Amanda Dice: Using Light for Survival, September 13, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 13, 2017

Weather Data: Rainy, 76 F

Baltimore, MD

Science and Technology Log

Now that I am back home, I have some time to think about the variety of animals I saw on the cruise and do a little more research about them. Many of the animals we caught in our net have the ability to light up. This adaptation is known as bioluminescence. Different species use bioluminescence in different ways to help them survive.

 

Myctophids are a type of fish also known as a lantern fish. These small fish can occupy the same habitat as juvenile pollock, and we caught several of them at our sampling stations. I got a chance to look at them closely and I could see small spots, called photophores, along the sides of their bodies. In dark waters, these spots have bioluminescent properties. Lantern fish can control when to light them up and how bright the spots will glow.

 

There are many different species of lantern fish. Scientists have learned that each species has a unique pattern of bioluminescent photophores along the sides of their bodies. For this reason, it is believed that lantern fish use their bioluminescent properties to help them find a mate.

myctophid
The photophores can be seen as white spots on this lantern fish. Image courtesy of NOAA.

Lantern fish also have bioluminescent areas on the underside of their bodies. This adaptation helps them achieve what is known as counter-illumination. In the ocean, a predator can be lurking in the dark waters below its prey. Since many things feed on lantern fish, it is important for them to have a way to camouflage into the environment. When a predator looks up, during the day, a fish that is lit up on the bottom will blend in with the lighter waters above it, making it hard to see.

counterillumination 2
The camouflaging effect of counter-illumination can be seen when this bioluminescent fish lights up its underside. Image courtesy of the Smithsonian.

Lots of animals use this technique to help them hide from predators, including squid. We pulled in many small squid in with our samples that had patterns of photophores on them. Depending on the species, squid also use bioluminescence to attract mates and to confuse predators.

squid NOAA 2
The pattern of lighted photophores can be seen on this squid. Image courtesy of NOAA.

In addition to fish and crustaceans, we also pulled in a variety of jellyfish. Jellyfish also have bioluminescence characteristics. Many jellyfish use light as a way to protect themselves from predators. When a jellyfish is threatened by a predator, it flashes in a rapid pattern. This signals other fish nearby that it is being hunted. This can alert larger predators, who may be hunting the predator of the jellyfish. The larger predator will then swoop in after the jellyfish’s predator, allowing the jellyfish to escape!

Jellyfish NOAA
Many jellyfish use bioluminescence to protect themselves from predators. Image courtesy of NOAA.

Personal log

I have been home for over a week and I think I finally have my land legs back again. Looking back on the experience, there were so many little surprises that came with living onboard a ship. One thing I noticed is that I got much better at walking around the longer I was there. I learned to always have one hand available to grab a railing or brace myself during any sudden movements. However, I never quite mastered getting a decent workout in on the treadmill! Another surprise is how relaxing the rocking of the ship could be when I laid down. I thought the movement would be distracting, but it actually helped me drift off to sleep!

Did you know?

There are many superstitions surrounding life on a ship. It is considered bad luck to have bananas on board and whistling is discouraged. Whistling onboard a ship is thought to bring on wind and storms!

 

Amanda Dice: From Fin to Wing, September 1, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

IMG_1639
We have made it around Kodiak Island and will dock in Kodiak tomorrow morning.

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: September 1, 2017

Weather Data: 12 C, sunny

Latitude: 57 40.9 N, Longitude: 151 37.2 W

 

 

Science and Technology Log

In addition to NOAA’s juvenile walleye pollock survey, this leg of voyage is also hosting a seabird survey. The United States Fish and Wildlife Service (USFWS) sent a scientist aboard Oscar Dyson to identify and record bird species as the boat travels from one sampling station to the next. To do this, a bird observation station has been set up on the port side (left hand side) of the bridge. This is a good spot to get a clear view of the water and sky ahead of the boat and to the port side.

IMG_1613
Jessica “the bird lady” keeps a sharp eye out for birds from her station on the bridge.

Not every bird that is seen from the bridge is included. There are some guidelines that must be followed in order to collect data that has scientific validity. One of the major guidelines is that the ship should be moving at a consistent speed for each of the observation periods. If a scientist were to observe birds at a slower speed, he or she might end up recording more species because there is more time to look for and identify then. If a scientist were to observe birds at a faster speed, he or she might end up recording fewer species because there is less time to look for them and identify them.

IMG_1074
A northern fulmar soars alongside the ship.

It is difficult to correctly identify birds at a distance further than 300 meters away. It is also much more likely that a bird will be identified correctly if it closer than if it is further away. In order to account for differences in how accurately a bird can be identified, scientists have set up a system to put the data collected into different categories. First of all, only birds that are 300 meters away or closer are counted and identified. Birds that are seen between 0 – 50 meters away are considered in “Bin 1” and can be identified with the most accuracy. Bin 2 is 50 – 100 meters away, Bin 3 is 100 – 200 meters away, and Bin 4 is 200 -300 meters away. The further away a bird is, the greater the chance that it will not be identified correctly or missed altogether.

IMG_1608
This diagram shows how birds are categorized into bins depending on how far away they are when they are spotted.

Some of the common birds seen on this survey in the Gulf of Alaska include northern fulmars, auklets, shearwaters, black-footed albatross, tufted and horned puffins, storm petrels, kittiwakes, and common murres. Some of these birds, like the fulmars and albatross like to hang around the boat and look for an easy meal from the fishing net. This can make it difficult to avoid counting the same bird more than once. Adjustments are made by the scientist to prevent an overestimation in the number of birds recorded.

IMG_1073
A pair of albatross looks for food off of the starboard (right) side of the ship.

We have also seen some very unexpected bird species. There was a trio of peregrine falcons that landed on the ship and traveled with us for a day. Some of the crew on the bridge saw one of them catch a smaller bird and fly off with it! There was also a masked booby that spent a few hours cruising along with us. Masked boobies are native to the waters much further south and have never been seen in the Gulf of Alaska!

30aug2017_2
A masked booby is far from home. Photo by Jessica Stocking
31aug2017_2
One of three peregrine falcons spends the day perching on different spots of the Oscar Dyson. Photo by Jessica Stocking

Other data about the weather conditions are automatically recorded with the help of a computer. Air temperature, water temperature, wind speed, and wind direction are recorded at the start of each observation session. A GPS device also records the latitude and longitude of the ship every few seconds. All this information helps scientists get a better understanding of which birds were present at different times of year and how weather conditions may affect where they go.

 

DLOG screen capture
GPS, weather, and bird species data are collected in one spot.

Personal log

This is the last day of the survey and it is finally sunny! It has been an interesting two weeks for me. It was full of observing new animals and gaining a new understanding of how marine science is conducted. It has also been a great opportunity to meet some very interesting people passionate about their work.

IMG_1644
My roommate, Jessica, and I in our stateroom bunks.

 

Did you know?

Flatfish have one eye that migrates, or moves, from one side of their head to the other! This happens within the first few months after they hatch. The result is that both of their eyes end up on the same side of their head. This allows flatfish to swim along the bottom of the ocean floor while keeping both eyes facing upward to look for food and to spot predators.

IMG_1567
These two flatfish are a few months old. They already have both eyes on one side of their head.

Amanda Dice: Fish Sticks with a Side of Science, August 29, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

IMG_1553
We have made it to the most northern point on the survey.

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise:
Western Gulf of Alaska

Date: August 29, 2017

Weather Data: 10.2 C, rainy/stormy

Latitude: 59 20.0 N, Longitude: 152 02.5 W

 

 

Science and Technology Log

The main focus of this survey is to gather information about juvenile walleye pollock, Gadus chalcogrammus. Juvenile pollock less than 1 year of age are called young-of-the-year, or age-0 juveniles. Age-0 walleye pollock are ecologically important. Many species of birds, mammals and other fish rely on them as a food source. Adult pollock have a high economic value. Pollock is commercially fished and commonly used in fish sticks and fish and chips. This study is interested in learning more about the size of current juvenile pollock populations, where they occur, and how healthy they are.

IMG_1132
An age 0 juvenile pollock is shown below an adult pollock.

In order to collect a sample, a trawl net is lowered into the water off of the back of the ship. The deck crew and bridge crew work together to release the right amount of wire and to drive the ship at the right speed in order to lower the net to the desired depth. The net is shaped like a sock, with the opening facing into the water current. In order to keep the mouth of the net from closing as it is pulled through the water, each side is connected to a large metal panel called a “door”. As the doors move through the water, they pull on the sides of the trawl net, keeping it open. When the doors are ready to be put in the water, the fishing officer will instruct the winch operator to “shoot the doors”!

IMG_1272
The deck crew bring the trawl net back on deck. One of the metal “doors” can be seen hanging off of the back of the ship.

Sensors help monitor the depth of the upper and lower sides of the net and relay a signal to computers on the bridge, where the data can be monitored.

Screen Shot 2017-08-29 at 7.44.24 PM
Sensors on the trawl net relay data to computers on the bridge which show the position of the net in the water.

Once the net is reeled in with a large winch, the catch is placed on a sorting table, in a room just off of the back deck called the fish lab. Here, the science team works to sort the different species of fish, jellyfish, and other kinds of marine animals that were caught.

IMG_1217
Crew members stand below a winch and empty the catch from the trawl net into a large bin.
IMG_1576
The catch is then sorted on the sorting table in the fish lab.

Juvenile pollock are sorted into their own bin. If it is a small catch, we weigh, count, and measure the length of each one. However, if it is a large catch, we take a smaller sample, called a subsample, from the whole catch. We use the weight, lengths, and count of animals in the subsample to provide an estimate count and average size of the rest of the fish caught at that station, which are only weighed. This information is compiled on a computer system right in the fish lab.

IMG_1097
Here I am measuring some fish.

 

IMG_1117
Data from the catch is collected on computers in the fish lab.

 

The focus of this study is juvenile pollock, but we do catch several other species in the trawl net. The presence of other species can provide information about the habitats where juvenile pollock live. Therefore, data from all species collected are also recorded.

Screen Shot 2017-08-29 at 8.36.24 PM
Here are some other interesting species we caught: 1. jellyfish (with a partially digested pollock inside it!) 2. lumpsucker 3. herring 4. spider crab

A small sample of juvenile pollock are frozen and saved for further study, once back on land. These fish will be analyzed to determine their lipid, or fat, content and calorie content. This data reveals information about how healthy these fish are and if they are getting enough food to survive through the cold Alaskan winters.

Other agencies within NOAA also conduct scientific surveys in this area. These studies might focus on different species or abiotic (non-living) properties of the Gulf of Alaska marine ecosystem. The data collected by each agency is shared across the larger NOAA organization to help scientists get a comprehensive look at how healthy marine ecosystems are in this area.

 

Personal Log

As we move from one station to the next, I have been spending time up on the bridge. This gives me a chance to scan the water for sea birds and marine mammals, or to just take in the scenery. Other members of the crew also like to come up to do this same thing. I have really enjoyed having this time every day to share in this activity (one of my favorite past-times) with other people and to learn from them how to identify different species.

IMG_1192
Here I am outside of the bridge, posing with some glaciers!

 

Did You Know?

You can find the exact age of many fish species by looking at a bone in their ears! Fish have a special ear bone, called an otolith. Every year, a new layer will grow around the outside of this bone. As the fish ages, the otolith gets larger and larger. Scientists can find the exact age of the fish by cutting a cross section of this bone and counting the rings made from new layers being added each year.

IMG_1099
A small otolith of an age 0 juvenile pollock
IMG_1168
Larger otoliths from an adult pollock

Amanda Dice: Ending Week 1 at Line 8, August 26, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

map cropped
Oscar Dyson moves across the Shelikof Straight to collect the Line 8 samples

Geographic area of cruise: Western Gulf of Alaska

Date: August 26, 2017

Weather Data: 13.2 C, cloudy with light rain

Latitude 57 36.6 N, Longitude 155 .008 N

 

 

Science and Technology Log

As part of this survey, the scientists onboard collect data from what is known as “Line 8”. This is a line of seven sampling stations, positioned only a few miles apart, near the southern opening of Shelikof Straight between Kodiak Island and the Alaskan Peninsula. Water samples are taken at different depths at each sampling station to measure several different properties of the water. This study is focused on profiling water temperature and salinity, and measuring the quantities of nutrients and phytoplankton in the water.

IMG_0988
The CTD rosette is lowered into the water using a winch – as seen from above.

To collect this data, a conductivity and temperature at depth (CTD) instrument is lowered into the water. This instrument can take water samples at different depths, by using its eleven canisters, or Niskin bottles. The water collected in the Niskin bottles will be used to determine the nutrient quantities at each station. The rosette of Niskin bottles also has sensors on it that measure phytoplankton quantities, depth, temperature, and how conductive the water is. Scientists can use the readings from conductivity and temperature meters to determine the salinity of the water.

Each Niskin bottle has a stopper at the top and the bottom. The CTD goes into the water with both ends of each Niskin bottle in the open position. The CTD is then lowered to a determined depth, depending on how deep the water is at each station. There is a depth meter on the CTD that relays its position to computers on board the ship. The survey team communicates its position to the deck crew who operate the winch to raise and lower it.

IMG_1164
Niskin bottles are lowered into the water with the stoppers at both ends open.

When the CTD is raised to the first sampling depth, the survey crew clicks a button on a monitor, which closes the stoppers on both ends of Niskin bottle #1, capturing a water sample inside. The CTD is then raised to the next sampling depth where Niskin bottle #2 is closed. This process continues until all the samples have been collected. A computer on board records the depth, conductivity and temperature of the water as the CTD changes position. A line appears across the graph of this data to show where each sample was taken. After the Niskin bottles on the CTD are filled, it is brought back onto the deck of the ship.

IMG_1173
They let me take control of closing the Niskin bottles at the sampling depths!
CTD screen cropped
I used this screen to read the data coming back from the CTD and to hit the bottle to close each Niskin bottle. The purple horizontal lines on the graph on the right indicate where each one was closed.

Water is collected through a valve near the bottom of each Niskin bottle. A sample of water from each depth is placed in a labeled jar. This study is interested in measuring the quantity of nutrients in the water samples. To do this it is important to have samples without phytoplankton in them. Special syringes with filters are used to screen out any phytoplankton in the samples.

Screen Shot 2017-08-26 at 8.28.56 PM
Syringes with special filters to screen out phytoplankton are used to collect water samples from the Niskin bottles.

The “Line 8” stations have been sampled for nutrient, plankton, and physical water properties for many years. The data from the samples we collected will be added to the larger data set maintained by the Ecosystems and Fisheries-Oceanography Coordinated Investigations (Eco-FOCI), Seattle, Washington. This NOAA Program has data on how the marine ecosystem in this area has changed over the last few decades. When data spans a long time frame, like this study does, scientists can identify trends that might be related to the seasons and to inter-annual variation in ocean conditions. The samples continue to be collected because proper nutrient levels are important to maintaining healthy phytoplankton populations, which are the basis of most marine food webs.

 

IMG_1171
Collecting water samples from a Niskin bottle.

Personal Log

As we travel from one station to the next, I have some time to talk with other members of the science team and the crew. I have really enjoyed learning about places all over the world by listening to people’s stories. Most people aboard this ship travel many times a year for their work or have lived in remote places to conduct their scientific studies. Their stories inspire me to keep exploring the planet and to always search for new things to learn!

Did you know?

Niskin bottles must be lowered into the water with both ends open to avoid getting an air bubble trapped inside of them. Pressure increases as depth under water increases. Niskin bottles are often lowered down below 150 meters, where the pressure can be intense. If an air bubble were to get trapped inside, the pressure at these depths would cause air bubble to expand so much that it might damage the Niskin bottle!

Amanda Dice: Bongos in the Water, August 24, 2017

NOAA Teacher at Sea

Amanda Dice

Aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Pollock Fishery Survey

Geographic area of cruise: Western Gulf of Alaska

Date: August 24, 2017

Weather Data: 11.5 C, Foggy

Latitude 56 35.5 N, Longitude 153 21.9 W

IMG_1101
This map on the bridge helps everyone keep track of where we are and where we are headed next.

Science and Technology Log

At each sampling site, we take two types of samples. First, we dip what are called bongo nets into the water off of the side of the boat. These nets are designed to collect plankton. Plankton are tiny organisms that float in the water. Then, we release long nets off of the back of the boat to take a fish sample. There is a variety of fish that get collected. However, the study targets five species, one of which is juvenile walleye pollock, Gadus chalcogrammus. These fish are one of the most commercially fished species in this area. I will go into more detail about how the fish samples are collected in a future post. For now, I am going to focus on how plankton samples are collected and why they are important to this survey.

IMG_1096
Juvenile walleye pollock are fish that are only a few inches long. These fish can grow to much larger sizes as they mature.

As you can see in the photos below, the bongo nets get their name because the rings that hold the nets in place resemble a set of bongo drums. The width of the nets tapers from the ring opening to the other end. This shape helps funnel plankton down the nets and into the collection pieces found at the end of the nets. These collection devices are called cod ends.

IMG_0993
Bongo nets being lowered into the water off of the side of the ship.
IMG_1092
This is the collection end, or cod end, of the bongo nets.

This study uses two different size bongo nets. The larger ones are attached to rings that are 60 centimeters in diameter. These nets have a larger mesh size at 500 micrometers. The smaller ones are attached to rings that are 20 centimeters in diameter and have a smaller mesh size at 150 micrometers. The different size nets help us take samples of plankton of different sizes. While the bongo nets will capture some phytoplankton (plant-like plankton) they are designed to mainly capture zooplankton (animal-like plankton). Juvenile pollock eat zooplankton. In order to get a better understanding of juvenile pollock populations, it is important to also study their food sources.

IMG_1081
Here I am, helping to bring the bongo nets back on to the ship.

Once the bongo nets have been brought back on board, there are two different techniques used to assess which species of zooplankton are present. The plankton in nets #1 of both the small and large bongo are placed in labeled jars with preservatives. These samples will be shipped to a lab in Poland once the boat is docked. Here, a team will work to identify all the zooplankton in each jar. We will probably make it to at least sixty sampling sites on the first leg of this survey. That’s a lot of zooplankton!

 

IMG_1121
A jar of preserved zooplankton is ready to be identified.

The other method takes place right on the ship and is called rapid zooplankton assessment (RZA). In this method, a scientist will take a small sample of what was collected in nets #2 of both the small and large bongos. The samples are viewed under a microscope and the scientist keeps a tally of which species are present. This number gives the scientific team some immediate feedback and helps them get a general idea about which species of zooplankton are present. Many of the zooplankton collected are krill, or euphausiids, and copepods. One of the most interesting zooplankton we have sampled are naked pteropods, or sea angels. This creature has structures that look very much like a bird’s wings! We also saw bioluminescent zooplankton flash a bright blue as we process the samples. Even though phytoplankton is not a part of this study, we also noticed the many different geometric shapes of phytoplankton called diatoms.

 

sea angel
A naked pteropod, or sea angel, as seen through the microscope.

Personal Log

Both the scientific crew and the ship crew work one of two shifts. Everyone works either midnight to noon or noon to midnight. I have been lucky enough to work from 6am – 6pm. This means I get the chance to work with everyone on board at different times of the day. It has been really interesting to learn more about the different ship crew roles necessary for a survey like this to run smoothly. One of the more fascinating roles is that of the survey crew. Survey crew members act as the main point of communication between the science team and the ship crew. They keep everyone informed about important information throughout the day as well as helping out the science team when we are working on a sample. They are responsible for radioing my favorite catchphrase to the bridge and crew, “bongos in the water.”

IMG_1105
A sign of another great day on the Gulf of Alaska.

Did You know?

You brush your teeth with diatoms! The next time you brush your teeth, take a look at the ingredients on your tube of toothpaste. You will see “diatomaceous earth” listed. Diatomaceous earth is a substance that contains the silica from ancient diatoms. Silica gives diatoms their rigid outer casings, allowing them to have such interesting geometric shapes. This same silica also helps you scrub plaque off of your teeth!

diatoms
Diatoms as seen through a microscope.

 

Amanda Dice: From Sea to Shining Sea, August 17, 2017

NOAA Teacher at Sea

Amanda Dice

Soon to be aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Walleye Pollock and Forage Fish Survey

Geographic Area of Cruise: Gulf of Alaska (near Kodiak)

Date: August 17, 2017

Weather Data: 30.5°C, cloudy, 78% humidity

Location: Baltimore, MD

Intro
Out on the east coast waters utilizing my favorite form of Baltimore’s transportation options – its fleet of kayaks!

Introduction

It is hot and sticky here in Baltimore and I am looking forward to breathing in the crisp air in Alaska. I am also looking forward to being out on the water. As a Baltimore resident, I am able to spend time in the beautiful Chesapeake Bay. It is a great place to get out on a kayak and take in nature. I can’t wait to take this experience to the next level on the waters of the Gulf of Alaska. I try to go on at least one big adventure each year, and the Teacher at Sea experience definitely will fulfill this goal for 2017! I am also excited about all of the new things I will learn on this trip and I am looking forward to sharing these with my students. I teach STEM courses to students who attend online school. I have seen how connecting scientific experiences and data with students can spark their interest in STEM fields.  I am very excited to have the opportunity to use this experience to engage students in scientific activities and discussions.

 

Science and Technology Log

This mission will take place on the NOAA Ship Oscar Dyson, which has its home port in Kodiak, Alaska. From Kodiak we will move through the waters surrounding Kodiak Island and eastward into the Gulf of Alaska. The scientific team will be studying populations of walleye pollock and zooplankton in these waters. The mission will be conducted in two parts. I will be aboard for Leg 1 of the mission. Leg 2 will begin shortly after we return to port on September 2nd. The map below show all of the sampling locations that will be visited during this mission. Leg 1 sampling locations are indicated by red dots. At each location, a variety of sampling will take place. From what I have learned about the mission, it looks like we will be using several different trawls to collect samples. We will then use a variety of methods to identify species and collect data once the samples are onboard.

leg 1 map
This map shows the sampling locations of Leg 1 (red) and Leg 2 (blue) for the Gulf of Alaska Juvenile Walleye Pollock Survey. Courtesy of NOAA.

The Oscar Dyson is described as “one of the most technologically advanced fisheries survey vessels in the world.” From what I see on the NOAA website, it seems to have an impressive amount of scientific equipment onboard. It has a wet lab, dry lab, computer lab, biology lab and hydrology lab. It also has a wide array of data collection gear and mechanical equipment. I am looking forward to checking out all of this equipment for myself and learning more about how it will be used.

Science and Tech Log
NOAA Ship Oscar Dyson on the chilly waters in Alaska. Courtesy of NOAA.

This study will focus on collecting data on walleye pollock populations. This fish is a member of the cod family and lives primarily in the waters of the northern Pacific Ocean. As juveniles, this species feeds on krill and zooplankton. As they mature, they eat other fish, including juvenile pollock!  Many marine species rely on populations of these fish as a food source in the Gulf of Alaska. Humans also like to eat pollock. It is sold as fillets, but is also used in fish fingers and to make imitation crab meat. Pollock fillets are becoming more popular as cod and haddock populations become overfished. Pollock populations have fluctuated over the years, but are not currently overfished. The dotted line in the graph below shows population numbers in the Gulf of Alaska (GOA).

pop graph
The dotted line on this graph shows the population numbers of walleye pollock in the Gulf of Alaska (GOA). Courtesy of NOAA.

A scientist from the U.S. Fish and Wildlife Service will also be aboard the Oscar Dyson conducting a seabird observation study. She will work mainly from the bridge, keeping track of the different seabird species she sees as we move from one sampling location to the next.

Personal Log

I am excited about my upcoming adventure for many reasons. As an undergrad, I majored in Natural Resource Management. I went on to be a science teacher, but have always been interested in learning about findings from ecological studies. This experience will allow me to get an up close look at the technology and techniques used to conduct this kind of study. I am looking forward to being able to contribute to the team effort and learn new things to bring back to my students. I am also very excited to be aboard a ship off the coast of Alaska. A trip to Alaska has always been on my bucket list and I am looking forward to taking in the scenery and spotting marine mammals and seabirds. I am also hopeful that we will be able to see a partial solar eclipse from the water. I am bringing my sun viewers, just in case!

Did You Know?

It would take 88 hours to drive from Baltimore, MD to Kodiak, AK.

Did You Know
Glad I am flying! Courtesy of Google Maps.