Bhavna Rawal: Net Tow, Dive, Buoy Maintenance and Data Collection, August 8, 2012

NOAA Teacher at sea
Bhavna Rawal
On Board the R/V Walton Smith
Aug 6 – 10, 2012

Mission: Bimonthly Regional Survey, South Florida
Geographic area: Gulf of Mexico
Date: August 8, 2012

.
Weather Data from the Bridge:
Station: 21.5
Time: 1.43 GMT
Longitude: 21 23 933
Latitude: 24 29 057
Wind direction: East of South east
Wind speed: 18 knots
Sea wave height: 2-3 ft
Clouds: partial

Science and Technology Log:

Yesterday, I learned about the CTD and the vast ocean life. Today I learned about a new testing called net tow, and how it is necessary to do, and how it is done.

What is Net Tow? The scientist team in the ship uses a net to collect sargassum (a type of sea weed) which is towed alongside the ship at the surface of the predetermined station.

A net to collect sargassum (a type of sea weed)
A net to collect sargassum (a type of sea weed)

How did we perform the task? We dropped the net which is made of nylon mess, 335 microns which collects zooplanktons in the ocean. We left this net in the ocean for 30 minutes to float on the surface of the ocean and collects samples. During this time the ship drives in large circles. After 30 minutes, we (the science team) took the net out of the ocean. We separated sargassum species, sea weeds and other animals from the net. We washed them with water, then classified and measured the volume of it by water displacement. Once we measure the volume, we threw them back into the ocean.

Dropped the net which collects zooplanktons in the ocean
Dropped the net which collects zooplanktons in the ocean
Types of sargassum
Types of sargassum
Measured the volume of it by water displacement
Measured the volume of it by water displacement
Threw them back into the ocean
Threw them back into the ocean
Record data

Types of Sargassum and Plankton:  There are two types of sargassum; ones that float, and the other ones that attach themselves to the bottom of the ocean. There are two types of floating sargassum and many types attached to bottom of the ocean.

Also there are two types of plankton; Zooplankton and phytoplankton. As you all know phytoplankton are single celled organisms, or plants that make their own food (photosynthesis). They are the main pillar of the food chain. It can be collected in a coastal area where there is shallow and cloudy water along the coastal side. The phytoplankton net is small compared to the zooplankton and is about 64 microns (small mess).

Zooplanktons are more complex than phytoplankton, one level higher in their food chain. They are larva, fish, crabs etc. they eat the phytoplankton. The net that is made to catch zooplankton, is about 335 microns. Today, we used the net to collect zooplankton.

Why Net Tow is necessary: Net tow provides information about habitats because tons of animals live in the sargassum. It is a free floating ecosystem. Scientists are interested in the abundance of sargassum and the different kinds of animals, such as larva, fishes, crabs, etc. Many scientists are interested in the zooplankton community structures too.

Dive, Buoy and other data collection equipments: Two science team members prepared for diving; which means that they wore scuba masks, oxygen tanks and other equipment. They took a little boat out from the ship and went to the buoy station. They took the whole buoyancy and other data collection instruments with them. The two instruments were the Acoustic Doppler (ADCP) and the micro cat which was attached to the buoy. The micro cat measures salinity and temperature on profile of currents, and the ADCP measures currents of the ocean. Both instruments collect many data over the period. The reason for bringing them back, is to recover data in a Miami lab and the maintenance of the buoy.

The micro cat measures salinity and temperature on profile of currents
The micro cat measures salinity and temperature on profile of currents
Acoustic Doppler (ADCP) measures currents of the ocean
Acoustic Doppler (ADCP) measures currents of the ocean

Personal Log:

My first day on the ship was very exciting and nerve-racking at the same time. I had to take medicine to prevent me from being seasick. This medicine made me drowsy, which helped me to go to sleep throughout the night. The small bunk bed and the noise from the moving ship did not matter to me. I woke up in the morning, and got ready with my favorite ‘I love science’ t-shirt on. I took breakfast and immediately went to meet with my science team to help them out for the CTD and net tow stations. Today, I felt  like a pro compared to yesterday. It was a bit confusing during the first day, but it was very easy today.

I started helping lowering the CTD in the ocean. Now I know when to use the lines for the CTD, water sampling for different kinds of testing, how to net tow and do the sargassum classification. I even know how to record the data.

When we have a station call from the bridge, then we work as a team and perform our daily CTD, water testing or net tow. But during the free time, we play card games and talk. Today was fun and definitely action packed. Two science team members dove into the ocean and brought the buoy back. I also saw a fire drill.

Nelson (the chief scientist) took me to see TGF or called the flow through station which is attached inside the bottom of the ship. This instrument measures temperature, salinity, chlorophyll, CDOM etc. Nelson explained the importance of this machine. I was very surprised by the precise measurements of this machine. Several hours later, I went to the captain’s chamber, also called the bridge. I learned how to steer the boat, and I was very excited and more than happy to sit on the captain’s chair and steer.

Excited to sit on the captain’s chair and steer the R/V Walton Smith

We have also seen groups of dolphins chasing our ship and making a show for us. We also saw flying fishes. In the evening, around 8 o’clock after dinner, I saw the beautiful colorful sunset from the ship. I took many videos and pictures and I can’t wait to process it and see my pictures.

Saw groups of dolphins ahead of ship

Around 10 o’clock in the night, it was net tow time again. We caught about 65 moon jelly fishes in the net and measured their volumes. Nelson also deployed a drifter in the ocean.

See moon jelly fish in my hand

Today was very fun and a great learning opportunity for me, and don’t forget the dolphins, they really made my day too!

Question of the Day:
How do you measure volume of solid (sea grass)?

New Word:
Sargassum

Something to Think About:
Why scientists use different instruments such as CTD as well as TFG to measuretemperature, salinity, chlorophyll, CDOM etc?

Challenge Yourself:
Why abundance of sargassum, types of animals and data collection is important in ocean?

Did you Know?
The two instruments were the Acoustic Doppler (ADCP) and the micro cat which was attached to the buoy. The micro cat measures salinity and temperature on profile of currents, which means it measures at surface of the ocean, middle of the ocean and bottom layer of the ocean too.

Animals Seen Today:
Five groups of dolphins
Seven flying fishes
Sixty five big moon jelly fishes
Two big crabs

Bhavna Rawal: Conductivity, Temperature, Depth (CTD) and Water Testing, August 7, 2012

NOAA Teacher at Sea
Bhavna Rawal
Aboard the R/V Walton Smith
August 6 – 10, 2012

Mission: Bimonthly Regional Survey, South Florida
Geographic area: Gulf of Mexico
Date: Aug 7, 2012

Weather Data from the Bridge:
Station: 6.5
Time: 21.36 GMT
Longitude: 080 17’ 184
Latitude: 250 3’ 088
Water temp: 29.930 oC
Wind direction: East
Wind speed: 8 knots
Sea wave height: 3 ft

Science and Technology log:

Hello students! We know how to do water testing in our lab class using the testing kit. Today, I am going to explain to you the way ocean water is sampled and tested in the South Florida coastline.

Our 5 day cruise consists of over 80 stations along the Atlantic and Gulf coast of Florida.  At each station we take water samples, and at about 20 of the stations we tow nets to catch fish, seaweed or plankton and sometimes scuba dive to recover the instruments mounted on the seafloor.

Our journey begins at station #2 at Dixie shoal, which is near Miami; you can see this on the South Florida bimonthly Hydrographic survey map below (see fig).

South Florida Bimothly Hydrographic Survey map
South Florida Bimothly Hydrographic Survey map

At each station we performed CTD (conductivity, temperature and depth) operations. The CTD is a special instrument to measure salinity, temperature, light, chlorophyll and the depth of water in the ocean. It is an electronic instrument mounted on a large metal cage that also contains bottles to collect samples.  These bottles are called niskin bottles and every oceanographer uses them.  They are made of PVC and are specially designed to close instantaneously by activation from the computer inside the ship. Collecting water samples at various depths of the ocean is important in order to verify in the lab that the instruments are working properly. Each bottle has an opening valve at the bottom and top to take in the seawater. The top and bottom covers are operated by a control system. Once a certain depth is reached, the person sitting at the control system triggers and it closes the bottles. You can control each bottles through this system to get a pure water sample from different depths. For example, when the ocean floor is 100 meters deep, water is sampled from the surface, at 50 meters deep, the very bottom.

Hard hat and life vest on and ready for CTD
Hard hat and life vest on and ready for CTD

The CTD instrument is very large, and is operated by a hydraulic system to raise it, to place it and lower down into the ocean. Rachel (another fellow member) and I were the chemistry team; we wore hard hats and life vests while we guided the CTD in and out of the water. This is always a job for at least two people.

Guiding CTD in and out of water
Guiding CTD in and out of water

The team usually closes several bottles at the bottom of the ocean, in the middle layer and surface of the ocean. We closed the bottles in the middle layer because the characteristics of the water are different from at the bottom and the surface.  Remember, the ocean water is not all the same throughout, at different depths and locations it has different chemical characteristics. We closed two bottles per layer, just in case something happened with one bottle (it is not opened properly, for example) then the other bottle can be used.

Taking water sample out of CTD bottles
Taking water sample out of CTD bottles

Rachel and I took water samples from the CTD bottles and used them in the lab to conduct experiments. Before I explain the analysis, I want to explain to you the importance of it, and how a “dead zone” can happen. Remember phytoplankton need water, CO2, light and nutrients to live and survive. The more nutrients, the more phytoplankton can live in water. As you all know, phytoplankton are at the base of the food chain. They convert the sun’s energy into food. Too many nutrients mean too much phytoplankton.

  1. If certain species of phytoplankton increase, it increases the chance of a harmful algal bloom. Too much of one kind of plankton called the dinoflagellates can release toxins into the water which harms the fish and other ocean life and it can even cause people to feel like they have a cold if they swim in the water that has those plankton.
  2. Large amounts of plankton die and fall to the sea floor, where bacteria decompose the phytoplankton. Bacteria use available oxygen in water. The lack of oxygen causes fishes and other animals die. The zone becomes ‘the dead zone’.
    We prepare the sample for nutrient analysis to measure nutrients such as nitrate, nitrite, phosphate, ammonium and silicate in the water.
    We also prepare the sample for chlorophyll analysis. In the lab, we filter the phytoplankton out of the water. Phytoplankton contains special cells that photosynthesize (chloroplasts) which are made of chlorophyll. If we know the amount of chlorophyll, we can estimate the amount of phytoplankton in a given area of the ocean.
filtering the phytoplankton out of the water
Filtering the phytoplankton out of the water
Preparing the sample for nutrient analysis
Preparing the sample for nutrient analysis

Phytoplankton needs carbon dioxide to grow. Carbon dioxide analysis is useful because it provides an estimate of total carbon dioxide in the ocean.  It is also important in understanding the effects of climate change on the ocean.  If you increase the amount of CO2 in the atmosphere (like when you drive cars), it enters into the ocean.  If you think about a can of soda it has a lot of CO2 dissolved into it to make it fizzy, and it also tastes kind of acidic.  This is similar to when CO2 dissolves into seawater.  When the ocean becomes more acidic, the shells of animals become weaker or the animals cannot produce the shells at all.

Colored dissolved organic matter (CDOM) analysis informs us where this water comes from.  The dissolved organic matter comes from decomposing plants, and some of these dead plants entered the water through rivers.  You can tell for example that water came from the Mississippi River because of the CDOM signal.  You can then follow its circulation through the ocean all the way to the Atlantic.

From the CTD instrument, we measured temperature, light, salinity, oxygen etc. and graphed it on a computer (see figure) to analyze it.

Measured temperature, light, salinity, oxygen etc. and graphed it
Measured temperature, light, salinity, oxygen etc. and graphed it

Generally, I see that ocean surface water has high temperature but low salinity, low chlorophyll, and low oxygen. As we go deeper into the sea (middle layer), temperatures decrease, dissolved oxygen increases, chlorophyll and salinity increases. At the bottom layer, chlorophyll, oxygen, temp and salinity decrease.

Personal Log:

I arrived on the ship Sunday evening and met with other people on the team, tried to find out what we are going to do, how to set up, etc. Asked so many questions… I explored my room, the kitchen, the laundry, the science lab, the equipment, etc. Nelson (the chief scientist) gave me a really informative tour about the ship, its instruments and operations. He showed the CTD m/c, the drifter, the wet lab etc. He also gave me a tour of a very important instrument called the “flow-through station” which is attached to the bottom of the ship. This instrument measures temp, salinity, chlorophyll, CDOM, when the boat drives straight through a station without stopping. I was really stunned by how precise, the measurements taken by this instrument are.

flow-through station
Flow-through station

The next morning, Nelson explained that if we have enough tide the ship would leave. We had to wait a bit. As soon as we got the perfect tide and weather, R/V Walton Smith took off and I said ‘bye bye’ to Miami downtown.

‘bye bye’ to Miami downtown
‘Bye bye’ to Miami downtown

I learn so much every day in this scientific expedition. I saw not only real life science going on, but efficient communication among crew members. There are many types of crew members on the ship: navigation, technology, engineering, and scientific. Chief scientists make plans on each station and the types of testing. This plan is very well communicated with the navigation crew who is responsible for driving the ship and taking it to that station safely. The technology crew is responsible for efficient inner working of each scientific instrument. 10 minutes before we arrive on a station, the ship captain (from navigation crew) announces and informs the scientific team and technology team in the middle level via radio. So, the scientific team prepares and gets their instruments ready when the station arrives. I saw efficient communication and collaboration between all teams. Without this, this expedition would not be completed successfully.
I have also seen that safety is the first priority on this oceanic ship. When any crew member works in a middle deck such as CTD, Net Tow etc, they have to wear a hard hat and life jacket. People are always in closed toe shoes. It is required for any first timer on the boat to watch a safety video outlining safe science and emergency protocol. People in this ship are very friendly. They are very understanding about my first time at sea, as I was seasick during my first day. I am very fortunate to be a part of this team.

The food on the ship is delicious. Melissa, the chef prepares hot served breakfast, lunch and dinner for us. Her deserts are very delicious, and I think I am going to have to exercise more once I come back to reduce the extra weight gained from eating her delicious creations!

Watch TV, play cards and have dinner together
Watch TV, play cards and have dinner together

My shift is from 5 a.m. to 5 p.m. and I work with Rachel and Grant. After working long hours, we watch TV, play cards and have dinner together. I am learning and enjoying this expedition on the ship Research Vessel Walton Smith.

Question of the Day:

Why we do water testing in different areas of river and ocean?

New word:

Colored dissolved organic matter (CDOM)

Something to think about:

How to prevent dead zone in an ocean?

Animals Seen Today:
Two trigger fishes
Three Moon Jelly fishes
Five Crabs

Did You Know?
In ship, ropes called lines, kitchen called galley, the place where you drive your ship is called bridge or wheel house.

Bhavna Rawal: Teacher from Houston, Texas to collect oceanographic data in South Florida! August 6, 2012

NOAA Teacher at Sea
Bhavna Rawal
Very Soon to be board the R/V Walton Smith
August 6 – 10, 2012

Mission: Bimonthly Regional Survey/ South Florida Program
Geographic area of cruise: Gulf of Mexico
Date: Aug 6, 2012

Introductory Log

Greetings from Houston, TX! I have been a science teacher in Northbrook High School for the last six years and I am going to be a STEM (Science, Technology, Engineering, and Math) Department Chair at the Energized for the STEM academy starting this year. Northbrook High School is in an urban area in west Houston. The school has 1956 students, with 82% Hispanic, 8% black, 7% white, and 3% Asian. Over 80% of the students are in the Free Lunch Program. There are 140 teachers in our school.

I have worked as a physics, STEM and environmental teacher at Northbrook for six years. I am in a curriculum committee and district improvement team. I help with the professional development of the other teachers in our district. I have coached, co-coached and sponsored numerous after-school activities including the green club, and the MIT InvenTeam club. I also organize a community open house every year. As a school science teacher leader, my students’ teams and teachers’ team have done several STEM projects in energy, environmental and oceanic science.

Energy Projects: I used to teach the energy unit by helping students to build electricity circuits in a house designed and made from a foam board for my students to learn the whole unit. But my love of saving energy and the environment inspired me to make the green club students to build the alternative energy house, write and receive the BP energy grant and help my students to receive the National Energy Education Development award in 2008. I also like to travel and do research and bring my experiences back to my classroom. I’ve traveled all over Europe to explore alternative energy and mass transit in 2009 as a Fund for Teachers’ fellow. After coming back from Europe, my student’s team built the future Houston Energy City and participated in city-wide competitions. I love to organize open houses every year in my school and showcase our projects to our teachers, staff, administrators and community. I have helped them perform several energy activities such as the energy audit, energy challenge, and solar cars, wind turbines, recycling program, share a car program, etc. under USDA grant that I have received for three consecutive years.  Under this grant, I have collaborated with my nearest community college and university programs to take students to various field trips and helped students to receive scholarships. My students also received second place in the energy competition in our district schools.

Alternative energy house project
Green Club students

One of my best projects is the invention project called the energy efficient cooling blanket sponsored by the Lemelson MIT program.  We zeroed in on the idea of an “energy efficient cooling blanket”. It was simple, but highly challenging, and would require real technical breakthroughs to actually succeed. I inspired and recruited my students to initiate this project. After we submitted the final proposal, our project was one of 14 finalists selected nationwide to receive the grant. Since the award, I assembled and inspired a volunteer team of students to implement this project. We gelled as a team and worked hard. Our prototype took shape! It was fun and exciting to watch, participate, and guide. I resolved logistical issues with the team, participated in brainstorming, and provided technical guidance and access to experts. In June 2011, our team showcased a prototype of our invention in EurekaFest at MIT!

NHS Lemelson-MIT IntevenTeam

Environmental projects and activities: The science class and green club have done water quality projects with EPA. As an Eye in the sky II ambassador I was fortunate to encourage students to learn and use advanced technology applications to solve community service projects such as Houston’s air pollution for the last ten years using Spatial Technology. With my guidance, my students selected, designed and developed community projects. I work hard to provide my students with the resources that will help them successfully complete their community projects and accomplish their own personal goals.

I was selected in a Toyota International teacher program to Costa Rica in 2011. During my trip, I analyzed and compared plants and animals from cloud forest, rainforest and dry Pacific forests in Costa Rica. I documented my observations using pictures, videos, and artifacts. I brought back information packets, photos, handouts, videos and personal experiences that were shared with my students, fellow teachers, administration and community. I collaborated with my Toyota program cohort group/alumni. I built strong relationships with the people I came in contact with in Costa Rica so that I could bring their first-person voices into my classroom. Students worked on a project called Biodiversity analysis and comparison within Clear Creek, Caney Creek and Mill Creek bayou. The rationale behind this project is to instruct students in field methodologies and introduce students to the concepts of species biodiversity and the biodiversity of interactions. The objectives of this project are: Students will be able to quantitatively assess and compare biodiversity of three distinct plant and animal communities within the three bayous and students will be able to distinguish the concepts of biodiversity of species and biodiversity of tropic interactions. In preparation, my students review the project work that I have performed in Costa Rica, analyze the data, and present comparative study with conclusions. When they are prepped, the students undertake the project in their chosen location and calculate biodiversity of each community in terms of species/area.

Biodiversity study with the Toyota Teachers International group

Recently I have participated in the 2012 Japan-U.S. teacher exchange program for education for sustainable development (ESD). This program was from the Japan Fulbright fund. What I learned during this program was to enrich and expand my school program. I have explored ESD resources and visited to ESD-focused schools. I experienced the Japanese culture and have visited cultural sites. I heard different viewpoints of educators from Japan and the U.S. by attending a joint conference between the Japanese and U.S. teachers. Since it is a collaborative project, it offers students the opportunity to increase their international awareness of ESD and to expand communication beyond our community. This participation allowed me to connect lessons learned from Europe, Central America, the United States, and Japan for educational experiences for students to help them envision the future through a global perspective.

U.S.-Japan ESD group

This summer, I was also selected by Fund for Teacher fellowship which is a self-designed learning odyssey to research the wealth of biodiversity pervasive in Costa Rica’s various biomes to create a unit of study that helps students grasp abstract concepts associated with sustainability and understand the implications of human activity on the environment. After pursuing scientific data, participating in seminars, volunteering with community organizations and observing best practices, I will return to my classrooms as leading learners to inspire my students and school communities.

Soil testing in Corcovado national park, Costa Rica

I am very excited to be a part of this cruise (WS1212), R/V Walton Smith scientific team which is from NOAA and the University of Miami.  I will learn, starting from collecting water samples to various scientific testing, documentation, regular routines and communication among team members and professional societies.