blue deep)
Finished map

Personal Log

I have spent the past three nights in the Acoustics/Computer Lab with the night shift mapping the ocean floor. While the ship sails along the plotted course, I have had the opportunity to see the sunrise and sunset on the Pisces as well as a lightning storm from the top deck.

images
Lighting on the ocean (picture from sciencedaily)

On Thursday night a little after midnight after launching the XBT we see decided to go onto the top deck of the Pisces to get a better look at the lighting storm in the distance. Even at night it was still humid and hot and as we climbed up to the top deck it was dark all around us until suddenly there would be a flash of color in the clouds and you could see everything, until it went dark again. We tried to take a picture but the lightening was just too fast for our cameras. This is the closest picture I could find to what it was like that night except the water was not calm.

 

SPOTLIGHT ON SCIENCE

Name: Erik Ebert                  Title: Research Technician

Erik editing data collected on Sunday July 26th.
Erik editing data collected on Sunday July 26th.

Education: Cape Fear Tech (Wilmington, NC)

How long have you worked for NOAA/NOS: 6th field season, 5th year

Job Summary: I work on ecosystem assessments throughout the Gulf of Mexico South Atlantic & Caribbean

– Team oriented production of ocean floor maps

– System setup & keeping the acoustic systems operating correctly

How long have you participated in this survey: Since 2010

What do you like about your job: That the data we collect, and the maps we create can be used again for different studies. The types of data we collect includes bathymetric data, information on the water column, & fish that populate the water column.

How many days are you at sea: 60 days (April-November)

What do you do when you are not on the boat: Process & produce fish density maps from the data collected during the cruises. I also work for National Ocean Services (provide data to policy & decision makers to the state of the ecosystem)

Most challenging about research on a ship: Being away from home is the biggest challenge.

What would be your ideal research cruise: My ideal research cruise would be a cruise similar to what we just completed in Flower Garden Banks in the Gulf of Mexico. It was a 3-year assessment of the reef ecosystem using ROV, Diving and Acoustics to study how the ecosystem changed over time.

Favorite fish: Trigger Fish “cool swimming behavior”

More information about See Floor Mapping   http://www.noaa.gov/features/monitoring_1008/seafloormapping.html

COOL CATCH

Crab with three sea anemones attached to its shell
Crab with three sea anemones attached to its shell

Emina Mesanovic, Wet Lab: Something Fishy Is Going on Here, July 23, 2014

NOAA Teacher at Sea

Emina Mesanovic

Aboard the NOAA ship Pisces

July 20 – August 2, 2014

Mission: Southeast Fishery- Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 23, 2014

Weather Information from the Bridge

Air Temperature: 27.4 C

Relative Humidity: 85%

Wind Speed: 13 knots

 

Science and Technology Log

The goal of the Southeast Fishery Independent Survey (SEFIS) is to assess the location and abundance of different species focusing on snappers and groupers as well as collecting bathymetric data about the ocean floor that can be used in the future. The scientists are divided into day and night shifts, the night shift maps the ocean floor, while the day shift uses these maps to set traps and catch fish.

Traps on the back deck ready to go.
Traps on the back deck ready to go.

Each morning the scientists set up six chevron traps on the back deck of the Pisces, each trap is stocked with 24 menhaden, which serves as the baitfish. The traps contain the same amount of bait, two cameras one on the front and one on the back, and each trap stays underwater for 90 minutes. Chief Scientist Zeb Schobernd works in the dry lab to let the crew know when and where to drop the traps (more on this later).

Trap going down the rap into the water.
Trap going down the ramp into the water

When its time to retrieve the traps the crew of the Pisces works with chief scientist and the Bridge to retrieve the traps.  When you are on the deck waiting for the traps to be lifted on board you have to wear a safety helmet and life preserver. Once the traps on are on the deck the scientists really start to hustle. They remove the cameras from the traps and empty the trap into black bins.

IMG_0738
Chevron Trap being lifted onto the deck

Once we are in the wet lab the first step is to sort the fish by species. In the picture on below you will see 3 bins with red porgy, vermilion snapper, and trigger fish these are 3 of the 4 most common commercially important fish we catch the 4th is black sea bass.

Sorting the fish
Sorting the fish
Red Porgy, Vermillion, & Trigger Fish
Red Porgy, Vermilion Snapper, & Trigger Fish
Measuring the total length of the fish
Measuring the total length of the fish

Next we need to weight the sample in kilograms and record the total size of the fish in millimeters. The fish that are not being kept for further study are returned to the ocean. It can get very busy and messy in the wet lab when the traps produce a large catch. The goal is to process one trap before the next trap is brought on deck. The traps are dropped three times daily for a total of 18 traps caught per day; it is the scientist’s goal to completely process the traps before the completion of their 12 hours shift. Certain fish are of special interest to the scientists because they are commercially and recreationally important to the fishing community so these fish are set aside for further study. On Monday July 21st we caught a 10.47 kg Red Grouper, which is one of the fish that is studied in more detail.

Red Grouper caught on Monday July 21, 2014
Red Grouper caught on Monday July 21, 2014

For this fish in addition to recording the weight and total length, scientists also record the fork length and standard length. The scientists also collect the otoliths (ear bones) from the fish which are used to determine the age of the fish just likes rings on a tree are used to determine age. Finally scientists collect DNA and part of the gonads for additional study back at the laboratory.

 

 

 

 

 

 

Personal Log

My first few days on the Pisces have been busy and very exciting there is so much to see and learn. Everyone on board has been very friendly and welcoming. As I look out my window every morning all is see is blue for miles. Even though we are only 10-50 miles off the coast of North Carolina on any given day there is nothing out here but ocean. It’s impressive how vast the ocean is and how little we know about the geography of the ocean or the animals that inhabit the sea floor.

Leaving Morehead
Leaving Morehead City, North Carolina
Looking down from the top deck of the Pisces.
Looking down from the top deck of the Pisces.

 

 

 

 

 

 

 

 

 

 

 

We set sail from Morehead City, North Carolina at 10am on Sunday July 20th and I had a great view from the top deck of the Pisces as we left the harbor. After lunch we practiced the abandon ship and fire drills, however I was not able to participate because I was seasick. Did you know that seasickness occurs when our brain receives conflicting information from our body. Onboard the Pisces it doesn’t look like anything is moving so my eyes sent my brain a message that there was no movement, but my inner ear, which is responsible for balance, sensed the motion of the boat and this conflicting information caused my seasickness. By Monday I was feeling much better and I was ready to get to work.

The bunks in our stateroom
The bunks in our stateroom

Life on the Pisces is very comfortable. I am sharing a stateroom with Mary who is a great roommate. We each have our own bunk with a curtain for privacy as well as lockers for storage. Additionally our bathroom is located in our room, which was a wonderful surprise because I thought that we would all be sharing a single bathroom. There is a lounge across from our room with large comfy chairs and an impressive DVD collection, however I have been too tired from working in the wet lab to enjoy it yet. There is also a gym somewhere on the ship but I don’t think that I will ever have enough balance onboard the ship to use the gym safely. Stay tuned, tonight I’m going to spend the night mapping the ocean floor and I’ll let you know how it goes.


SCIENTIST SPOT LIGHT

Zeb Schobernd : Chief Scientist

Education: Masters from Earlham College and a Masters from College of Charleston in Marine Biology

How long have you worked with NOAA? Since 2007, started this project in 2010

Chief Scientist Zeb Schonberned in the dry lab
Chief Scientist Zeb Schonberned in the dry lab

How important is collaboration in your research? Being able to share and work together is a large part of the marine biology community. On this cruise for example we are collaborating with scientists from Beaufort as well as with local universities we have 2 volunteers from the College of Charleston sailing with us.

How long have you participated in this survey? Since the start of the SEFIS survey in 2010, currently in its 5th season.

Does your team change every year? The core group of research scientists stays the same, but the volunteers and lab assistants’ changes year to year.

How does the Pisces compare to other ships? The Pisces is larger than other ships I have worked on. It’s more comfortable, there is more space for scientists to spread out and work. Additionally the Pisces has the equipment need to map the floor, which makes determining where to drop traps more efficient.

How many days a year do you go out to sea? I spend about 45 days out at sea. 

What do you do when you are not out at sea? I work on processing the videos that were collected on the cruise; we need to identify the fish species that are on caught on camera. The cameras are often more valuable then the fish that we trap because some fish may never go in the trap so these videos allow us a better picture of the underwater ecosystem.

What is the biggest challenge about doing research at sea? The biggest challenge would be bad weather that impacts sea conditions. Also time away from home can be challenge on long cruises.

What would be your dream research cruise? I would like to be able to use a submersible to record videos of tropical fish for further study.

Any advice you have for students interested in marine biology as a career? Gain hands on experiences in the field by doing internships while in college to determine if this is what you really want to do. What I do on a day to day basis is very similar to what I experienced on a research cruise while I was in grad school.

Coolest catch: 6 Gilled Shark

Favorite fish: Groupers

COOL CATCH OF THE DAY

Shark sucker attached to Kate's arm.
Shark sucker attached to Kate’s arm.

Emina Mesanovic, An Adventure Begins, July 13, 2014

NOAA Teacher at Sea

Emina Mesanovic

(Almost) Aboard NOAA Ship Pisces

July 20 – August 2, 2014

 

Mission: Southeast Fisheries-Independent Survey

Geographic area of the cruise: Atlantic Ocean

Date: July 13, 2014

 

Personal Log

Hello everyone! My name is Emina Mesanovic and I am so excited to have been selected by NOAA (National Oceanic and Atmospheric Administration) to be a part of the 2014 Teacher at Sea field season. July 20th can’t come fast enough.

I am very excited to share this experience with everyone on the blog this summer and back at school in the fall.  As I learn more about the research being done on the Southeast Fishery-Independent Survey (SEFIS), and my ship the Pisces, so will you!

During the school year I teach science at Danbury High School and I LOVE my job. The students at DHS are amazing and I enjoy watching them learn and grow as they explore science inside and outside the classroom.

Students collected physical, biological and chemical information on Long Island Sound for Project Periphyton.
Students collected physical, biological and chemical information on Long Island Sound for Project Periphyton.

In the classroom I try to give my students experiences and interactions with science content so that they can truly internalize the knowledge and be active participants in the learning process. I know that the experiences that I will have while on the cruise will enhance my ability to craft and deliver lessons, by incorporating current research into the classroom. My students are always more interested in topics that are current and relevant and I am looking forward to bringing back stories of scientists working collaboratively to study and solve problems.

Students collecting physical data on the Shepaug River for Project Periphyton.
Students collecting physical data on the Shepaug River for Project Periphyton.

When I am not teaching I enjoy being outdoors preferably near water. I love the beach and there is nothing I enjoy more then listening to the calming noise of the ocean while I read a good book. In planning a vacation my first thoughts are always is it near warm water and what cool and exciting things can I do there. That is how I found myself Zip-lining through the forest in the Dominican Republic and Ice Skating on the beach in San Diego.

Zip lining in the Dominican Republic
Zip lining in the Dominican Republic

 

Soon I will be heading out on the NOAA Ship Pisces into the Atlantic Ocean whereI will be find out more about the various jobs my shipmates have, information about ocean ecology, and life onboard a ship. Stay tuned and let me know if you have any questions.

Picture courtesy of NOAA
The Pisces my home for the next 12 days. Picture courtesy of NOAA