Cristina Veresan, Back in Kodiak! August 16, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Sunday, August 16, 2015

Calibration, Cleaning, and Camera Drops

Our final days aboard the NOAA ship Oscar Dyson were action-packed! Though our trawling operations were finished, the science team had plenty to do, mainly calibrating, and cleaning, and camera drops. For the echosounder calibration process, the ship was brought into the calm waters of Otter Bay near Yakutat, Alaska. The process involved lowering tungsten carbide and copper spheres into the water at prescribed depths; these standard targets have a known echo return at particular echosounder frequencies, so our scientists can make sure the echosounders are working properly. This calibration process was done at the beginning of the survey and now again at the end. It is important for scientists to calibrate their echosounder equipment as often as is practical in order to ensure the equipment is working consistently so that they have accurate data.

kayakselfie
Kayak selfie! Note the Oscar Dyson in the background. Photo by Emily Collins

To accommodate the calibration, the ship had to stay in place for about 8 hours. After our shift ended, the bridge gave Emily and I permission to take a kayak into the bay. Allen and Rob each held a line connected to an end of the kayak, and they lowered it into the water from the deck. To get in the kayak, we had to climb down a rope ladder to right over the water level, then lower ourselves down to our seats. Thankfully, Emily and I managed to do this without tipping ourselves over! She and I each had a life preserver on, and we had a radio with us to communicate with the bridge. It was so fun to go for a paddle. The Oscar Dyson faded into the distance as we made our way towards the shore. We hugged the coast of the bay, surrounded by gorgeous alpine scenery. In the shallow water, we saw large sea stars, mounds of clams, and lots of scurrying crabs. After about an hour, we made our way back to the ship, exhilarated from our kayak adventure.

DSCF7462 (1)
Otter Bay from our kayak
DSCF7470 (1)
Great view of the NOAA ship Oscar Dyson from our kayak

We also spent a day cleaning the wet lab from top to bottom, including all the baskets, walls, and counters. We had to rid all its surfaces of pesky fish scales, so we spent hours scrubbing, soaping, and spraying everything down. At that point, we also began packing much of our gear and equipment that would be offloaded in Kodiak, as this was the last leg of the summer survey. Although we were not fishing, our camera drops also continued on both shifts. In transit, we were also treated to an awesome view of Hubbard Glacier in Disenchantment Bay. Hubbard Glacier is unique in that, unlike most of the world’s glaciers, it has actually been advancing and thickening for the last 100 years. As we cruised into the bay, we all gathered on deck or on the bridge to take in the majestic tidewater glacier terminating in the sea. We also took the opportunity to get a group picture of our science team!

hubbardglacier
Hubbard Glacier, Disenchantment Bay, Alaska
IMG_3629
The Science Team: (top row, from left) Nathan Lauffenburger, Emily Collins, Cristina Veresan, Darin Jones, Rick Towler (bottom row, from left) Denise McKelvey, Mackenzie Wilson Photo by Alyssa Pourmonir

A Farewell

This morning, under the supervision of superior officers, Ensign Benjamin Kaiser (remember him from the interview?) expertly brought the Oscar Dyson into port. The ship was back in her home port of Kodiak, Alaska, and the science team was ready to disembark and offload our gear. I must say it is a weird sensation to get your “land legs” back after having been at sea for three weeks. I was ready to go to nearby Harborside Coffee and Goods, get myself a good coffee and go for a long walk. I do not fly back to Hawai’i until Tuesday afternoon, so I am looking forward to exploring Kodiak a bit more with some of my shipmates in the next few days. I will also be able to attend a talk tomorrow in which chief scientist Darin Jones will present the preliminary results from this summer’s survey to a group of fisheries industry professionals and other interested parties.

kodiakharbor
Reflection. Kodiak Harbor, Alaska
salmon
A salmon sculpture made from marine debris

 

 

 

 

 

 

 

 

 

 

I am very grateful to Commanding Officer Arthur “Jesse” Stark and all the officers and crew of the NOAA Ship Oscar Dyson for a safe, productive voyage. And I would like to extend a big MAHALO to the science team from Midwater Assessment & Conservation Engineering (MACE) at Alaska Fisheries Science Center conducting the third leg of the summer Walleye Pollock Acoustic-Trawl survey! Thanks for welcoming me into your team; you all are dedicated professionals whose passion for your work is obvious. A special thanks to chief scientist Darin Jones for sharing your expertise and taking the time to edit this blog.

IMG_5120
One of my last sunrises at sea, observed from the bow

Sailing as Teacher at Sea was a rich, hands-on learning experience. I was impressed by the sophisticated techniques and novel technology helping scientists assess pollock populations, which will eventually inform fisheries management decisions. And working in the wet lab was a lot of fun! In addition to processing pollock, I enjoyed observing all the different creatures we caught in our trawls, from sea jellies to shrimps to all manner of fish. While I will really miss my shipmates, the fisheries work, and the gorgeous scenery (especially those epic sunrises), I am excited to go back and share all I have learned with my students and a larger community of educators.

So this is Cristina Veresan, once again a Teacher Ashore, and officially signing off…

Mahalo nui loa for following my journey. Aloha!

fishface
Fish faces! Photo by Emily Collins

Cristina Veresan, Lights, Camera, Ocean! August 13, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Wednesday, August 13, 2015

Data from the Bridge:
Latitude: 59° 18.31’N
Longitude: 141° 36.22’W
Sky: Overcast
Visibility: 10 miles
Wind Direction: 358
Wind speed: 8 knots
Sea Wave Height: < 1 feet
Swell Wave: 2-3 feet
Sea Water Temperature: 16.2°C
Dry Temperature: 15°C

Science and Technology Log

When my shift begins at 4am, I often get to participate in a few “camera drops” before the sun comes up and we begin sailing our transect lines looking for fish. We are conducting the “camera drops” on a grid of 5 km squares provided by the Alaska Fisheries Science Center bottom trawl survey that shows whether the seafloor across the Gulf of Alaska is “trawlable” or “untrawlable” based on several criteria to that survey. The DropCam footage, used in conjunction with a multi-beam echosounder, helps verify the “trawlability” designation and also helps identify and measure fish seen with the echosounder.

cameralaunch
The Drop Camera being deployed

The DropCam is made up of strobe lights and two cameras, one color and one black and white, contained in a steel frame. The cameras shoot in stereo, calibrated so scientists can get measurements from rocks, fish, and anything else on the images. When the ship is stopped, the DropCam can be deployed on a hydrowire by the deck crew and Survey Tech. In the Chem Lab, the wire can be moved up and down by a joystick connected to a winch on deck while the DropCam images are being viewed on a computer monitor. The ship drifts with  the current so the camera moves over the seafloor at about a knot, but you still have to “drive” with the joystick to move it up and down, keeping close to the bottom while avoiding obstacles. The bottom time is 15 minutes for each drop. It’s fun to watch the footage in real-time, and often we see really cool creatures as we explore the ocean floor! The images from the DropCam are later analyzed to identify and length fish species, count number of individual fish, and classify substrate type.

emilydriving
Emily “drives” the camera from the Chem Lab as the sun begins to rise
camershots
DropCam images (clockwise from top left) a skate, brittle stars, a cruising halibut, two rockfish in rocky habitat

Technology enables scientists to collect physical oceanographic data as well. The Expendable Bathythermograph (XBT) is a probe that is dropped from a ship and measures the temperature as it falls through the water column. The depth is calculated by a known fall rate. A very thin copper wire transmits the data to the ship where it is recorded in real-time for later analysis. You launch the probe from a hand-held plastic launcher tube; after pulling out the pin, the probe slides out the tube. We also use a Conductivity Temperature Depth (CTD) aboard the Oscar Dyson; a CTD is an electronic device used by oceanographers to measure salinity through conductivity, as well as temperature and pressure. The CTD’s sensors are mounted on a steel frame and can also include sensors for oxygen, fluorescence and collecting bottles for water samples. However, to deploy a CTD, the ship must be stopped and the heavy CTD carousel lowered on a hydrowire. The hand-held XBT does not require the ship to slow down or otherwise interfere with normal operations. We launch XBT’s twice a day on our survey to monitor water temperatures for use with the multi beam echosounder.

xbt
Cristina launching the XBT probe Photo by Alyssa Pourmonir
ctd
Survey Tech Alyssa servicing the CTD carousel

 

 

 

 

 

 

 

 

 

 

 

 

 

Shipmate Spotlight: An Interview with Ensign Benjamin Kaiser

download
Ensign Benjamin Kaiser, NOAA Corps

Tell me a little more about the NOAA Corps?
We facilitate NOAA scientific operations aboard NOAA vessels like hydrographic work making charts, fisheries data collection, and oceanographic research.

What do you do up on the bridge?
I am a Junior Officer of the Deck (JOOD), so when I am on the bridge driving the ship, I am accompanied by an Officer of the Deck (OOD). I am on my way to becoming an OOD. For that you need 120 days at sea, a detailed workbook completed, and the Commanding Officer’s approval.

What education or training is required for your position?
I have an undergraduate degree in Marine Science from Boston University. My training for NOAA Corps was 19 weeks at the Coast Guard Academy in New London, Connecticut– essentially going through Coast Guard Officer Candidate School.

What motivated you to join the NOAA Corps?
A friend of mine was an observer on a fisheries boat, and she told me about the NOAA Corps. When I was in high school and college, I didn’t know it was an option. We’re a small service, so recruiting is limited; there’s approximately 320 officers in the NOAA Corps.

What do you enjoy the most about your work?
I love not being in an office all the time. In the NOAA Corps, the expectation is two years at sea and then a land assignment. The flexibility appeals to me because I don’t want to be pigeonholed into one thing. There are so many opportunities to learn new skills. Like, this year I got advanced dive training for Nitrox and dry suit. I don’t have any regrets about this career path.

What is the most challenging part of your work?
There’s a steep learning curve. At this stage, I have to be like a sponge and take everything in and there’s so much to learn. That, and just getting used to shipboard life. It is difficult to find time to work out and the days are long.

What are your duties aboard the Oscar Dyson?
I am on duty 12pm to midnight, rotating between working on the bridge and other duties. I am the ship’s Safety Officer, so I help make sure the vessel is safely operating and coordinate drills with the Commanding Officer. I am also the Training Officer, so I have to arrange the officers’ and crew members’ training schedules. I am also in charge of morale/wellness, ship’s store, keys, radios, and inspections, to name a few.

When did you know you wanted to pursue a marine career?
I grew up in Rhode Island and was an ocean kid. I loved sailing and swimming, and I always knew I would have an ocean-related career.

How would a student who wanted to join the NOAA Corps need to prepare?

Students would need an undergraduate degree from a college or university, preferably in a STEM field. Students could also graduate from a Maritime Academy. When they go to Officer Candidate School, they need to be prepared for a tough first week with people yelling at them. Then there’s long days of working out, nautical science class, drill work, homework, and lights out by 10pm!

What are your hobbies?
I enjoy rock climbing, competitive swimming, hiking, and sailing.

What do you miss most while working at sea?
There’s no rock climbing!

What is your favorite marine creature?
Sailfish because they are fast and cool.

Inside the Oscar Dyson: The Chem Lab

chemlab

This lab is called the Chem Lab (short for Chemical). For our survey, we don’t have that many chemicals, but it is a dry lab with counters for workspace when needed. This room is adjacent to the wet lab through a watertight door, so in between trawls, Emily and I spend a lot of time here.  In the Chem Lab, we charge batteries for the CamTrawl and the DropCam. There are also two computer stations for downloading data, AutoLength analysis, and any other work (like blogging!). There is a window port to the Hero Deck, where the CTD and DropCam are deployed from. In the fume hood, we store Methot net samples in bottles of formalin. There is a microscope for viewing samples. Note the rolling chairs have their wheels removed and there are tie-downs on cases so they are safer at sea. Major cribbage tournaments are also played in this room!

Personal Log

It has been so calm on this cruise, but I have to say that I was looking forward to some bigger waves! Well, Sunday night to yesterday afternoon we experienced some rain and rough seas due to a nearby storm. For a while the ship would do big rolling motions and then a quick lurchy crash. Sea waves were about 2 feet in height, but the swell waves were over 5 feet at times. When I was moving about the ship, I’d have to keep a hand on a rail or something else secured. In the wet lab while I was working, I would lean against the counter and keep my feet spread apart for better balance.

waves
Seas picked up and the ship was rocking and rolling!

Remember the Methot net? It is the smaller net used to catch macroplankton. We deployed one this week and once it came out of the water, it was rinsed and the codend was unscrewed. When we got the codend into the wet lab, we realized it was exclusively krill!

methotlaunch
The Methot net is deployed by the Survey Tech and deck crew members
Krill
#krillfordays

Krill are  small crustaceans that are found in all the world’s oceans. Krill eat plant plankton (phytoplankton), so they are near the bottom of many marine food chains and fed on by creatures varying from fish like pollock to baleen whales like humpbacks. They are not so small that you need a microscope to see them, but they are tiny. We took a subsample and preserved it and then another subsample to count individuals…there were over 800 krill in just that one scoop! Luckily, we had them spread out on a board and made piles of ten so we did not lose count. It was tedious work moving individual krill with the forceps! I much prefer counting big things.

I love it when there is diversity among the catch from the AWT trawls. And, we caught some very memorable and unique fish this week.  First was a beautiful Shortraker Rockfish (Sebastes borealis). Remember, like the Pacific Ocean Perch, its eyes bulge when its brought up from depth. The Shortraker Rockfish is an open-water, demersal species and can be one of the longest lived of all fish. There have  been huge individuals caught in Alaskan waters that are over 100 years old. This fish was not particularly big for a Shortraker, but I was impressed at its size. It was probably my age.

IMG_5108
Holding a Shortraker Rockfish. Photo by Emily Collins
IMG_0634
Smooth Lumpsucker fish: so ugly it’s cute?! Photo by Mackenzie Wilson

We also caught a Smooth Lumpsucker (Aptocyclus ventricosus). It was inflated because it was brought up from depth, a form of barotrauma. This scaleless fish got its name for being shaped like a “lump” and having an adhesive disc-shaped “sucker.” The “sucker,” modified pelvic fins, are located ventrally and used to adhere to substrate. These pelagic fish are exclusively found in cold waters of the Arctic, North Atlantic, and North Pacific. The lumpsucker fish, and its roe (eggs) are considered delicacies in Iceland and some other countries.

lumpsucker
You can see the “sucker” on the bottom of its body. Photo by Mackenzie Wilson

Pollock are pretty slimy and they have tiny scales, so when we process them, everything gets covered with a kind of speckled grey ooze. However, when we trawled the other day and got a haul that was almost entirely Pacific herring (Clupea pallasii), I was amazed at their scales. For small fish, the herring had scales that were quite large and glistened like silvery sequins. The herring’s backs are an iridescent greenish-blue, and they have silver sides and bellies. The silver color comes from embedded guanine crystals, leading to an effective camouflage phenomenon in open water.

As this last week comes to a close, I am not ready to say goodbye…

hand
Herring scales are nature’s sequins

Cristina Veresan, Icthysticks and Otoliths? August 9, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Sunday, August 9, 2015

Data from the Bridge:
Latitude: 59°28.8’ N
Longitude: 145°53.2’ W
Sky: Rain
Visibility: 7 miles
Wind Direction: SSE
Wind speed: 13 knots
Sea Wave Height: 1-2 feet
Swell Wave: 3 feet
Sea Water Temperature:  16.0°C
Dry Temperature:  14.5°C

Science and Technology Log

Our wet lab is outfitted with novel technology that makes processing the catch much more efficient. All of our touchscreen computers in the wet lab are running a program, designed by MACE personnel, called Catch Logger for Acoustic Midwater Survey (CLAMS). Once we enter the haul number and select the species that were caught, most of the data populates automatically from the lab instruments. For example, the digital scale is synced with the computer, so the weights are automatically recorded in CLAMS when a button is pushed. Also, an electronic fish measuring board called the “Icthystick,” designed by MACE IT specialist Rick Towler, is used to measure fish lengths. The fish’s head is placed at one end of the measuring board; when you place a finger stylus (with a magnet mounted inside it) at the end of the tail, the length is automatically recorded in CLAMS. The CLAMS system creates a histogram (type of graph) of all the lengths measured, and scientists archive and review this important data.

CLAMS
The CLAMS program records our catch
IMG_0101
The “Icthystick” AKA “Fish Stick” Photo by Darin Jones
scale
A digital scale connected to the CLAMS system

What can fisheries scientists learn from a pollock’s ear bones? The ear bones, called otoliths, have layers that can be counted and measured to determine the fish’s age and growth over the years of its life. Fish otoliths are glimpses into the past and their layers of proteins and calcium composites can sometimes offer clues about climate and water conditions as well. For our sub-sample of pollock, in addition to length, weight, and sex data, we will remove and archive the otoliths. We have to slice into the head and extract the two bony otoliths with forceps. The otoliths are then placed into a vial of ethanol with a bar code that has been scanned into the CLAMS system and assigned to the individual pollock they came from. Therefore, when all the otoliths are sent back to the lab in Seattle, ages of the fish can be confirmed. We sometimes collect other biological samples as well. In Seattle, there are scientists working on special projects for certain species, so sometimes we take a fin clip or an ovary sample from fish for those colleagues.

IMG_7695
After a slice is made across the head, the otoliths can be removed with forceps
vial
The otoliths in glycerol thymol (the bar code is on the opposite side of the vial)

 

 

Shipmate Spotlight: An interview with Rick Towler 

rick
Rick Towler, IT Specialist Photo by Darin Jones

What is your position on the Oscar Dyson?
I am an IT Specialist at MACE. I spend about 4 weeks total at sea and the rest of my time in our Seattle office. I have been in my position for 11 years.

What training or education do you need for your position?
My background is in wildlife biology, but I have had a lifelong interest in computers and electronics. I was lucky enough to get an internship with a physical oceanographer and started writing data analysis software for him. That got me on my career path, but for the most part, I have taught myself.

What do you enjoy the most about your work?
I love the freedom to creatively solve problems. There’s a lot of room to learn new things in my position. Like when we started on the “Icthystick” I had never done any electronics like that but I was able to innovate and make something that works. The scientists provide the goals and I provide the gear!

Have you had much experience at sea?
No, I get seasick! I am usually the first to go down with it. Before I joined MACE I had no real sea time. When I get sick, I just have to rest and take medication. I am so lucky that this leg of the survey has been very calm.

What are your duties of your position in Seattle and at sea?
In general, I write software and design and develop instruments to help us do our job better. Along with my colleague, Scott Furnish, I am also responsible for installing and maintaining the equipment used during the survey. When at sea, I make sure all the data is being backed up. I respond to any equipment issues and fix things that are not working properly.

When did you know you wanted to pursue a marine career?
I did not necessarily know I wanted a marine career, but I knew I wanted to be involved in science. I love that my job now is a mix of natural science and computer technology. It’s important to me to have a job I think is meaningful.

What are your hobbies?
I enjoy family time: playing with my kids and hiking and biking together. I also love playing with my dog and building things with my kids.

What do you miss most while working at sea?
Pizza! And my family and my dog.

What is your favorite marine creature?
Tufted puffin because they are cute. I’m a bird guy.

Inside the Oscar Dyson: The Bridge

bridge
The main console (left) and the navigation station (right)

The bridge of a ship is an enclosed room or platform from which the ship is commanded. Our bridge is commended by officers of the NOAA Corps, one of the uniformed services of the United States. From the bridge, officers can control the ship’s movements, radar, IT (information technology), communications, trawling and everything else to operate the ship. Full control of the ships generators and engines is from the engine room, although there is a repeater display, so officers can monitor these systems. In our bridgethere is a main console from which the ship is steered. There are also consoles on other sides of the room, so the officers can control the ship when we are pulling up to the dock or when equipment is being deployed off the stern, starboard side, or port side. There is a navigation station where charts are stored and courses are plotted. For our cruise, courses are plotted on paper charts as well as two different digital charts. The bridge is surrounded by windows and the view is incredible!

Personal Log

Each fish we catch has a particular scent, some more “fishy” than others. But when Darin told me to smell a capelin (Mallotus villosus) I discovered something quite surprising. The small, slender fish smells exactly like cucumber. Or should I say that cucumbers smell exactly like capelin? It is amazing!

me
Capelin are in the smelt family: I smelt a smelt!

After all these clear sunny days, we had our first foggy one, a complete white out! It gave me an appreciation for the officers that have to navigate through these conditions using radar alone. I also noticed the fog horn sounded every two minutes; Ensign Ben told me that this is a nautical rule when visibility is less than 2 miles and the ship is underway. In between blasts, I scooted out to the bow to take the photo below.

fog
Thick fog surrounded us

I have seen two different whales on my trip so far. I saw one humpback whale from a distance while it was feeding. It was tough to make out the whale itself, but it was easy to spot the flock of birds that was gathered on the water’s surface. I have also always wanted to see an orca whale, and I finally got my chance. It was a fleeting encounter. I had just stepped out onto the deck and saw an orca surface. I raised my camera as it surfaced again and managed to take a picture of the dorsal fin. Unfortunately, our ship and the whale were cruising pretty fast in opposite directions. But it was still a magical moment to observe this amazing creature in its natural habitat.

whale
A feeding humpback whale
orca
A cruising orca whale

Like I have said before, working on a moving platform has its challenges. Even getting around a ship presents a unique set of peculiarities. First of all, most doorways have 4-inch rails on the floor. When you are stumbling down at 4am to begin your shift or excitedly moving outside to see a whale, you have to keep those in mind! Most interior doors are pretty standard, although some come equipped with hooks at the top in order to secure them open. However, the exterior doors are watertight and must be handled appropriately. To open them from either side, you first have to push the lever up and then open the door by the handle. It is really important to avoid placing your hand in the door frame while the door is open because the thick, heavy door would crush your hand is if it swung shut. For this reason, and to keep the ship secure, you also have to remember to close these doors behind you and pull down the lever on the other side. On account of a nearby storm, we are supposed to get some big seas overnight, so now everything must be secured!

Ah, the joys of shipboard living!

sea
(from left) a raised door frame, a latch on the back of a door, and a watertight exterior door

Cristina Veresan, Sorting the Catch, August 5, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl Survey
Geographical area of cruise: Gulf of Alaska
Date: Wednesday, August 5, 2015

Data from the Bridge:
Latitude: 60° 46.4′ N
Longitude: 147° 41.0′ W
Sky: Clear
Visibility: 10 miles
Wind Direction: E
Wind speed: 5 knots
Sea Wave Height: 0-1 feet
Swell Wave: 0 feet
Sea Water Temperature: 16.8 °C
Dry Temperature: 16.0° C

Science and Technology Log

What about all those fish we bring onboard? Our Lab Lead Emily oversees the processing of the catch and determines which protocols or sampling strategies are most appropriate. She and I, along with the Survey Tech on duty, work together to identify, weigh, and measure the catch and collect any necessary biological samples such as otoliths or ovaries. The first job is to sort everything, and we continue sorting until the table is empty. We identify the creatures and organize them by species into different baskets. We end up with many baskets of pollock, usually hundreds of individuals. If distinct length groups of pollock are present we sort them by length (which is indicative of age class) and sample each group separately. All of the basket(s) are weighed to get a total weight per species (or length group) for the haul.

One of many baskets of pollock
One of many baskets of pollock
'Bloke' or 'Sheila' pollock? It's all sorted out here
‘Bloke’ or ‘Sheila’ pollock? It’s all sorted out here

For pollock estimated to be age two and older, we sex and length about 300 individuals per haul. When I say sex a pollock, I mean we must determine if the fish is male or female. Pollock do not have any external features to determine which sex they are so we must slice open the belly of the fish, pull back the liver and look for the gonads; females have a light pinkish to orange colored two-lobed ovary, while males have a whitish bubbled string of testes. The sex-sorting table has a large basin next to a partitioned bin cheekily labeled with a “blokes” section (for males) and a “sheila” section (for females). Once the sex of the fish is determined, we toss it in the proper bin. Each bin opens to a length board from which we measure all of the fish in the bin. For creatures other than our targeted pollock, we collect unsexed length and weight data from a smaller sample of individuals.

Pollock gonads: female ovaries
Pollock gonads: female ovaries
Pollock gonads: male testes
Pollock gonads: male testes
spawning
A spawning female! Note the ovaries, swollen with eggs.

Shipmate Spotlight: Interview with Darin Jones

Darin Jones, Scientist and Field Party Chief
Darin Jones, Research Fisheries Biologist, Field Party Chief (and my awesome blog editor)!

What is your position on the Oscar Dyson?
I am a Research Fisheries Biologist. I am also the field party chief in charge of the scientific team for leg 3 of our summer survey. I have been with the National Marine Fisheries Service for 8 years.

What training or education do you need for your position?
The ability to go to sea and not get seasick is key, and a solid marine biology education with plenty of math and statistics. I earned my undergraduate degree in marine biology from UNC at Wilmington, then a Masters in Fisheries Resources at the University of Idaho.

What do you enjoy the most about your work?
Being able to get out in the field and see the beautiful scenery of Alaska instead of being stuck behind a desk all the time. And, of course, meeting wonderful new people on each cruise.

Have you had much experience at sea?
After my undergraduate work, I was an observer for five years in Alaska on trawlers, longliners, and pot fishing boats and got lots of sea time. In New England I worked for about 4 years on a cod tagging program where we went out to Georges Bank and caught Atlantic Cod to tag and release.  I have also worked at fish hatcheries in California and South Carolina where we went to sea to collect brood stock. In my current position, I am at sea for about 3 months a year.

Where do you do most of your work aboard the ship? What do you do?
Most of my work is in “the Cave” (Acoustics Lab), where I monitor the acoustics equipment and analyze the data. When we are trawling, I go to the bridge to help guide the fishing operation. As field party chief, I direct all science operations, make daily decisions pertaining to the survey mission and its completion based on weather and time available, and I’m the liaison between the science party and the ship’s officers.

When did you know you wanted to pursue a marine career?
I have loved the ocean since I started surfing in high school. During college, I was looking for a career that would keep me near the ocean, and marine biology was a natural fit.

What are your hobbies?
I am a surfer and a woodworker, and I enjoy and playing the guitar.

What do you miss most while working at sea?
My family for sure. My own bed!

What is your favorite marine creature?
My porcupine pufferfish that I had during grad school; he had a personality and was always happy to see me.

Inside the Oscar Dyson: The Lounge

The lounge
The ship’s lounge

When you work hard at sea, you need a place to unwind and relax after a 12-hour shift. The lounge is right across the hall from my stateroom, and it is a great gathering place. It has comfy couches, a big bean bag chair, and a book library. The large television, like the televisions in the staterooms, has Direct TV with many channels. I have not watched television until this week when I began watching the last ever episodes of the Jon Stewart’s The Daily Show. The ship also has a large collection of DVDs.

 

 

Personal Log

We left Seward and headed up the coast to Prince William Sound. I can see why the region is known for its breathtaking wilderness scenery: mountains, islands, and fjords. The coast is lined with both dense spruce forest and tidewater glaciers. In fact, most of this area is part of the Chugach National Forest, the second largest National Forest in the United States. The sound’s largest port is Valdez, the terminus of the Trans-Alaska Oil Pipeline. In 1989, the oil tanker Exxon Valdez ran aground on Bligh Reef after it left Valdez, which resulted in a massive oil spill that caused environmental destruction and wildlife deaths.

Cruising through Prince William Sound
Cruising through Prince William Sound

My favorite part of working in the wet lab is when it’s time to sort the catch. We tilt the table, open the gate, and all the fish roll in on the conveyor belt. You never know what you will find among the pollock and rockfish. A lot of the time, there are krill and shrimp mixed in with the fish. Occasionally, there will be another big fish like a Pacific Cod (Gadus macrocephalus). A few times this week, there have been some very interesting baby creatures in our trawls. When sorting, you have to take care not to miss them!

My Alaskan fisheries adventure continues…

COD
Here’s a big Pacific Cod…Photo by Emily Collins
littlefish
And here’s some of the baby creatures found in our catches: (clockwise from top left) an Atka mackerel, an Alaska eelpout, Squid, and Snailfish.

Cristina Veresan, Nets and the Wet Lab, August 3, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Monday, August 3, 2015

Data from the Bridge:
Latitude: 58° 51.5 N
Longitude: 149° 30.8 W
Sky: Scattered Clouds
Visibility: 10 miles
Wind Direction: SSE
Wind speed: 8 knots
Sea Wave Height: <1 feet
Swell Wave: 0 feet
Sea Water Temperature: 16.3° C
Dry Temperature: 17.2 ° C

Science and Technology Log

Once it is determined where to fish, the scientists also have to decide which trawl to deploy and tow behind the ship in order to catch the targeted fish. The most common trawl we use to catch mid-water pollock is the Aleutian wing trawl (AWT). Our AWT is 140 meters long, and it can be fished anywhere from 30-1,000 meters underwater. A net echosounder is mounted at the top of the net opening and transmits acoustic images of fish going in the mouth of the net in real time to a display on a computer on the bridge that is monitored by the scientist and the Lead Fisherman. Additionally, at the entrance of the codend (the end of the net where the fish are collected), a stereo camera called the  CamTrawl takes pictures of anything entering the codend. CamTrawl pictures are later analyzed to determine species and lengths of the fish that were caught.  Sometimes the net is fished with the codend opened and the catch is only evaluated based on what is seen in the CamTrawl images. As this technology gets perfected less fish will need to be brought onboard.

A view of the stern as the deck crew prepares to deploy the AWT. Note the net reel at the bottom of the frame.
A view of the stern as the deck crew prepares to deploy the AWT. Note the AWT on the net reel at the bottom of the frame.

Cooperation among many different people is necessary during a trawl. The wet lab team prepares  the CamTrawl to collect data. The deck crew physically handles all the gear on deck, including attaching the CamTrawl camera, net echosounders, and physical oceanography instruments to the net and deploying and recovering the net. From the bridge, the Lead Fisherman controls the winches that move the trawl net in and out of the water. Once the trawl net is in the water, the scientists work closely with the Lead Fisherman and the officers to ensure a safe, effective trawl. Sometimes the trawl net will be down for a few minutes, and other times it will be closer to an hour. Once the net is back on the ship and emptied out, the catch and CamTrawl images are ready to be analyzed by the scientist and wet lab team.

CamTrawl images were filmed by two cameras in stereo and so scientists can run a program that calculates length.
Fish are filmed in stereo so scientists can run a program that calculates their length.

Two other nets, more seldom used, are the bottom trawl net, known as the Poly Nor’easter (PNE) and the Methot net, used to catch krill and zooplankton. The PNE is deployed if there is a large concentration of fish close to the ocean floor. It is smaller than the AWT and it is usually lowered to just above the ocean floor. The Methot net was named after Dr. Richard Methot, a famous fisheries modeler who designed the net. This net has an opening of 5 square meters, and it has a finer mesh than the AWT or the PNE. At the end of the net is a small PVC codend where the sample is taken from.

Shipmate Spotlight: Interview with Kirk Perry

Kirk Smith, Lead Fisherman and Chief Boatswain
Kirk Perry, Lead Fisherman and Chief Boatswain

What is your position on the Oscar Dyson?
I am the Lead Fisherman and also sailing as active Chief Boatswain.

What training or education do you need for your position?
I went to Cal Poly San Luis Obispo and got a BS in Natural Resource Management. I have certifications from the Coast Guard like an AB (Able-Bodied Seaman) unlimited, which means I have over 1070 days sailing as an AB. I also have a Masters license to operate a 100-ton vessel. You need a lot of fishing experience.

What do you enjoy the most about your work?
Fishing! Obviously. You just never know what you are going to get, and it’s always exciting.

Have you had much experience at sea?
I have been fishing since I was 10 years old and I helped a neighbor build a boat and go salmon fishing in Monterey Bay. When I visited family in Hawai’i, we would go trolling, set net fishing, beach casting, and spearfishing. I have been sailing professionally with NOAA for 11 years on different vessels in Hawai’i, Mississippi, and here in Alaska.

Where do you do most of your work aboard the ship? What do you do?
As Lead Fisherman I operate the machinery from the bridge when we are trawling. Basically, I get the fishing gear in and out of the water safely. As Chief Boatswain, I am in charge of the Deck Department, so I schedule crew, assign daily crew duties, maintain supply inventories, oversee the ship’s survival gear, and operate deck equipment like winches, anchor, and cranes.

When did you know you wanted to pursue a marine career?
By 25 years old I knew I had to be on the water, full time, all the time, but I did not get to be here until I was 44 years old.

What are your hobbies?
When I’m not fishing, I like to hunt. Mainly ducks and geese.

What do you miss most while working at sea?
Home, my family. And my own bed!

What is your favorite marine creature?
Tuna because they are so fast powerful and so delicious! When you are fishing for them, it’s like nothing else. It can turn into a wide open frenzy.

Inside the Oscar Dyson: The Wet Lab

The ship's wet lab
The ship’s wet lab

The wet lab is where we do most of our work, and it gets really busy in here after a trawl. It is called a “wet” lab because it is designed to get just that. When a trawl net is full of fish, it is emptied onto a table that tilts onto a conveyor belt feeding into the wet lab. We have controls to run the conveyor belt as well as tilt the tableAs the fish are brought in on the conveyor, we sort them in large and small baskets, and then collect data from the different species. The metal counters, outfitted with electronic balances and automated length readers provide us with workspace to process our samples. The work of the wet lab is messy and fun. When we process a catch, fish scales get everywhere! The shiny, sticky little discs coat every surface, especially areas that you touch like the computer screens and handles. It is fun to clean this lab because you spray everything down with the salt water from hoses that are rigged from the ceiling. You can even spray down the computer screens themselves, and then rinse them with fresh water. Water washes over everything and drips down, entering drains in troughs along the edges of the floor.

 

Processing pollock in the wet lab!
Processing pollock in the wet lab! Photo by Emily Collins

Personal Log

Whenever it’s time to process fish in the wet lab, I have to get geared up! What is the latest in fisheries fashion, you might ask? Rubber boots are a must. We take the lead of Alaskans and wear brown XtraTuf boots. Once I get my boots on, I put on my Grundens foul weather coveralls over my pants. The weather has been mild, so I have been forgoing the matching foul weather jacket and just wearing a long sleeved t-shirt or sweatshirt. I have not been wearing a hat, but I do pull my hair back. Lastly, I pull on elbow-length yellow rubber gloves over my sleeves.

Before you enter the wet lab, you get geared up here. Sometimes to make a quick entrance/exit, you leave your boots in your coveralls (bottom right)
Before you enter the wet lab, you get geared up here. Sometimes to make a quick entrance/exit, you leave your boots in your coveralls (bottom right)
These boots are made for fishin'
These boots are made for fishin’

I am really enjoying my time with this ship’s crew and the rest of the science party. Everyone has been very welcoming, and, though we work hard, we maintain a sense of fun. If we have down time between data collection, Emily and I play cribbage. Or we go out on deck and take in the sights, like the Holgate glacier we passed the other day. Quite a few people on board have spent time in Hawai’i, so we can ‘talk story’ about the islands from all the way up here in the North Pacific. It is amazing how we are all connected in some way through our love of the ocean.

My voyage of discovery continues…

glacier
We sailed within 4 miles of Holgate Glacier on a beautiful sunny morning

Cristina Veresan, Gone Fishin’, August 1, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Saturday, August 1, 2015

Data from the Bridge:
Latitude: 58° 39.0′ N
Longitude: 148° 045.8′ W
Sky: Broken clouds
Visibility: 10 miles
Wind Direction: W
Wind speed: 15 knots
Sea Wave Height: 3 feet
Swell Wave: 0 feet
Sea Water Temperature: 15.4° C
Dry Temperature: 13.8° C

Science and Technology Log

So, you might be wondering how our scientists know when it’s time to “go fishin’”? That is, how do they determine if there might be a significant concentration of pollock to deploy a trawl? The answer is acoustics! The ship is equipped with a multitude of acoustic transducers on the bottom of the ship, five of which are primarily used in the pollock population assessment. These transducers both send and receive energy waves; they transmit sound waves down to the ocean floor, which reflect back to the ship. However, if there are obstacles of a different density in the water (like fish), the signal bounces back from that obstacle. The amount of energy that pollock individuals of different lengths return is known to our scientists.

Chief Scientist Darin Jones studies the echogram
Chief Scientist Darin Jones studies the echogram and talks to the bridge

The real-time data from transducers is automatically graphed in what is called an echogram. When we are on our predetermined transect line, the scientist on watch analyzes the echograms to make the determination of when to trawl. The transducers are different frequencies. In general, the higher the frequency, the smaller the object it can detect. To make a final decision on fishing, the scientist must also coordinate with the officers on the bridge who take into account wind speed, wind direction, water currents, and ship traffic. Once we collect the trawl data, scientists use the catch information to assign a species and length designation to the echogram data in order to produce a pollock biomass or abundance estimate. In addition to the pollock we are targeting, we have caught salmon, cod, jellyfish, and a few different types of rockfish.

echogram
Each echogram is from a different frequency transducer

We often catch one type of rockfish, the Pacific Ocean perch (Sebastes alutus), which has a similar acoustic signature as pollock. On the ship, we call this fish POP, and they are difficult to handle because of the sharp spines on their dorsal fin, anal fin, head, and gill covers (operculum). You have to watch out for spine pricks when handling them! Their eyes usually bulge when they come up from depth quickly and gases escape, which is a form of barotrauma. One interesting fact about Pacific Ocean perch is that they are viviparous (give birth to live young); the male fish inserts sperm into the female fish and her egg is fertilized inside her body. These fish can also be incredibly long-lived, with individuals in Alaska reaching almost 100 years old. The Pacific Ocean perch fishery declined in the 1960’s-1970’s due to overfishing, but has since recovered due to increased regulation.

POP
You down with POP?! Yeah, you know me!

 

Allen Smith, Senior Survey Technician
Allen Smith, Senior Survey Technician

Shipmate Spotlight: Interview with Allen Smith

What is your position on the Oscar Dyson?
I am the Senior Survey Technician. It’s my second season in this role.

Where did you go to school?
There is no formal training for this position, but you do need a scientific/technical background. I have a BS in geology, and right after college, I worked in technical support for Apple.

What do you enjoy the most about your work?
My favorite part is meeting people and re-connecting with ones I already know. Different scientists rotate in and out and they are my contact with the outside world.

Have you had much experience at sea?
I have worked on ships since 2011. I worked on cruise ship as a cook then I joined NOAA and sailed on the NOAA ship Oscar Elton Sette in Hawai’i as a cook and then later joined the NOAA ship Oscar Dyson as a survey tech. I really wanted to get back into science so I made the switch.

Where do you do most of your work aboard the ship? What do you do?
The domain of the survey technician is the laboratory. We have wet, dry, chemical, and computer/electronics labs aboard the Oscar Dyson. I am responsible for the meteorological, oceanographic, and navigation data that the ship collects full-time. We also help visiting scientists to accomplish their missions using the ship’s resources, like deploying fishing gear, CTD, cameras, or other equipment. Sometimes we do special missions like last year when we went to the Bering Sea for an ice-associated seal survey and our ship had to break through sea ice. During scientific operations, I work a 12-hour shift everyday.

When did you know you wanted to pursue a marine career?
I grew up in Dallas, Texas, which is totally land-locked, so you could say I wanted a change.

What are your hobbies?
No time for hobbies at sea! Just kidding, I like photography and playing guitar and ukulele. When I am not at sea, I enjoy hiking and biking.

What do you miss most while working at sea?
Probably what I miss the most is being able to cook vegetarian meals for myself. 

What is your favorite marine creature?
The red-footed booby because they have so much personality and are very entertaining.

Inside the Oscar Dyson: The Galley

galley
The ship’s galley is always open

The galley is ship-speak for the kitchen and dining area. Our ship stewards (chefs) work really hard to prepare buffet-style meals three times a day. Breakfast is served from 7-8am, lunch from 11am-noon, and dinner from 5-6pm. There is also a salad bar and a soup available for lunch and dinner. One night we even had food popular in Hawai’i: Kalua Pork, ramen stir fry, and chicken katsu! You can also come in the galley 24 hours a day to get coffee, espresso, tea, water, and various snacks. There is even an ice cream freezer! You might notice the chairs in the galley have tennis balls on the ends of the legs, as well as tie downs attached to them; this is to prevent sliding during rough seas.

 Personal Log

One of the challenges of working on a moving platform is seasickness. Nausea can be really debilitating, and it prevents many people from enjoying time on the water. I am not prone to it, but I am aware it could still afflict me at any time. Luckily, we have had very calm seas, and I have felt great, even when typing on the computer or slicing up fish! I brought some anti-seasickness medication with me but I have not needed it yet. I also have some candied ginger with me that I have been enjoying, though not for medicinal purposes.

Good morning from the Oscar Dyson!
Feeling happy, not seasick!

The scenery this week has been incredible as we weave our way through the bays and fjords of the Kenai Peninsula. McCarty fjord, carved 23 miles into the coast, was very impressive. The fjord is flanked by massive green mountains and towering cliffs. This majestic landscape was carved by ancient glaciers. I have spotted a few bald eagles, and, with binoculars, one of the deck crew members saw a brown bear mama and two cubs. As much as I love the open ocean, it’s exciting to be close to shore, so we can enjoy Alaska’s dramatic vistas and wildlife.

I am loving life at sea!

glacier
McCarty Glacier comes out from the clouds

Cristina Veresan, Welcome Aboard the Oscar Dyson, July 29, 2015

NOAA Teacher at Sea
Cristina Veresan
Aboard NOAA Ship Oscar Dyson
July 28 – August 16, 2015 

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical area of cruise: Gulf of Alaska
Date: Wednesday, July 29, 2015

Data from the Bridge
Latitude: 58° 27.7′ N
Longitude: 149° 31.0′ W
Sky: Clear
Visibility: 10 miles
Wind Direction: S
Wind speed: 2 knots
Sea Wave Height: 1 ft.
Swell Wave: 0 ft.
Sea Water Temperature: 14.4° C
Dry Temperature: 14.8° C

Science and Technology Log

We steamed out of the port of Kodiak, sailing northeast into the Gulf of Alaska. From the bow, I looked back and saw the busy harbor, full of fishing boats of all sizes, slowly fade away. Scanning the water, I saw two sea otters floating on their backs with their arms in the air. I spotted a few puffins dotting the surface of the water, with their characteristic black and white plumage and orange beaks. In the distance, a spout rose from the ocean’s surface, evidence of a whale below. The sea was calm and the sun was shining. I breathed in the salty air. I was feeling grateful to be a NOAA Teacher at Sea and ready for this mission.

So what exactly is our mission here aboard the Oscar Dyson? We are conducting fisheries research, primarily a Walleye Pollock Acoustic-Trawl survey. A fish survey is like a scientific fishing trip! The surveys, when conducted consistently and repeatedly over time, allows scientists to monitor trends in fish abundance and changes in the marine ecosystem. The data from these surveys are used, along with data collected from fishermen and other sources, to set sustainable catch limits, ensuring a healthy supply of pollock in the future..

The science team is from the Midwater Assessment and Conservation Engineering (MACE) group of the Alaska Fisheries Science Center in Seattle, Washington. This is the third and final leg of their summer assessment of the walleye pollock population in the Gulf of Alaska. We will be traveling along predetermined, randomized transect lines, and scientists will use acoustic technology, along with catch data from nets towed behind the boat, to assess the pollock population. Walleye pollock is the targeted species, though everything we catch will be identified and measured.

The Oscar Dyson in the Port Of Kodiak, Alaska
The Oscar Dyson in the Port Of Kodiak, Alaska
A view of Kodiak Harbor
A view of Kodiak Harbor
Young Pollock caught in the pocket net of a trawl
Young walleye pollock

You might not have seen walleye pollock on a menu, but you probably have eaten it. Pollock is the “Fish” in McDonald’s “Filet-o-Fish” sandwiches. Pollock are also masters of disguise and can sometimes be found imitating crab meat. Yes, that imitation crab (surimi) in your California roll is usually ground up and re-formed pollock. In fact, the pollock fishery is one of the largest and most valuable in the world. Walleye pollock are a schooling, semi-demersal (bottom) fish that is found at depths up to 1000 feet and widely distributed throughout the North Pacific Ocean. They can grow up to 3.5 feet and live up to about 20 years old. Pollock feed mainly on krill when they are young; when they mature, they eat young pollock and other teleosts (bony fish). That’s right, they are cannibalistic! Recently, after extensive genetic studies, the scientific name of this fish changed from Theragra chalcogramma to Gadus chalcogrammus. This change placed the walleye pollock in an evolutionary lineage that includes the Pacific, Atlantic, and Greenland Cods. In Alaska, about 1.5 million tons of this fish are caught each year. With each fish weighing an average of 3 pounds, that’s about 1 billion fish annually!

 

 

Shipmate Spotlight: Emily Collins

Lab Lead Emily Collins
Lab Lead Emily Collins

What is your position on the Oscar Dyson? 

I am on the science team, and for all three legs of the survey this summer, I have been the Lab Lead.

Where did you go to school?
I earned a BS in Biology (marine science concentration) from Boston University. I am attending Southern Oregon University in the fall for graduate work in Environmental Education.

What do you enjoy most about your work?
I certainly like playing with fish, but I enjoy the people the most. This is an awesome group of scientists and I really like meeting new people each cruise, too. I enjoy learning new things from different scientists.

Have you had much experience at sea?
Yes, after college, I worked as a fisheries observer for 2 ½ years on various east coast boats from Maine to Virginia and 1 ½ years on boats in Alaska. As an observer, I boarded commercial fishing vessels and kept fishing data on the catch and discarded species and collected biological samples for the National Marine Fisheries Service. I have been on trawlers (pollock, ground fish), gillnet vessels (cod), scallop dredgers, pair trawls (herring), pot vessels (cod) and longliners (halibut, sablefish). Observer data is used to conduct stock assessments, which are used in managing the fisheries.

Where do you do most of your work aboard the ship?
You can usually find me in the wet lab. I am in charge of the wet lab and sampling all the fish that we catch: identifying, weighing, measuring fish and collecting otoliths and other biological samples. I also help with camera operations and data management, so I am often in the Chem Lab or Acoustics Lab on a computer.

When did you know you wanted to pursue a career in science?
I always liked biology and knew it was a career goal. I took a Lindblad Expeditions/National Geographic voyage in the Galapagos my senior year of high school and Sylvia Earle was onboard as an expert naturalist. The snorkeling was unbelievable. I saw so many fish, sea turtles, penguins, and sea lions. That was my inspiration for studying marine biology

What are your hobbies?
I love to travel, hike and snowboard. And I do arts and crafts, like paper arts and beadwork.

What do you miss most while working at sea?
I miss my friends and family the most (Hi Mom!). And being able to eat out at different restaurants.

What is your favorite marine creature?
Bluefin Tuna because they are huge, fast, and they live in the open ocean.

Inside the Oscar Dyson: Staterooms

stateroom
Our sleeping quarters

So once our work is finished, where do we finally get some rest? Staterooms are what you call the sleeping quarters aboard the ship. Emily Collins and I share a stateroom. There are bunk beds, and I am on the top and Emily is on the bottom. We each have a locker to store our clothes, and there is a desk and shelving to stow odds and ends. You have to latch the locker doors closed, or they will slam when the ship moves. There is a head (bathroom) with a toilet, sink and shower attached to our stateroom. It is important to keep voices down in your stateroom and moving through the corridors, as people are sleeping at different times of the day! We have a porthole in our room, but since it is summer in the high latitudes, it is dark for only about 4-5 hours a day. The quarters are cozy but comfortable. I enjoy getting lulled to sleep by the rolling motion of the ship.

 

 

Personal Log

As Teacher at Sea, I am an active member of the science team and I have been assigned the day shift, which means that I work from 4am-4pm. I think this shift will be great because it is a little more of a regular schedule, just getting up really early and going to bed really early. I come on shift when it is actually dark and then, after about an hour, I enjoy the sunrise over the water. During the shift, as our work allows, we can break for breakfast and lunch. And we can get coffee as needed…which is a lot!

sunrise
Sunrise over sea

Safety is the first priority of everyone aboard the Oscar Dyson. The ship’s officers have briefed us about safety procedures, and we have participated in drills for different scenarios, such as Man Overboard and Abandon Ship. For the Abandon Ship drill, we grabbed our PFD (personal floatation device) and survival suit from our staterooms and mustered on the deck to find our lifeboat group.

Here’s to a productive and safe voyage aboard the Oscar Dyson!

Survival suit
Trying on my survival suit during an Abandon Ship drill. Photo by Mackenzie Wilson

Cristina Veresan, Teacher (soon to be) at Sea, July 7, 2015

NOAA Teacher at Sea
Cristina Veresan
NOAA Ship Oscar Dyson

Date Range at Sea: July 28 — August 16, 2015

Mission: Walleye Pollock Acoustic-Trawl survey
Geographical Area of Cruise: Gulf of Alaska
Date: July 7, 2015

Introduction

Aloha from Hawai'i!
Aloha from Hawai’i!

Here in Hawai’i, surrounded by the Pacific Ocean on the world’s most remote island chain, I am very aware we live on an ocean planet. In fact, I have always been drawn to the sea, whether tide-pooling as a child, learning to SCUBA dive as a high school student, or spending a semester at sea aboard a sailing ship as a college student. In my role as a science educator I have always tried to inspire students to investigate local marine ecosystems and understand the ocean’s importance to our Earth. Thus, it is a tremendous professional honor to have been selected as a 2015 Teacher at Sea by the National Oceanic and Atmospheric Administration (NOAA).

NOAA’s Teacher at Sea Program, now in its 25th year, provides K-12 or college educators the chance to contribute to current oceanographic research aboard a NOAA vessel. Missions usually fall into three main categories: fishery surveys, hydrographic work, or physical oceanography studies. Participating teachers use this hands-on, real-world learning opportunity not only to develop classroom lessons but also to share the experience in their classrooms, schools, and communities. I am thrilled to report that I have been assigned to a fisheries cruise, a pollock survey aboard NOAA Ship Oscar Dyson. The port of call is Kodiak, Alaska, and I am especially excited about the location because it will be the 50th state I have ever visited! I have always been fascinated by the science, economics, and history of fisheries. The pollock fishery is one of the world’s largest, and these fish are also vital to the Bering Sea ecosystem. I cannot wait to learn more about pollock ecology and see how scientists assess the size and health of pollock populations and, therefore, the sustainability of the fishery.

Walleye Pollock (Gadus chalcogrammus).  photo courtesy of NOAA
Walleye Pollock (Gadus chalcogrammus). Photo courtesy of NOAA

This blog will record my time at sea aboard the Oscar Dyson, but my intent with this first entry is to introduce myself and share a little about my background in teaching. My nearly ten-year career in education has included teaching secondary science in St. Lucie County, Florida, as well as coordinating that school district’s science curriculum, instruction, and assessment as the K-12 Science Curriculum Supervisor. Since moving to Hawai’i, I have taught middle school science (grades 6-8) at Star of the Sea School and served as the school’s Assistant Principal. Working with middle school students is my passion, for I love their energy and curiosity!

Cristina Veresan loves working with middle school students
I love working with middle school students! Photo by E. Johnson

I have always valued experiential learning, whether in the lab or in the field. Here on O’ahu, I enrich my curricula with the unique natural and cultural resources our island provides. One of the projects I am most proud of was a collaboration with the Hawai’i Nature Center; together, we facilitated a yearlong STEM program investigating the effects of climate change on Hawaii’s ecosystems called From Mauka to Makai: Understanding Climate Change in the Ahupua’a. This program included a mountain (mauka) stream study, a coastal (makai) study, and a final conservation project. This place-based program encouraged environmental stewardship. To read more about my teaching, please visit my website.

Conducting a coastal study with students in Hawai'i Kai
Conducting a coastal study with students. Photo by Raphael Ritson-Williams

The ability to transition between the roles of student and teacher, often and with great enthusiasm, has facilitated my success as an educator. I consistently seek out opportunities for professional growth in order to best serve my students. My Teacher at Sea voyage will no doubt be one of those powerful learning opportunities. Doing science at sea is a unique challenge, and I am eager to join the ship’s community and contribute to our shared mission. Indeed, my next blog entry will be from aboard the Oscar Dyson, when I am immersed in the current methods and technologies of fisheries science. For now, I will concentrate on researching previous NOAA pollock surveys, packing plenty of layers to keep me warm, and preparing for this adventure.

Mahalo for reading!

The Pacific Ocean as seen from Malaekahana Beach. I will have a different view soon!
The Pacific Ocean as seen from Malaekahana Beach. I will have a different view soon!