Cary Atwood, August 1, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: August 1, 2005

Weather from the Bridge
Visibility: undetermined
Wind direction: E ( 107 degrees)
Wind speed:  12 knots
Sea wave height: 3’
Swell wave height: 0’
Sea water temperature: 14°C
Sea level pressure: 1022.2 millibars
Cloud cover: 30% Partly cloudy,cumulus

Question of the Day

Does the temperature of ocean waters change depending upon its depth?

Answer to yesterday’s question

Bilateral symmetry is the drawing of a line through an object and having it be the same on both sides as a mirror image, such as sea stars and mud stars.

Science and Technology Journal

Aside from the major science mission of the scallop survey a few other scientific investigations are taking place on the Albatross.  One such project is the CTD measurements.  C for conductivity, T for temperature and D for depth.  I will elaborate on this in tomorrow’s journal.  Another smaller project is the mapping of habitat using acoustic sounders.

Although the scallop watch crews are labeled as scientists aboard ship, with many us with our master’s degrees in a particular science specialty, only a few are fully engaged in that role for this leg. Vic Nordahl, Chief Scientist, Dvora Hart and Avis Sosa.

Vic is ultimately responsible for collecting and reporting accurate numbers of all scallops and other marine species we have documented.  The watch chiefs report the data to him, but they must audit the data before a full report is made.

Dvora, while on watch, depending upon the tow number will randomly check numbers of starfish, crabs and the weight of scallop meat and gonads.  We are collecting numeric quantities to help better determine the age and growth of scallops in different sampling areas.

Avis Sosa moonlights on these scallop survey crews during her summer vacation from teaching.  Currently she is teaching advanced placement chemistry in a large international school in Jakarta, Indonesia. She is an amazing woman with a huge supply unique life experiences from all over the world under her belt.  For the past 14 years, Avis has been working on various NOAA ships, first as a volunteer, now as a contract employee.  Over the years, she has become a source of expertise in her knowledge of marine mollusks.  While sorting through the pile, she will identify anything in it and give you not only the common name, but the scientific name as well.  Currently she is collecting specimens for the collection in the museum at the Marine Fisheries Lab. She is my role model as the quintessential independent, worldly woman!

Personal Log 

Another day of calm seas and perfect weather.  Even though I hate getting up every morning at 5 a.m., when I arrive on the fantail after breakfast, the fresh salt air and sunrises always makes the early hours worth the struggle of waking my body up.  After donning my rubber boots and “Hellies”, I take a few moments to scan the horizon, note the texture of the water, lean over the deck to watch the shape of the boat wake and breathe in the air of a brand new day.

Cary Atwood, July 31, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 31, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day 

What is bilateral symmetry?

Answer to yesterday’s question: The Hermit Crab

Science and Technology Log

As we comb through our dredge piles, intent on finding scallops, one of the most prolific creatures I notice is the Hermit Crab of the family Pagurus.  Hermit crabs are common on every coast of the United States and like many people, I am drawn to their special ability to take up residence in cast off mollusk shells. Just as we grow out of shoes when our feet grow, so must they find new homes as they age.  When seen without their shell, their abdomen is coiled, soft and very pink.  They carry their shell with them, and when threatened or attacked are able to retreat quickly for protection.  Hermit crabs are highly adapted to  carry around their permanent burden of a home because they have special appendages on their midsection segment for clinging to the spiral support of a marine snail shell. Their long antennae and large socketless eyes give them a distinct, non-threatening but whimsical  look….and it makes me want to take one home-but of course I couldn’t offer it the same kind of home it already has.

Personal Log

The six hour shifts for the scallop survey are taking its toll on my sleep needs. Every day I feel I am further behind and will never catch up.  This morning I truly did not feel awake until about 10am, even though my watch began at 6 a.m.  My daily schedule consists of the basics: eat, work, eat, relax, sleep, eat and work.  I don’t know how the crew can adjust to this kind of schedule for months on end as they go to sea.  It takes a very special person to adjust to the physical demands, let alone the demands of leaving family behind to come to sea.  However, some of the guys on board have been doing it for 20+years!

Coming to sea has a magnetic pull for some….is it the vast water and open horizons? Is it the need to assert some sort of independence? Is it the opportunity to be a part of something so much larger than one’s self?  As I speak to some of the deck hands, they are generally happy to be working for NOAA and away from the uncertainty of fishing or lobstering. In part it’s having steady work not influenced by the vagaries of what is caught at sea. These days, with the Atlantic fishery recovering, the catch is more consistent. Of the two deck hands I have come to know, both have a far away look in their eye—missing some of the action on a fishing boat, but still in love with the sea.

Cary Atwood, July 30, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 30, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

What kind of crab makes its home in an abandoned snail shell?

Answer to yesterday’s question: Lines- a word used on a ship meaning ropes; Bosun- a very old word derived from “Boat Swain”- meaning the lead fisherman; Steam- the distance to be traveled on a ship from one destination to the next; Swell- wave action –when the action is greater, the difference between the tip of the wave and the trough represents the swell.

Science and Technology Log 

In the past few days, pods of humpback whales have been sighted near our ship.  I grab my binoculars and watch their show.  They are very acrobatic whales, breaching (jumping above the water), slapping their flippers and lobtailing—meaning they dive below the surface leaving only their large tail fluke showing as they wave it in the air.  If you are lucky enough to get close to a humpback whale, you might be able to see the distinctive markings on the underside of their flukes.  These markings are used to identify individual whales. It is hard to imagine the immense size of this mammal as they reach from 36 to 52 feet in length and weigh up to 40 tons

Humpbacks can be found worldwide and in the winter they migrate south to the Caribbean. Their summer feeding grounds are the Gulf of Maine to Iceland.  Humpbacks were commercially fished almost to the brink of extinction in the 1800’s as whaling ships plied their trade all along the Atlantic coastline, making many fisherman and coastal communities very wealthy. Once they were listed on the endangered species list in 1966 it protected them from commercial harvest.  Their numbers have recovered and it is estimated that 8000-10,000 live and feed in the waters of the North Atlantic.  Seeing these whales is a truly special experience

Personal Log– a poem for humpbacks

Humpbacks
On dark waters
You rise
And reach for the sky
Your fluke
Like a signature
Tells all who are near
This is my playground
Too I have returned from the
Brink of extinction.
Atlantic waters
Give me life
Help them remember
I could have been
A ghostly memory
Of times past.
Now, I inspire awe and hope
For the future.

Cary Atwood, July 29, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 29, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day:

Define these terms used aboard the ALBATROSS IV:  lines, bosun, steam, swell

Yesterday’s answer: Pelagic means “of the sea.”  Lesser shearwaters are part of a larger group of pelagic birds who spend their entire adult lives out in the open ocean.  They rest, sleep, feed and mate on the water.  The only time they return to land is to lay a brood of eggs in the same geographic location where they were born and fledged before they left for the open waters of adulthood.

Science and Technology Log  

Today’s topic is ALBATROSS IV Geography: a mini guide to the important places on the ship.

Fantail—Another name for the stern of the ship.  Since this is a ship on which scientific missions are completed, this section of the boat has space to accommodate the gantry and boom, which pulls up the dredge, as well as a full wet lab to process scallops and other groundfish species. Wet Lab—The area in the fantail with touch computer screens and magnetically activated measuring boards and scales to document scallop survey data. Bridge—The enclosed area where navigation and sighting is done by the captain and crewmembers.  A full complement of computers is used to assess position, direction and locations of ships and buoys.

Computer Room—Located on the middle deck, it contains computers with e-mail access, FSCS computers and computer servers.  In every main area of the ship, a computer monitor with a closed circuit view of the fantail can be seen.  This is so the scientists, engineers, and captain can know the status of the fantail area at all times. Galley—Another name for the kitchen area.  Food for the crew is prepared here by Jerome Nelson and served buffet style by Keith.  The menu is posted daily and always includes a wide assortment of meats, breads and vegetables, as well as that all-important treat: ice cream! Hurricane Deck—AKA “Steel Beach”- a small deck above the fantail used for sunbathing and relaxation. Engine Room—Noisy room down in the bulkhead where the engineering crew keeps the two diesel engines running smoothly. Boom and Gantry—Found on the aft deck (otherwise known as the fantail), these are the all-essential components needed to tow the eight-foot net.  The gantry is the large metal A-frame and the boom is the moveable arm or crane, which uses large cables and a pulley system to bring up the net each time. Cabin or stateroom—Sleeping quarters for two or three persons.  It has portholes, bunks and a shared bathroom.

Personal Log 

Today the ocean waters have calmed a bit.  Thursday’s wave action gave new meaning to the term “rock the boat,” which is exactly what we did.  The swells, up to three feet in height, were the distant result of Tropical Storm Franklin as it made its way up into the waters of New England. A good safety rule we learned during our brief introductory meeting was to make sure you gave “one hand to the boat” at all times.  This was especially good advice as my footing placement became increasingly unpredictable.  Ships are built to withstand the high seas, and fortunately, there are plenty of places to put a firm grip as one makes their way around the ship.

Cary Atwood, July 28, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 28, 2005

Weather from the Bridge
Visibility: undetermined
Wind direction: SSW (217 degrees)
Wind speed:  11 knots
Sea wave height: 0.4’
Swell wave height: 1.4’
Seawater temperature: 18°C
Sea level pressure: 1013.3 millibars
Cloud cover: Obscure, Fog, Haze, Dust

Question of the Day: 

Lesser Shearwaters are common pelagic birds we often sea in great numbers near our ship. What does pelagic mean?

Answer to yesterday’s question: Astropectin species (sea stars) prey primarily on young scallops.  Asteria vulgaris, another kind of sea star will prey upon adult scallops by wrapping themselves around the bivalves and tiring out their muscle.  Once that is done, they will use their mouth to suck out and make a tasty meal of the scallop’s soft, fleshy parts.  Other scallop predators include crabs, lobsters, and some flounder species that eat small scallops.  Wolf fish eat scallops as well.

Science and Technology Log 

I am so pleased to have Dr. Dvora Hart on our cruise.  She has given me a great deal of context regarding the scallop survey conducted aboard the Albatross IV.  As an official operations research analyst, Dr. Hart is responsible for taking the raw data from the yearly scallop surveys and creating mathematical models of past and current surveys and projecting those numbers for future management decisions of the scallop fishery.  Because the fishery is worth about $300 million annually to fishermen, and more than a billion dollars in retail, it is as valuable a fishery resource as the lobster industry.  Together they represent the two most valuable fisheries on the New England coast.

Dr. Hart has worked for the Northeast Fisheries Science Center for over six years now.  Having a strong math and statistics background has put her in a unique position to develop tools and models that help biologists understand the distribution of surf invertebrates. Every three years, stock assessments are reported to local and regional fishery boards with recommendations for the management of scallops.  Needless to say, the messenger is not always a popular person, especially when areas show diminishing populations and should be closed. However, armed with so much longitudinal data can be a benefit, too, in that areas in the past that have been overfished, if left alone, can, over the course of time, recover.  In order to make the scallop fishery a sustainable industry for all who depend on it for their livelihood, a person like Dvora has pioneered the mathematical modeling on scallops’ fishery management.  Her devotion and passion to this endeavor is clear, and one hopes that these management recommendations will enable fishermen to sustain their livelihood for years to come.

Cary Atwood, July 27, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 27, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day: What might be the major predators of Atlantic scallops?

Yesterday’s Answer 

According to Dr. Dvora Hart, probably the world’s expert on Atlantic scallops, who just happens to be on our cruise and is a part of my watch crew, the elements listed below are essential to the survival of these scallops

  • Water temperatures in the range of 0 degrees Celsius –17 Celsius.  Above this point they will die.
  • Firm sand or pebbly gravel needed for attachment as it grows
  • A good supply of phytoplankton and similar sized micro and protozoa and diatoms and detritus to feed upon

Science and Technology Log 

This morning after my watch, I interviewed Captain Michael Abbott who is captaining the ALBATROSS during this cruise. We stood up on the bridge while he demonstrated some of the navigation equipment.  I like spending time on the bridge because the open view from the bow is fabulous, and there are rarely any people up there.  I’ll write about navigation in another entry.

I talked with him about his career in the NOAA officer corps.  He joined the Corp about 21 years ago making it a career when he heard about it on his college campus.  At that time he was completing a degree in geology and hydrology at the University of New Hampshire.  After a three month officer training at the Merchant Marine Academy in King’s Point, New York he became a uniformed officer in the NOAA Corps.  It is the smallest branch of the uniformed non-military service, with less than 300 officers operating ships and aircraft for scientific research purposes.

According to Captain Abbott, his major responsibilities aboard the ALBATROSS IV are the safety of the crew, a successful completion of the scallop survey mission and making the cruise enjoyable for all on board. The crew includes 5 uniformed NOAA officers, scientists and ship crew–all together, about 25 people. Being at sea gives Mike great pleasure in that he is able to contribute to NOAA’s mission and play an active part in stewardship towards the environment.

Personal Log 

A poem today…

Ocean water Glassy smooth
Rippling velvet
Sunset shimmering
Fog rainbows dancing
Ship rocking
Sun glimmering
Shearwaters circling
Teacher adjusting
To daily rhythms
Of the cruise

Cary Atwood, July 26, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 26, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day 

What do scallops need in order to survive within their habitat?

Yesterday’s Answer 

The scientific name of the Atlantic Sea Scallop is Lacopectin magellanicus.  Lacopectin means “smooth scallop.

Science and Technology Log 

The real work of the ALBATROSS IV mission is accomplished during the four six-hour shifts with a crew of six workers each.  On my watch, they are Sean, watch chief, Bill, Avis, Dvora, Noelle and myself. Working as a team, we accomplish great things in each tow, which takes about 30 minutes to process.  Here’s how it unfolds.  The eight-foot dredge basket is specially designed to capture all sizes and ages of scallops for research.  It is dredged from a depth up to 100 meters to the surface for a fifteen-minute time period.

After each tow comes out of the water, fishermen release it from the cable and it’s deposited on the fantail, also known as the back deck of the ship.  The fantail is a huge open area complete with a non-skid surface–very important when the boat is on an intense rock and roll session. With our “Helly’s” on (the yellow and orange storm gear you see in the pictures) and tall rubber boots, I take a picture of the mound, along with Bill, who holds up a whiteboard indicating the catch number, the tow and the strata (level) where we do the dredging. Once that is done, orange baskets, white buckets and kneepads are hauled to it. On our hands and knees we look for what might seem like buried treasure; sifting through the debris of the sea.  We toss scallops and many varieties of fish, into the baskets until we have combed through every inch of them.  Once the sort is done, we all move into the covered lab area for a variety of assessments, including the weight and length measurements of each scallop, as well as any ground fish that are caught.  Even though some of the work is manual, computers play a very important role in accurate capture of the data. One instrument we use is a long, flatbed magnetically charged scanner. Once we put a scallop shell on the bed and hold a magnetized wand against it, it reads out the measurement onto a touch computer screen.  Computers such as this one have relieved some of the tedium of the work, making it more accurate and faster.  The same is done with fish, and depending upon the tow, we will keep crabs and starfish out.

All of this data is uploaded into the FSCS – Fisheries Scientific Computer System which compiles the data from the survey.  This valuable data is used to assess populations and biomass for the scallop fishery and then make management decisions for present and future fishery use. The watch crews and scientists love it because it has saved so much time, and compilation of the data is considerably easier and less time consuming in the long run.

Personal Log 

Sleep of any length of time is longed for, but never received.  Due to our 6 hour on, 6 hour off shifts, at best we can manage 5 hours.  Today I am feeling very zombie like as my body adjusts to this schedule. I rarely see John, my other TAS compadre since he works opposing shifts from mine.  When we do meet, we share notes and commiserate about the work and our need for sleep!

One of my favorite haunts on board in my free time is the bridge and the upper bow.  It is a quiet, calm place with great views–and a really strong pair of binoculars and field guides. The ever shifting texture of the water always captures my attention when I am outside; from the glossy velvet of early mornings, thick fog during the day, complete with fog rainbows!-and the ethereal brightness of sunset through the fog.

Another constant is the “ocean motion”.  We are in a constant state of rocking–at times delicate and other times, the swells are deep and we will roll with them.  I am very glad I have an ear patch to mitigate the possibility of seasickness….now I can just enjoy the ride!

Cary Atwood, July 25, 2005

NOAA Teacher at Sea
Cary Atwood
Onboard NOAA Ship Albatross IV
July 25 – August 5, 2005

Mission: Sea scallop survey
Geographical Area: New England
Date: July 25, 2005

Weather from the Bridge
Visibility: Clear
Wind direction: NNW (230)
Wind speed: 15 knots
Sea wave height: unknown
Swell wave height: unknown
Seawater temperature: 11.4° C
Sea level pressure: 1012 millibars
Cloud cover: Dense Fog

Question of the Day 

What is the scientific name of the Atlantic sea scallop, and what does the Latin name mean?

This question will be answered in tomorrow’s log.

Science and Technology Log 

Day one: the adventure begins! I arrived last night from Boston into Wood’s Hole–what a cool respite from the heat of western Colorado! A short walk later, I was in front of the ALBATROSS IV, the ship that would be my home for the next 11 days.  Tony, the lead fisherman, welcomed me aboard and showed me to my stateroom.  Soon after, Kris, the watch chief for our other work shift, and Noelle, who is working on her master’s thesis showed up. I took the remaining top bunk and moved my gear in.  Our room has two portholes. The most exciting porthole is the one in the shower stall; my eyes are almost dead even with the water line outside….it almost feels like I live in an aquarium!

The mission of the ship on this cruise is the sampling of Atlantic sea scallops.  Why are scallops being sampled?  The scientific work revolves around the close monitoring of scallop populations up and down the New England coastline from Cape Hatteras in the south, to the outer extremes of Georges Bank to the north.

Over the past 30 years, unregulated commercial fishing of scallops has had a huge negative impact on scallop populations.  Because this area holds the largest wild scallop fishery in the world, it has great economic importance not only to the fishermen who dredge to make their living, but also to the economies up and down the coastline.  Historically, commercial fishing could be done by anyone who had a seaworthy vessel and the ability to dredge. Prior to the early 1970’s not much data had been gathered about numbers and locations of scallops, hence the need for surveys to acquire data and impose limits to prevent total decimation of this species.  In my next entry I will explain more about the nitty gritty work that must be accomplished each day by watch crews.

Personal Log 

Old ship sits in port
hiding new technology beneath its decks
Salt spray and seagull call
Grey clapboard houses rest close to water’s edge
As whitecaps signal a change in weather
We are on our way!

Until next time,
Ms. Atwood