Robert Ulmer: Know Your Surroundings, June 28, 2013

NOAA Teacher At Sea
Robert Ulmer
Aboard NOAA Ship Rainier
June 15–July 3, 2013

Mission:  Hydrographic survey
Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak
Log date:  June 28, 2013

Current coordinates:  N 56⁰40.038’, W 134⁰20.908’ (southeast of Point Sullivan in Chatham Strait)

Weather conditions:  13.53⁰C and falling, scattered cumulus clouds with intermittent light rainfall, 81.05% relative humidity, 1019.55 mb of atmospheric pressure, breezy with gusts of wind out of the NNW at 10 to 15 knots

Explorer’s Log:  The layout of the ship

An explorer who doesn’t make himself familiar with his new surroundings is truly no explorer at all, and he might just as well stay home.  Why would you venture forth if not to witness the events and items along the way?

The "big eyes" on the flying deck with the anchor deck visible below
Keep your eyes open.  There’s so much to see everywhere!

For the past few days, NOAA Ship Rainier has been continuing its mission to complete a detailed and thorough survey of the sea floor along Chatham Strait, a channel used by many nautical vessels in their transit of the Inside Passage of Southeast Alaska.  So, aside from noticing the appearance and disappearance of some rock features in the rising and falling tides and the daily incremental reduction of snow as it melts on the high mountaintops nearby in the relative warmth of early summer, most of what I see from the deck of the ship and from the smaller launch vessels is the same topography in every direction that I’ve seen for the past week, along with occasional clouds, whales, otters, birds, and other boats.  The scenery beyond the rails is very beautiful, but the temporary respite from faster passage to any new geographic destination also has given me a chance to take a few photos of the space around me:  the ship herself.

http://wp.me/pyu3c-7JC
Using the shadow cast by a gnomon in one city while the sun reflected straight up from the bottom of a well in another city, along with alternate interior angles and a proportion, Eratosthenes calculated Earth’s circumference in 240 BCE. Image by Dr. John H. Lienhard, University of Houston.

However, instead of writing nautical miles* of text to talk you through a verbally descriptive tour of the entire vessel, I’ve posted a bunch of captioned photos that will give you some view of what I see while wandering around my current home away from home.

Before we begin the tour, a brief note:  In case you’ve ever wondered (as I have!), a nautical mile is a unit of length approximately equal to one minute (1/60 of a degree, and there are 360 degrees in a circle) of latitude measured along any meridian or about one minute of arc of longitude measured at the equator.  Because our understanding of the exact shape of Earth has evolved from a perfect circle into that of an ellipsoid since Eratosthenes of Cyrene calculated the circumference of his perfectly round model of the planet (and assigned the first latitudes and longitudes), the definition of nautical mile has changed over time.  To address the variation in actual one-minute arc lengths around Earth, the definition of a nautical mile has been standardized by international agreement to be 1,852 meters (approximately 6,076 feet).  A statute mile, by comparison, evolved both in etymology and in length-definition from the Latin term mille passuum (“one thousand paces”), commonly used when measuring and marking distances marched by Roman soldiers across Europe.  Healthier and better-fed soldiers often took longer strides, and so their “miles” were longer than the miles marched by less-healthy counterparts.  To address this variation, most countries eventually agreed to standardize the statute mile at its current length of 5,280 feet (about 1,609 meters).

Now for some snapshots from NOAA Ship Rainier:

This log, called a "camel," is used as a buffer alongside less-equipped docks to protect both the dock and the ship.
This log, called a “camel,” is used as a buffer alongside less-equipped docks to protect both the dock and the ship.
Mechanism for operating the port side davits
Mechanism for operating the port side davits, which use hydraulics to lift and lower the launch vessels
Starboard side walkway to the launch vessels at their raised and secured positions in the davits
Starboard side walkway to the launch vessels at their raised and secured positions in the davits
Ventilation pipe from the incinerator
Ventilation pipe from the incinerator
Some interesting-looking tube joints
Some interesting-looking hydraulic hose fittings for the davits
The galley
The crew’s mess and the galley
Fire Station No. 23, starboard, deck D
Fire Station No. 23, D deck starboard side
Crane, anchor, vents, and the stowed gangplank on the bow
Crane, anchor windlass, vents, and the stowed gangway on the bow
Muster Station 1
Muster Station 1, where I am to report in the event of an abandon ship order
Docking bits on the bow
These large bits on the bow are used for securing lines while docking.
Cranes on the bow
Cranes on the bow
Electric boxes on the forward mast
Electric boxes keep the important electrical equipment that is mounted on the forward mast properly powered
The view along starboard from the flying deck
The view along the starboard side from the flying bridge
Machinery for lowering and hoisting the anchor
The anchor windlass (machinery on the bow for letting go and weighing anchor) includes gypsy heads, a riding pawl, a devil’s claw or pelican hook, and a wildcat.  (Many other “animals” are referenced on a ship, including a goose neck and a bull nose.  Look up others on your own!)
The forward mast
The forward mast carries radar equipment for navigation. The halyards (lines from the mast) are for support and for hanging items used for distant communication.
The "big eyes" on the flying deck
The “big eyes” on the flying bridge allow magnified distant viewing from above the bridge.
Passageways are narrow, from deck (floor) to bulkhead (ceiling)
Passageways are narrow aboard NOAA Ship Rainier from the overhead to the deck and bulkhead to bulkhead.
Stateroom C-04-103-U
This is the view from corner to corner of stateroom C-04-103-U, one of the larger two-man staterooms on the ship, which I share with HSST John Doroba. (His is the lower bunk.)
Some of the internal communications equipment on the bridge
A phone on the bridge that gets its power from the energy of sound waves spoken into it (so that the phone still can work even if the generators fail — awesome, right??)
Ensign Micki Ream plotting a course on the bridge
Ensign Micki Ream uses old-fashioned compass-and-straightedge geometric constructions and calculations to plot a course through Hecate Strait on the bridge.
Bicycles for use ashore during liberty
Bicycles for use ashore during liberty
Port ladder to launches alongside Rainier
Launch crews usually board launch vessels by walking directly level off the deck onto the smaller boats while the davits hold the small launch vessels in place. This Jacob’s ladder is lowered to launch vessels like the skiff when they are placed in the water alongside NOAA Ship Rainier.
Fishing poles
Fishing poles, to be used only when licensed and permitted
A cool light and electric fixture
A cool-looking light and electric fixture
A hatch on the fantail
A hatch on the fantail that leads to After Steering
The winch control mechanism for the "fish"
The “fish” is a very heavy brass device that is towed on a strong Kevlar-sheathed electric cable up to 600 meters behind the ship, and it requires a sophisticated winch mechanism for casting, retrieval, and transfer of data to the computer system aboard the NOAA Ship Rainier.
A lifebuoy and the "fish"
On the fantail the “fish,” a part of the Moving Vessel Profiler (MVP), is the very heavy CTD device that is towed by winch behind NOAA Ship Rainier, usually during multi-beam sonar data acquisition. CTD stands for conductivity, temperature, and depth of the water, all of which affect the speed of sound from and to the ship’s sonar device.  (The lifebuoy is a nearby safety measure, of course.)
One of many ladders
One of many ladders (which is what staircases are called aboard ship)
The skiff secured on the fantail
The skiff secured on the fantail underneath a sign that reminds everyone of NOAA’s culture of safety
Stowage space
All stowage space is used efficiently aboard NOAA Ship Rainier.
The emergency pull station, just in case
The emergency pull station, just in case
The galley service line
The galley service line
Pyrotechnic locker for emergency flares, on the flying deck
Pyrotechnic locker for emergency flares, on the flying bridge
Launch vessels secured in starboard davits
Launch vessels secured within the starboard davits
A tie-down the port deck
Line (rope in use aboard a ship) is one of the most important tools on a ship for tying, supporting, securing, pulling, and hoisting, and so it is treated with proper respect at all times.
Warnings on the stack
Noise, fire, and heavy equipment can be dangerous if not addressed with caution, as these signs on the stack warn.
Kayaks for exploration (and sometimes recreation)
Kayaks for exploration (and sometimes recreation)
Life rafts 2 and 4 alongside the port bridge wing, with davits in the background
Life rafts 2 and 4 alongside the port bridge wing, with davits in the background
Alidade on the port bridge wing
The alidade on the port bridge wing, which is used for determining a “true” line of sight for navigation

I aligned the photos to give you a more authentic feel of passing waves.  Oh, I hope that you didn’t get seasick!  If you did, just head to the dispensary on D deck near the bow amidships, and then go on deck and look at the horizon so that your inner ears and your eyes can agree about which way actually is up.

Now that you’ve seen many random angles in no particular order — but  — maybe you also need a tour to put the whole package together into a meaningful map of NOAA Ship Rainier.  Fortunately, HAST Christiane Reiser created a video of just such a tour for visitors, and you can watch it here.

The gangplank
This is the gangway to board Rainier when the ship is docked. Uniformed personnel must salute the colors when boarding or exiting the vessel.

… And now you’re ready to come aboard!

Remember always that half the fun of the journey is getting there… but the other half is actually being somewhere.  So look at the scenery in the world around you — wherever you happen to be — as you keep exploring, my friends.

Did You Know?

Before you board a seagoing vessel, you’d better be able to talk the talk.  People on ships have a vernacular that can sound like a foreign language if you’re not familiar with the terminology, so here’s a list of some key words worth knowing before you come aboard, with definitions and descriptions from a glossary of terms provided by the U.S. Coast Guard, a partner agency of NOAA with regard to training crew members and making nautical travels safer:

  • Starboard:  The right side of the ship when facing forward.  The name is a very old one, derived from the Anglo-Saxon term steorbord, or steering-board.  Ancient vessels were steered not by a rudder amidships, but by a long oar or steering-board extended over the vessel’s right side aft.  This became known, in time, as the steering-board side or starboard.
  • Port:  The left side of the ship when facing forward.  The original term was “larboard,” but the possibility of confusing shouted or indistinct orders to steer to larboard with steering to starboard at a crucial moment was both obvious and serious.  The term was legally changed to ‘port’ in the British Navy in 1844, and in the American Navy in 1846.  The word ‘port’ was taken from the fact that ships traditionally took on cargo over their left sides (i.e., the side of the vessel facing the port).  This was probably a holdover from much earlier times when ships had steering-boards over the right side aft; obviously, you couldn’t maneuver such a vessel starboard side to the pier without crushing your steering oar.
  • Wings:  Extensions to either side of the ship.  Specifically, the port and starboard wings of the bridge are open areas to either side of the bridge, used by lookouts and for signaling.
  • Bow:  The forward end of any vessel.  The word may come from the Old Icelandic bogr, meaning “shoulder.”
  • Stern:  The rear of any vessel.  The word came from the Norse stjorn, meaning “steering.”
  • Deck:  What you walk on aboard ship.
  • Below:  Below decks, as in “going below to C Deck,” never “down.”
  • Fore:  An adverb, meaning “toward the bow.”
  • Aft:  An adverb, meaning “toward the stern.”
  • Boat:  Any small craft, as opposed to a ship, which carries boats.
  • Ship:  A general term for any large, ocean-going vessel (as opposed to a boat).  Originally, it referred specifically to a vessel with three or more masts, all square-rigged.
  • Stateroom:  An officer’s or passenger’s cabin aboard a merchant ship, or the cabin of an officer other than the captain aboard a naval ship.  The term may be derived from the fact that in the 16th and 17th centuries, ships often had a cabin reserved for royal or noble passengers.
  • Stack:  The ship’s funnel on an engine-powered vessel.
  • Bridge:  The control or command center of any power vessel.  The term arose in the mid-19th century, when the “bridge” was a structure very much like a footbridge stretched across the vessel between or immediately in front of the paddle wheels.
  • Galley:  The ship’s kitchen, where food is prepared.  The origin is uncertain but may have arisen with the ship’s cook and helpers thinking of themselves as “galley slaves.” (A galley was originally a fighting ship propelled by oars rowed by slaves, from the Latin galea.)
  • MessPart of the ship’s company that eats together, (such as the officers’ mess) and, by extension, the place where they eat.
  • Head:  The bathroom.
  • Ladder:  On shipboard, all stairs are called “ladders.”

Yaara Crane: Engineering a Floating Town, June 29, 2013

NOAA Teacher at Sea
Yaara Crane
Aboard NOAA Ship Thomas Jefferson
June 22, 2013 – July 3, 2013

helm
My roommate, Ensign Kristin, is teaching me how to steer at the helm.

Mission: Hydrographic Survey
Geographical area of cruise: Mid-Atlantic
Date: Saturday, June 29, 2013

Latitude: 38.81°N
Longitude: 75.06°W

Weather Data from Bridge:
Wind Speed:  13.50 knots|
Surface Water Temperature: 22.61°C
Air Temperature:  23.30°C
Relative Humidity: 87.00%
Barometric Pressure: 1001.38mb

TJ sunset
Sunset over the bow of the Thomas Jefferson.

Science and Technology Log

At any given time, the Thomas Jefferson is home to about 30-40 individuals. These individuals come from all walks of life to become deck hands, engineers, stewards, scientists, or officers. Yesterday, I spent a couple of hours with Chief Engineer Tom learning about how his team of engineers works to keep this home afloat and functional. There are currently 4 licensed engineers, and 3 QMEDs (Qualified Members of the Engine Department) aboard the TJ.

engineering console
The engineering control console keeps and eye on all of the mechanics of the ship. If the bridge loses control, the engineers could steer the ship from here!

How do you become an engineer on a NOAA ship?  There are two routes to becoming an engineer on a NOAA ship. If you wanted to start working immediately aboard a ship, you could apply to start as an undocumented engineer. You are required to work 180 days at sea, pass a basic safety course, and then would become eligible to take a test to become a QMED. Another 1080 days would make you eligible to take a licensing test to become third engineer. From there, time and more licensing tests help you work up the ranks. There are a myriad of licensing tests that depend on the horsepower of the ship you want to work on. For example, most NOAA ships require the same license, but the NOAA ship Ron Brown has more horsepower and requires what is called an unlimited license. All licensing falls under the purview of the U.S. Coast Guard and various federal regulations. A different route to becoming an engineer involves attending a four-year program at a maritime academy. The maritime academy gives graduates the necessary skills to move straight into a third engineer position because it includes internships and semester at sea opportunities. The students from the academy must still take all of the same licensing tests. Clearly, engineers must have a great amount of knowledge as part of their toolkit no matter their background.

What really stood out to me was when Tom mentioned the fact that the word engineer comes from engine. The primary purpose of the engineer is to make sure that the ship has enough power for all of the tasks that happen around the clock. The TJ has two engines for propulsion and three generators for electricity that can be put online to boost the power output. When I was in the engine room yesterday, second engineer Steve was on watch and communicating with the bridge about having more power for their bow thruster. The bow thruster increases the maneuverability of the ship when it is slowing down, such as when anchoring. Steve made sure that Generator 1 was providing the energy needed for this particular task while Generator 2 was providing power for the rest of the ship’s needs. Overall, the Thomas Jefferson can hold approximately 198,000 gallons of diesel fuel, and uses about 1,500 gallons a day for all of its operations.

RO comparison
Can you tell which of these reverse osmosis machines is working, and which one is offline?

Most of the engineering equipment comes in duplicate just in case anything breaks down. For example, there are two reverse osmosis machines whose purpose is to turn seawater into potable water. One of them is currently down, so it is imperative that we have a second aboard. Reverse osmosis is the process by which seawater is pushed through a semi-permeable membrane in order to filter out the solutes, and only allow the water solvent through. The solute (sea salt) can then be dumped right back into the ocean. The water that is collected must be chlorinated before use, but will then go on to the galley, bathrooms, laundry, etc. The TJ can store around 21,500 gallons of freshwater and uses about 2,500 gallons of fresh water a day.

saline_diagram
The internal workings of reverse osmosis. Image credit: http://www.nrdc.org/onearth/04sum/saline_popup.htm

When being built, NOAA ships are outfitted for water usage in different ways, and Tom is busy planning how to make the ship more energy efficient. The TJ does not have the ability to use and recycle gray water or sea water very efficiently. Some NOAA ships have the ability to use seawater in the toilets, but the TJ does not. Have you ever thought of how much water is used when flushing a toilet? Well, you might have to think of that if you live in a desert area, or on a ship! Tom will be able to reduce the amount of water used in each flush by about 1.4 gallons with a simple valve that he plans on installing when the ship is docked for some maintenance work this summer. If we assume that there are 35 people on board the ship, and each person flushes 5 times a day, then the TJ can save 245 gallons of water each day with just a simple upgrade. This amounts to a reduction in water use of around 10% a day!

Tom has thought through many other types of upgrades, most not so simple, to better put to use the resources on board. Instead of using reverse osmosis, some NOAA ships make water through an evaporator. An evaporator is a much more efficient way of creating water because it needs a reduced pressure and average temperature near 160°F. On ships that have evaporators, water is diverted into pipes near the heat of the main engine so that the waste energy created by the engine can be transferred to reduce the amount of energy needed in the evaporator.

Although I have a particular interest in wastewater treatment and energy usage, these are by no means the extent of the engineer’s tasks. They are also responsible for checking fuel levels, keeping the air conditioning running (crucial considering the heat generated by the servers required to hold all of the ship’s scientific data), maintaining a workshop, being the ship’s electricians, and much more. Finally, they also work to keep up the morale of everyone in this floating town.

 Personal Log

I am trying to keep myself busy learning about all of the aspects of the ship. It is difficult to throw myself into the data analysis because the CARIS program is so complex; however, I spend lots of time watching the scientists plug at it. I have also been spending a lot of time on the bridge where some of the officers have been letting me help to collect hourly weather data, and teaching me to take navigational fixes. It is interesting to see that even with all of the digital data, the bridge officers must still take time to read a wall-mounted barometer and interpret cloud formations in the sky. For navigation, the officers still need to know how to use a compass and protractor, which brought me back to 1998 and my days in geometry class.

I also love hearing travel stories from the many people on board. Keith, a deckhand, has travelled all over the world on a NOAA ship based in Hawaii. It motivates me to continue to find opportunities to expand my horizons and see the world. I hope that I can also motivate my students back at Annandale to get creative with their ambitions.

 Did You Know?

Officers must be on watch 24/7, even when at anchor. To help preserve their night vision after the sun sets, the bridge is stocked with red plastic squares which are mounted over the screens to help minimize glare from white light.

night vision
The monitors on the bridge at night.

Sarah Boehm: Shrimp Galore, June 30, 2013

NOAA Teacher at Sea
Sarah Boehm
Aboard NOAA Ship Oregon II
June 23 – July 7, 2013 

Mission: Summer Groundfish Survey
Geographic area of cruise: Gulf of Mexico
Date: June 30, 2013

Weather at 20:40
Air temperature: 29.8 °C (85.64° F)
Barometer: 1007 mb
Humidity: 65   %
Wind direction:  221 °
Wind speed: 8.4  knots
Water temp: 29.2° C
Latitude: 29.05° N
Longitud: 88.69 ° W

Science and Technology Log

I have been on board for a week now and have learned a lot about the fish of the Gulf of Mexico. We have collected data on over 300 different species at 129 trawl stations So what happens with all this data?

Our work out here is part of SEAMAP – South East Area Monitoring and Assessment Program – a joint venture between NOAA and the states to better understand the populations of fish and invertebrates along the coast of the Gulf and Atlantic. The information we are collecting on Oregon II is combined with the data from other ships that do surveys in closer to land. The groundfish surveys began in the 1950s and happen each summer and fall. All this data tells a story of each species – how many individuals there are, how big they are, and where they prefer to live. This information can then be used to better manage the fishing industry so that marine populations stay strong.

We gather data about every species we pull up in our nets, but we pay special attention to the ones that are fished commercially like shrimp and red snapper. There are several shrimp species out here, but one we see a lot of is the brown shrimp.

Brown Shrimp
Brown Shrimp

The brown shrimp are found from Massachusetts to the Gulf. They live for about 1 ½ years and can be up to 7 inches long. Their lives start as eggs deep in the waters of the Gulf and Atlantic. After they hatch, tiny baby shrimp float in to the shallow water of estuaries (coastal areas where fresh river water mixes with sea water). They grow larger in the protected waters of the estuaries and eventually migrate out into deeper, saltier water.  They live on the bottom of the sea, moving out farther into deeper water as they grow larger. You can learn more about brown shrimp on NOAA’s Fish Watch website.

For most species we haul in we record length on up to 20 individuals, and weight and sex for only every 5th individual. But for brown shrimp we measure the length, weight and sex of up to 200 individuals. Sometimes we pull up a lot of shrimp like the 419 brown shrimp in just one trawl last night. To tell male from female you flip the shrimp over and check the spot in between its walking legs (in front) and swimming legs (in back).  A female has a wider plate. A male has extra fuzzy bits on the inside of the front swimming legs.

Male and Female Shrimp
The shrimp on the left is a female and the one on the right is male.

Shrimp fishing is a big industry here in the Gulf. Last year 221 million pounds of shrimp were taken by fishing boats from the states along the Gulf. Commercial fishing boats use similar nets to ours, but they are larger and trawl underwater for much longer. Just like we pull up many fish in addition to shrimp, shrimping boats have a large bycatch. Part of our research is to monitor the bycatch species to help make management decisions that protect them, too. NOAA works with the fishing industry to develop nets with Bycatch Reduction Devices that allow unwanted fish to escape.

shrimp boat
A fishing boat trawling for shrimp

Let me answer a few more student questions. Jared, we don’t wear lab coats; we mostly wear old t-shirts and shorts that definitely get wet, muddy and slimy working with the fish. A lab coat would help keep me clean, but it is hot and humid in our lab and the extra layer would be uncomfortable. Sabrina, we have found some plastic and other trash in the water, but have not seen any animals tangled in it. Deliana, we do all our work from the ship, so we don’t swim underwater with the fish. When they do surveys of reef fish earlier in the year they send a video camera underwater to learn more about the fish, but the scientists still stay on board.

silver fish
Clockwise from top: Rough Scad, Silver Jenny, Dusky Anchovy, Long Spine Porgy
brown fish
Shoal Flounder on the left and Big Eye Sea Robin on the right

Julissa asked about colors of our fish. Most of our fish come in two colors – silver or brown. We catch fish that live on the bottom of the sea or swim near the bottom and these colors help them camouflage with the sand and mud. But there are some that have splashes of color.

Dwarf Goatfish
Dwarf Goatfish
Lesser Blue Crab
Lesser Blue Crab

Personal Log

Several students had questions about food on board, so let me reassure you I am eating well.

the stewards
Stewards Walter and Lydell

The two stewards on board, Walter and Lydell, are responsible for feeding 30 people on board. The food is good, plentiful and there are several options at each meal. One challenge is that people on board are working different schedules and can’t always make meal times. If you ask ahead of time, they will save you a plate of food for later. There are also snacks and sandwich fixings available all the time. To give you an idea of what I am eating, yesterday I had a freshly baked muffin and juice for breakfast, a chicken fajita and Mexican veggies for lunch, fried rice, stir fry and a salad for dinner, and then some ice cream with fruit for a late night snack.

How much food does it take to feed 30 people for 2 weeks? Walter gave me a few numbers for this trip: 80 pounds of chicken, 35 dozen eggs, 100 pounds of potatoes, 12 gallons of ice cream, and a whole lot of coffee. Jennixa wondered what would happen if we ran out of food – the answer is that we would head back to land and buy more. But I’m pretty sure Walter has enough on board. Damian asked if we eat what we catch – and yes, some of the shrimp and red snapper have gone to the galley after being measured.  They were delicious.

CDCPS science students – How are the colors of fish an adaptation to survival?

sunset
sunset

Sarah Boehm: Groundfish Survey Basics, June 25, 2013

NOAA Teacher at Sea
Sarah Boehm
Aboard NOAA Ship Oregon II
June 23 – July 7, 2013 

Mission: Summer Groundfish Survey
Geographic area of cruise: Gulf of Mexico
Date: June 25, 2013

Weather
Air temperature: 29.4 C (84.9 F)
Barometer: 1015 mb
Humidity: 71%
Wind direction: 55°
Wind speed: 7 knots
Water temp: 29.6 C
Latitude: 27.99°
Longitude: 92.99°

Science and Technology Log

Greetings from the Oregon II in the middle of the Gulf of Mexico. I am very impressed by all the questions my students have asked in comments on the first blog post. Now I guess I need to start answering some of them.

Oregon II
The Oregon II at the pier in Galveston. To answer Taina’s question, it is 170 feet long.

 

The Oregon II left the port of Galveston, Texas on Sunday afternoon. As we worked our way out to open water I enjoyed watching the pelicans, terns and frigate birds soaring and diving for fish. Occasionally a few dolphins would surface briefly, only to disappear again under the water. The shipping channels were packed with large ships, mostly oil tankers servicing the rigs that dot the Gulf of Mexico in this region. The farther we got from land, the less busy our surroundings became. With only a few boats and rigs on the horizon, the full moon rose in front of us as we cruised to the southeast.  You can follow the path the ship takes on NOAA’s Ship Tracker.

P1010756
The Oregon II dwarfed by a cruise ship in the port of Galveston.
terns
Terns visiting the ship as we leave Galveston.

We didn’t reach the first sampling site until nearly midnight. The ship functions on a 24 hour working cycle with the science crew broken into two shifts: the night shift works from midnight to noon and the day shift works from noon to midnight.   I am on the day shift, along with 2 scientists from the lab at Pascagoula, Mississippi and 2 student interns.

There are many different aspects to the fisheries research taking place on board. On my first shift yesterday I concentrated on the sorting and measuring of fish, so that is where I will start in this blog.

net
A net being pulled out of the water.

The net is dragged across the ocean floor behind the ship for a half hour, and then pulled up on board, bulging with fish. The net is emptied into buckets and the total catch is weighed. If it is a small catch we keep the whole thing to work up, but if the catch is large we keep some and throw the rest back in the water. The ones we will work with are emptied into the trough in the wet lab – a multicolored heap of writhing, slimy fish just waiting to be sorted. While the rolling of the ship didn’t bother my stomach, when faced with all those smelly fish I suddenly felt rather nauseous. I had a moment of doubt that I could really handle this work 12 hours a day for two weeks. But once I dipped my hands in and concentrated on sorting out the species my stomach settled.

sorting fish
Caitlin begins the sorting process.

While this seems a simple task, many species are similar in appearance. Looking carefully at shapes of jaws or the placement of spots, we sort them out with one species per container. Last night we had 40 – 60 different species in each trawl, with fish, crabs, shrimp, jellies and more. Once everything is sorted we count the number of individuals in each species and measure their total weight. All this information goes into the computer. The next step is to measure the individuals. There are two work stations for this step, each with a measuring board, a scale and a computer. We work in partners, with one person handling the fish and the other manning the computer. The measuring board is a fancy piece of technology that is attached to the computer. You line the specimen up and simply touch a magnetic stick to the board at the end of the fish. The computer then records the length in millimeters. Next you put the fish on the scale to record its weight. Like the measuring board, the scale is attached to the computer and it records in kilograms out to the thousandths place value. Then you determine if the fish is a male or female or “unknown”. We will bag, label, and freeze a few specimens if a scientist back at the lab has requested it, and then the rest of the catch is tossed back into the sea. By the time we finish all this, the ship has probably reached the next trawl site and the process begins again.

measuring shrimp
Measuring the length of a brown shrimp.

Nick asked about the largest fish we have found. Yesterday’s weight winner was this 5 kg red snapper.

red snapper
This red snapper was the largest fish of the first day.

The weirdest fish we found was a spotted batfish. It uses those odd fins to walk on the bottom of the sea. Its brown bumpy skin camouflages with the bottom. Suspended off its head is a fishing lure to attract prey.

spotted batfish
Spotted Batfish
Atlantic Sharpnose Shark
Atlantic Sharpnose Shark

Kevin wanted to know if we would see any sharks. We have caught a few small ones, and have seen a few larger ones off the stern (back) of the boat.

Personal Log

Jaelene asked if it would be cold, and the simple answer to that is no, not on the Gulf in summer. When I stepped out of the airport in Texas I was immediately hit by the hot, humid air. We have had a mild spring in Massachusetts – which is a blessing since most schools do not have air conditioning – and so the intensity of the sun, the heat and humidity combined to make me rather uncomfortable as I explored the port city of Galveston. Now that we are out on the water a constant breeze helps make things more comfortable…as does the air conditioning in the living quarters of the ship. The wet lab is not air conditioned, so all the fish work is rather hot and sticky.

Guillermo, Michelle and Doranny all asked about my room on board. It is a rather small space I share with Junior Officer Rachel Pryor. We each have a bunk and storage space. The room also has a sink and a chair. Rachel works a 4 hour shift early each morning and another 4 hour shift in the evening. This means when I finish work she is already asleep, but will be getting up for work in just a few hours. So being quiet and considerate of the other person is important. The curtain you can pull across your bunk is helpful to keep out light and provide privacy. Our room does not have a window, so it is dark all the time. This is helpful when people need to sleep at odd hours. It is also surprisingly quiet – or maybe a better way to describe it is that the constant background noise of the engines drowns out other noises. I have been sleeping great, even with the rocking and rolling of the ship. Kiara asked about falling out of bed, and that has not happened to me yet. I suppose it could if seas got really rough. I hope not to experience that.

stateroom
My stateroom. The bottom bunk is mine.

CDCPS science students – Remember you should be reading and responding to two different blog posts (two responses to the same post is not enough). Also please re-read your writing to make sure it makes sense and has correct spelling, punctuation and capitalization.

Why do you think sharks hang out around our boat?

Can you read this clock? What time is it?

ship clock
A clock on board. Can you tell the time?

Virginia Warren: Introduction, June 27, 2013

NOAA Teacher at Sea
Virginia Warren
Aboard R/V Hugh R. Sharp
July 9 – 17, 2013

Mission: Sea Scallop Survey
Geographical Area of Cruise: Northwest Atlantic Ocean
Date: Thursday, June 27, 2013

Personal Log:

Virginia Warren, 2013 NOAA Teacher at Sea
Virginia Warren, 2013 NOAA Teacher at Sea

Hello, my name is Virginia Warren and I live in Theodore, Alabama. I teach 5th grade science and social studies at Breitling Elementary School in Grand Bay. I am really excited to have been chosen by NOAA (National Oceanic and Atmospheric Administration) to be a part of their Teacher at Sea program! I believe that one of my biggest responsibilities as a teacher is to educate my students about the importance of protecting and conserving the earth and its seas so that they will continue to thrive for many generations to come. Both Theodore and Grand Bay are only minutes from the Gulf Coast. The Gulf Coast has abundance of what I think are the prettiest, sugar-white-sand beaches the world has to offer. Growing up on the Gulf Coast has created a love and passion in my heart for the sea and all the wonder creatures that live in it! I’m so thankful to NOAA for giving me the opportunity to be a real scientist and to learn more about the scientific research behind protecting the seas that I love so much.

Beautiful Dauphin Island, Alabama!  Courtesy of https://i1.wp.com/dibeachhouses.com/resources/beach_front_condo_rental_on_dauphin_island.JPG
Beautiful Dauphin Island, Alabama! 

Science and Technology Log:

I will be sailing from Woods Hole, Massachusetts aboard the R/V Hugh R. Sharp to participate in an Atlantic sea scallop survey. The R/V Hugh R. Sharp was built in 2006, is 146 feet long, and is the newest vessel in the University of Delaware’s College of Earth, Ocean, and Environment fleet. You can take a virtual tour of the ship by clicking here. If you would like to follow the ship while I am at sea you can track the ship here (Google Earth is required).

R/V Hugh R. Sharp Courtesy of http://www.nrl.navy.mil/media/news-releases/2013/navy-researchers-reservists-evaluate-novel-passive-sonar-surveillance-methods
R/V Hugh R. Sharp
Courtesy of http://www.nrl.navy.mil/media/news-releases/2013/navy-researchers-reservists-evaluate-novel-passive-sonar-surveillance-methods

The purpose of a sea scallop survey is to protect this important fishery from being over-harvested. Traditionally scientists will dredge the bottom of the ocean with a scallop dredge to collect samples. NOAA uses the information collected from the surveys to make decisions about which areas are okay to harvest scallops.

Atlantic Sea Scallop Courtesy of http://www.vims.edu/features/research/scallop_management.php
Atlantic Sea Scallop
Courtesy of http://www.vims.edu/features/research/scallop_management.php

The R/V Hugh R. Sharp is equipped with a relatively new piece of equipment called the HabCam, short for Habitat Camera Mapping System. The HabCam is a less invasive way to survey populations and allows scientists to see what is on the ocean floor. This is an alternative method of surveying, compared to dredging. I look forward to learning how both methods of surveying work.

What I Hope to Learn:

I am so excited to be able to learn firsthand what it’s like to be a real scientist and to be able to participate in a genuine research experience. I hope to learn more about the scientific process and pass the knowledge I learn on to my students. I am also excited to learn about the different types of sea life found in the North West Atlantic Ocean and compare that with what I know of sea life from home on the Gulf of Mexico.

Please follow me on this adventure as I post my experiences on this blog. Let me know what you think by leaving your thoughts and questions in the comment section at the bottom of every blog entry.

Robert Ulmer: The Company You Keep, June 25, 2013

NOAA Teacher At Sea

Robert Ulmer

Aboard NOAA Ship Rainier

Underway from June 15 to July 3, 2013

Current coordinates:  N 56⁰40.075’, W 134⁰20.96’

(southeast of Point Sullivan in Chatham Strait)

Mission:  Hydrographic survey

Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date:  June 25, 2013

Weather conditions:  Misty rain under a blanket of thick clouds and fog, 13.76⁰C, 84.88% relative humidity, 1001.09 mb of atmospheric pressure, very light variable winds (speed of less than 1.5 knots with a heading between 344⁰ and 11⁰)

  • Remember that headings on a ship are measured around a full 360⁰ circle clockwise from north.  Therefore, 344⁰ and 22⁰ are only 38⁰ apart directionally.
NOAA Ship Rainier, S-221, underway in Behm Canal
The operation of NOAA Ship Rainier, S-221, requires the cooperation of a large, hard-working, and multi-talented crew.

Explorer’s Log:  The crew of NOAA Ship Rainier

Especially as we leave the confines of childhood, society views us, at least in part, by our intentional decisions about which people make up our circle of friends and our group of colleagues.  Certainly such outside judgments can be unfair when based only on short-term glimpses, predisposed biases, or moments misunderstood for lack of context, but I think that long-term observations of our personal associations can provide meaningful information about us.

With Ai Wei Wei's zodiac sculptures in Washington, DC
With Ai Wei Wei’s zodiac sculptures in Washington, DC
With the crew after the 5K race at O'Leno State Park
After the 5K race at O’Leno State Park

My closest circle of friends – intentionally – is populated by a rich gumbo of personalities, ideas, ideals, physiques, insights, humors, tastes, preferences, and behaviors, all of which serve to stimulate my mind, activate my creativity, enrich my soul, entertain my spirit, and motivate my direction.  In other words, they are the scaffolding that supports me and the team that carries me along through so many parts of my own explorations.  Jasmine’s appreciation of intelligence and beauty, Collin’s sharp wit, Reece’s focused intensity, Dad’s analysis, Mom’s honesty, Lisa’s support, Grandma Madeline’s generosity, Aunt Marilyn’s and Uncle Marc’s welcome, Aunt Lynn’s spunkiness, Cheryl’s cool, Dillon’s quiet observation, Jack’s vision, Teresa’s organization, Bob’s perspective, Katy’s goodness, Chris’s enthusiasm, Emilee’s wonder, Kyle’s repartee, Casey’s lyricism, Will’s genuineness, Rien’s kindness, Tyler’s motivation, Zach’s creativity, Brian’s investment in service, Matt’s passion for justice, Gary’s sense of direction, Tommy’s helpfulness, Silas’s wordsmithery, Loubert’s jocularity, Jonathan’s love….

At College Summit training
College Summit training

And then add the brilliant and rich colors and flavors and voices of my larger group of friends and acquaintances:  the teachers, administrators, students, and neighbors who daily contribute their own stories and wisdoms to my experiences, and the result – again, intentionally – is very nearly a portrait of me… or at least the me that I aspire to become in my own journeys.

(For my varied generations of readers, think of the Magnificent Seven, the Fellowship of the Ring, and/or the Order of the Phoenix.  This is my posse.)

In other words, we often are judged and almost always are defined by the company we keep.

Wedding celebration
Wedding celebration

The NOAA Ship Rainier is no exception.  Beyond the mechanical body of the ship herself, the personnel here are the essence of the vessel that carries them.

Acting CO Mark Van Waes maintains a vigilant lookout on the bridge
Acting CO Mark Van Waes maintains a vigilant lookout on the bridge.

Smart and funny, resourceful and dedicated, skilled and hard-working, the crew members of NOAA Ship Rainier are an impressive bunch, all of whom have enriched me in the short time that I’ve been aboard, and all of whom do their jobs and interact in ways that produce superb results.  And the wholeness of their shared strengths, talents, and personalities is far greater than the sum of their individual aspects, as always is the case when a team is well-assembled.

MB_2, Red Bluff Bay, Chatham Strait, Alaska, June 23, 2013
One of the NOAA Commissioned Corps Officers appreciates the beauty of Southeast Alaska.

For more than 150 (and sometimes more than 250!) days per year, the men and women aboard ships in the NOAA fleet sacrifice time away from their own homes, friends, and families – and regularly that remoteness isolates them from news, television, phone, and internet for days or weeks at a time – in service to the public at large through their assigned missions at sea.  Currently, nearly four dozen crew members serve aboard Rainier in several departments, each of which serves its own set of functions, but all of which are unified by their shared mission, like the instrumental sections of an orchestra in the production of a symphony.

NOAA Commissioned Officer Corps

The NOAA Commissioned Officer Corps, sharply outfitted aboard ship in their navy blue ODUs (operational dress uniforms), is one of the seven uniformed services in the United States government.  For this leg of the mission, the officers  aboard Rainier serve under Acting Commanding Officer (ACO) Mark Van Waes and Executive Officer (XO) Holly Jablonski to perform three sets of functions:  administrative, navigational, and participatory.  As the administrators of the ship, the officers are responsible for everything from payroll to purchases, and communications to goodwill.  In the navigational capacity, the officers are responsible for charting the courses to be traveled by the ship and moving the vessel along those courses, sometimes with helm in hand and sometimes by giving the command orders to effectuate those maneuvers.  Finally, aboard Rainier and her sister hydrographic vessels, the junior officers are trained members of the hydrographic survey team, participating at all levels in the gathering and processing of data regarding the floor of the sea.  Ultimately, the NOAA Commissioned Officer Corps members work to define the missions of Rainier and oversee the execution of those missions.

NOAA Commissioned Officers and Third Mate Carl VerPlanck of the Deck Department navigate NOAA Ship Rainier
NOAA Commissioned Officers and Third Mate Carl VerPlanck of the Deck Department navigate NOAA Ship Rainier.

Deck Department

Members of the Deck Department let go the anchor on the bow
Members of the Deck Department let go the anchor on the bow.

Beyond the uniformed NOAA Corps crew members, Rainier also employs many highly-skilled civilian merchant mariners who work around the clock to support the officers in the duties of navigation and sailing of the ship while it is underway.  Essentially, while following the decisive command orders of the Officer Corps, the Deck Department handles the endless details involved in steering the ship and its smaller boats, along with deploying and anchoring those vessels.  Under the departmental leadership of Chief Boatswain (pronounced “bosun”) Jim Kruger, the members of the Deck Department all hold various levels of U.S. Coast Guard ratings in navigational watch-standing and deck operations, and their experiences and proficiencies earn them respect with regard to many facets of decision-making and operations on the bridge.

(The NOAA Corps and the Deck Department together have been responsible for the passage of NOAA Ship Rainier through the waterways of Southeast Alaska during my weeks aboard.  To see a cool video of NOAA’s travel through Alaska’s Inside Passage made using stop-motion photography by Ensign John Kidd, click here.)

Survey and Deck Department members work together to prepare for the day's launches
Survey and Deck Department members work together to prepare for the day’s launches.

Survey Department

The members of the Survey Department aboard NOAA Ship Rainier are civilian scientists (working hand-in-hand with survey-trained NOAA Corps officers) who have been trained in the specialized work of conducting surveys of the sea floor using single-beam sonar, multi-beam sonar, tidal gauges and leveling devices, CTD devices (to gather data about conductivity, temperature, and depth of the water column), and several very highly-technical components of computer hardware and software packages.

Only the highest point of this 150-meter-wide rock remains above the water line at high tide.
Can you see the horizontal lines on this rock formation? They are caused by cyclical changes in the elevation of the sea water as a result of tidal forces. Only the highest point (around where the bald eagle is perched) of this 150-meter-wide set of rocks (extending beyond the boundaries of this image in both directions several times the width of what this photograph shows) remains above the water line at high tide. However, the portions that become submerged remain extremely dangerous to seagoing vessels, which is why the work of the Survey Department is so important.

From Hydrographic Assistant Survey Technicians (HASTs) upward through the ranks to Chief Survey Technician (CST) Jim Jacobson, they are superb problem-solvers and analysts with undergraduate- and graduate-level degrees in the cartography, biology, geography, systems analysis, and many other fields of scientific expertise, and one survey technician aboard Rainier is an experienced mariner who transferred into the Survey Department with a broad educational background ranging from the humanities to computer science.  The members of the Survey Department spend countless hours gathering, cleaning, analyzing, and integrating data to produce nautical charts and related work products to make travel by water safer for everyone at sea.

Two-dimensional slice of data
The Survey Department compiles raw sonar and quantitative data from the ship and the launch vessels and first converts those data into a graphic file that looks like this…
... which becomes this ...
… which is a slice of this image …
Soundings
… which then goes through this sounding selection stage before eventually being finalized into a nautical chart for public use.

Physical Scientists

 NOAA physical scientist Kurt Brown joins Rainier in surveying the sea floor of Chatham Strait

NOAA physical scientist Kurt Brown joins Rainier in surveying the sea floor of Chatham Strait.

One or two physical scientists join the ship’s crew for most of the field season from one of two NOAA Hydrographic offices (in Seattle, Washington and Norfolk, Virginia), where their jobs consist of reviewing the hydrographic surveys submitted by the ships to make sure that they meet NOAA’s high standards for survey data, and compiling those surveys into products used to update the approximately 1000 nautical charts that NOAA maintains.  The ship benefits from the physical scientists’ time on board by having a person familiar with office processing of survey data while the surveys are “in the field,” and also by receiving an extra experienced hand for daily survey operations.  The physical scientists also get a refresher on hydro data collection and processing along with a better understanding of the problems that the field deals with on a daily basis, and they bring this up-to-date knowledge back to the office to share with coworkers there.

Engineering Department

Oiler Byron Doran of the Engineering Department chooses the right tools for the job.
Oiler Byron Doran of the Engineering Department chooses the right tools for the job.

The Engineering Department is a combination of U.S. Coast Guard licensed Engineering Officers (CME, 1AE, 2AE, and 3AE) and unlicensed engineering personnel (Junior Engineer, Oiler, and GVA).  Their work is concerned with the maintenance of the physical plant of the ship — everything from stopping leaks to making mechanical adjustments necessary for Rainier‘s proper and efficient running in the water.  The engineers are skilled craftsmen and craftswomen who wield multiple tools with great dexterity as needs arise.

Electronics Technicians

Electronics Technician (ET) Jeff Martin hard at work
Electronics Technician (ET) Jeff Martin is hard at work.

The Electronics Technician aboard NOAA Ship Rainier (some ships have a larger department) has the important role of making sure that the many computerized systems — both hardware and software — are properly networked and functional so that navigation and survey operations can proceed effectively and efficiently.  Having trained on radar equipment with the U.S. Navy “back in the days of glass tubes,” ET Jeff Martin is an expert’s expert, adept at prediction and troubleshooting, and skilled at developing plans for moving systems forward with the ship’s mission.

Steward Department

Chief Steward Doretha Mackey always cooks up a good time and a great meal.
Chief Steward Doretha Mackey always cooks up a good time and a great meal.
Chief Steward Kathy Brandts and GVA Ron Hurt keep the crew happily well-fed.
Chief Steward Kathy Brandts and GVA Ron Hurt keep the crew happily well-fed.

The Steward Department runs the galley (the ship’s kitchen) and currently is composed of four crew members aboard Rainier.  Specifically, they are responsible for menu preparation, food acquisition, recipe creation, baking, and meal preparation for the 40+ people who must eat three meals (and often have snacks) spread across the entire day, both underway and at port, including special meals for away-from-the-galley groups (like launch vessels and shore parties), when local goods (like fish, fruits, and vegetables) are available, and/or for crew members or guests with dietary restrictions.  An army moves on its stomach.  The meals aboard this ship, by the way, show great diversity, technique, and nutritional value, including grilled fish and steaks, vegetarian casseroles, curried pastas, homemade soups, fresh salads, and a wide variety of delicious breakfast foods, snacks, and desserts.

Second Cook Floyd Pounds works to prepare a meal for the crew.
Second Cook Floyd Pounds works to prepare a meal for the crew.

So those are the current citizens of the seagoing vessel NOAA Ship Rainier, harmonizing within a common chord, travelers who together explore the seas by working together to achieve their unified mission.  They are the excellent company that I keep on this leg of the exploration.

As you endeavor upon your own journeys, remember always to choose your company wisely so that your efforts are supported when challenging, insulated when vulnerable, motivated when difficult, and celebrated when successful.  And once you are surrounded by those good people, keep exploring, my friends.

Even the sea otters take some time to relax and enjoy one another's company.
Sea otters enjoy one another’s company along their way.

Personal Log:  Enjoy yourself along the way

Although they all work long, hard hours at their many assigned tasks, members of the team aboard NOAA Ship Rainier also enjoy one another’s company and occasionally get to have a good time.  Sharing an isolated, moving home barely 70 meters long with four dozen people for several weeks at a time guarantees social interaction, and the sounds of testimonies of laughter and friendship regularly fill the air in and around the ship, both among the workstations and away from the ship.

Ensign Theresa Madsen and Second Assistant Engineer Evan McDermott, my exploration partners in Red Bluff Bay
Ensign Theresa Madsen and Second Assistant Engineer Evan McDermott, my exploration partners in Red Bluff Bay
One of Carl's many catches
One of Carl’s many catches

Since joining the crew of Rainier just a week and a half ago – and beyond the many exciting excursions that are simply part of the regular jobs here – I already have been invited to join various smaller groups in exploring a town, dining in a local eatery, watching a movie, climbing a glacier, fishing in the waters of Bay of Pillars, walking on a beach, and kayaking through beautiful Red Bluff Bay past stunning waterfalls, huge mountains, and crystal-clear icy streams, including a spontaneous hike into the deep and wild, verdant and  untrammeled woods above the shore, following uncut paths usually trod only by deer and bears on their way to the frigid water running down from the snow-capped peaks high above.

Evan replaces his socks after walking through the stream
Evan replaces his socks after walking through the frigid stream.
Evan takes the lead hiking into the woods (armed with bear spray and an adventurer's spirit)
Evan takes the lead hiking into the woods, armed with bear spray and an adventurer’s spirit!

Truly, the people aboard Rainier know how to enjoy the gift of life.  And I feel honored, flattered, privileged, and happy to be included among these new friends on their great adventures.

Beautiful waterfall in Red Bluff Bay
A beautiful waterfall that Theresa, Evan, and I explored in Red Bluff Bay

Yaara Crane: My Morning on a Survey Launch, June 26, 2013

NOAA Teacher at Sea
Yaara Crane
Aboard NOAA Ship Thomas Jefferson
June 22, 2013 – July 3, 2013

survey boat on TJ
The survey boat is moving from its cradle on the deck of the TJ.

Mission: Hydrographic Survey
Geographical area of cruise: Mid-Atlantic
Date: Wednesday, June 26, 2013 

Latitude: 38.84°N
Longitude: 75.04°W

Weather Data from Bridge:
Wind Speed: 8.35 knots
Surface Water Temperature: 21.29°C
Air Temperature:  22.80°C
Relative Humidity: 82.00%
Barometric Pressure: 1011.36mb

hydro survey boat
The survey launch on its way
Todd and Yaara
I am talking with the HIC about the notations on the nautical chart for our survey grounds.

Science and Technology Log

As promised, today’s post is going to be about the Hydrographic Survey Launches. The Thomas Jefferson has two of these boats that are generally launched by 8:00am and return to the ship at 5:30pm. On Tuesday, my official role was Hydrographer in Training. I joined HIC Todd and Coxn Junior for a day of surveying on boat 3102. After a morning of seasickness, they returned me to the TJ around 11:30 to recuperate. However, I was still able to experience a little of what they do every day and the hilarious camaraderie between the two!

In general, the survey launches do the same work as the Thomas Jefferson, just on a smaller scale. The TJ can only drive on lines with a minimum depth of 30 feet, but the survey launches can go to a minimum depth of 12 feet which allows them to get much closer to shoals and the coast. Every morning, the launch survey teams have a meeting with the FOO and XO in the survey room to discuss logistics and safety. My boat was headed out to survey grounds on a new sheet near Cape May, New Jersey. Specifically, we were driving lines in the Prissy Wicks Shoal. This particular region has highly variable depths and created quite a challenge for the HIC and Coxn for two reasons: you cannot navigate in straight lines over shoals, and the shoals constantly change so you must drive slowly in case an area is shallower than charted.

HIC Todd
Todd is at his workstation in the cabin.

Todd has been a HIC for both the Rainier and the Thomas Jefferson. In this position, he was worked with many Teachers at Sea, and gave me lots of great resources to bring back to school. The HIC sits inside the cabin and makes sure that all of the equipment is working together and logging the correct data. Just like on the ship, he has an MBES, HYPACK, and POS-MV to help him do his job. However, unlike the ship, he does not have an MVP, and must launch a CTD every four hours to measure the sound velocity profile in the water column. Measuring the sound velocity profile is an important part of correcting the MBES data for improved accuracy. Remember, the equipment is very sensitive to changes in the water because the farther the sound waves travel, the more they are affected by changes in the density of the medium through which they travel.

Coxn
Junior is doing his best to keep us on the line

Junior’s job as Coxn is to work with the HIC to safely navigate the boat on the survey lines. The Coxn has a monitor controlled by the HIC to help him see the current chart and line. Junior gave me the opportunity to try driving, and I barely lasted 15 seconds before I was off the line! Tuesday was particularly complex because we were in a highly trafficked waterway, shoals appeared out of nowhere, and there was a very strong current around the cape. When another boat appears in the line, the Coxn must bring his boat to a standstill while staying on the line so that data collection does not have to stop. If the survey line goes over an area that is particularly shallow, a decision needs to be made about how to get around the shoal without hitting the bottom. A lot of good-natured yelling happens between the Coxn and HIC so that they can hear each other and be in constant communication.

Once the survey launch has returned to the main ship, the data is downloaded onto a server from which the hydrographers can move the data into CARIS. Eventually all of that data will be turned into a new nautical chart to help marine vessels maneuver through the waters.

survey lines
What looks like highlighting is the multi-beam data from the survey launches. The colors get warmer (red) as the depth gets shallower

Today’s Acronyms and Abbreviations (some old, some new)

HIC – Hydrographer in Charge

Coxn – Coxswain

FOO – Field Operations Officer

XO – Executive Officer

MBES – Multi-Beam Echo Sounder

MVP – Moving Vessel Profiler

HYPACK – Surprise, not an acronym! This is just the name of the software.

POSMV – Positioning Orientation System Marine Vessel

SSS – Side Scan Sonar

CTD – Conductivity, Temperature, and Depth

CARIS – Computer-Aided Resource Information System. This software allows scientists to process the data that comes from HYPACK. Hypack collects data one line at a time, while CARIS allows you to combine the lines into a new nautical chart.

Prissy Wicks
The chart of Prissy Wicks Shoal shows the extreme changes in depths in a very small area.

Personal Log

Well, my bout of seasickness started about half an hour into my time on the survey launch. I started off in the cabin with the HIC, and the swells in the water got to me immediately. I spent the rest of the time on the deck with the Coxn trying to keep my eyes on the horizon. Through it all, I still managed to get a glimpse of some dolphins playing in the swells and saw many different types of boats and ships sailing around. When I was returned to the ship, I immediately felt better. However, the medical officer took precautionary measures and measured my blood pressure (totally normal, as usual for me) and prescribed 1.5 Liters of water before bed for the night. I took a nice long nap, and woke up in time for a delicious vegetable casserole for dinner. I am feeling back to 100% today, and hope to stay awake tonight. The TJ runs 24 hour operations, so I will pop by the bridge and survey rooms to see what it looks like after dark.

emergency signal
This sign is placed in each room as a reminder of what to do in case of emergencies.

Did You Know?

While at sea, it is required to perform at least one safety drill a week. Today, we had a fire drill and an abandon ship drill.

abandon ship suit
As part of my safety orientation, I had to put on the survival suit. I think I need a smaller size…
muster
My assigned muster locations for emergencies.

Amie Ell: Preparing for an Adventure, June 26, 2013

NOAA Teacher at Sea
Amie Ell
Aboard NOAA Ship Oscar Dyson (Ship Tracker)
June 29 — July 18, 2013

Mission: Walleye Pollock Survey
Geographical Area: Kodiak, Alaska

Date: June 26, 2013

Personal Log

Amie Ell, NBCT Columbia High School White Salmon, WA
Amie Ell, NBCT
Columbia High School – White Salmon, WA

Hello everyone!  Thank you for visiting my blog.  I hope you continue to follow my journeys this summer.  Please allow me to introduce myself. My name is Amie Ell.  I am a teacher of sciences and mathematics at Columbia High School in White Salmon, WA. I live across the beautiful Columbia River in The Dalles, Oregon with my husband and two daughters.  I have taught for 10 years, 8 of them with my wonderful CHS clan!  I teach Physical, Earth, and Space Sciences as well as Algebra to primarily 9th graders.

This Friday I will fly to Kodiak to meet the crew of the Oscar Dyson and begin my adventure.  I was elated to learn that I had been chosen to be a part of the NOAA Teacher at Sea program and assigned to the Oscar Dyson. I had hoped that I would be given the opportunity to visit Alaska.   I have traveled to and explored many tropical ocean waters, but this will be my first Alaskan experience.  The commanding officer tells me that “…This Gulf of Alaska Pollock survey is one of the best ways to see the remote coastline of Alaska and to experience one of its foundation industries from a research perspective…”

The NOAA Ship Oscar Dyson (photo courtesy of NOAA)
The NOAA Ship Oscar Dyson (photo courtesy of NOAA)

I have learned that I will be helping with a survey of the Alaskan walleye pollock.  The main source of fish for many fast food fish sandwiches,  fish sticks, and even your imitation crab meat is the walleye pollock.  It is very important for scientists to maintain a careful watch on these fish so that their populations are not decimated by overfishing.

Please leave questions and comments for me.  I would love to hear from you all.  I know I will be missing home, friends, family, and all “my kids” at Columbia High.  Check back often.  I will always try to investigate and answer any questions you have.  Let’s begin our communication with a little survey:

Did You Know?  NOAA’s Pacific Marine Operations Center is located in Newport, OR.  Nine ships are serviced here including the Oscar Dyson.  Many of you have visited the Oregon Coast Aquarium in Newport.  Next time you are there, see if you can spot this NOAA hub.

NOAA Pacific Marine Operations in Newport, OR.  (photo courtesy of NOAA)
NOAA Pacific Marine Operations in Newport, OR. (photo courtesy of NOAA)

Sue Cullumber: Reflections – From the Atlantic to Arizona, June 26, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/26/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

1stgroup
Our first group for the EcoMon Survey. Kat, Kevin, Holly, Chris, Tom, Sue, Chris, and Cristina.

Personal Log: Well I’m back in my home state of Arizona.  It is really hot, the forecast is for it to be above 110º, and I miss the cool breezes of the Atlantic Ocean.  I am happy to be back in Arizona, but I will miss all the people, the marine creatures and the beauty of the Atlantic Ocean.  I will remember  this experience for the rest of my life and look forward to sharing this exciting adventure with my students, friends and family.

2ndgroup2
Our 2nd group for the EcoMon Survey. Tom, Kris, Cristina, David, Sue, Chris, Kevin and Sarah.

On the last two days onboard we finished up our EcoMon Survey and had time to add 23 more Bongo Stations.  These were completed in two areas with the first just east of Maryland and the second off the coast of North Carolina. As we headed east of North Carolina we went into the Gulf Stream and the water temperature started to increase. At these stations our samples contained more larval fish than previously. We even brought up some deep-sea fish in two of these samples. One was a species of Gonostoma and the second a Hatchet fish. Both were fairly small and black with iridescent colors and had large mouths with many teeth.

deepseafish6_22
A fish, from the species Gonostoma, that was brought up in our Bongo net.
deepseahatchet6_22
A Hatchet fish in our Bongo net sample.

Our drifter buoy, WMO # 44932,  has been showing some movement since being deployed (to track movement, put GTS buoy for data set and WMO # for platform ID).  Currently it is at latitude/ longitude:  38.73ºN, 73.61ºW.  It does appear to be moving inland, but hopefully it will catch the current and start moving further into the Atlantic.  We will be tracking it at Howard Gray over the next year.

margaretcrablegs
Margaret Coyle, our chief steward, serving Alaskan crab legs.

Last day on the Gordon Gunter, Margaret, the chief steward, prepared a special meal for all of us.  The spread included: Alaskan crab legs, roast duck with plum sauce, NY loin strip Oscar, grilled salmon, asparagus, red potatoes, Italian rolls, cream of potato and bacon soup (which I had at lunch, delicious) and cranberry cheesecake.  I choose the crab, duck, asparagus, potatoes, and cheesecake – heavenly!!!  I probably shouldn’t have had the cheesecake as well,  but it was just delicious!  Margaret always had so many great choices it was really hard to make up your mind.

dolphinbottlenose
Bottlenose Dolphin at the bow of the Gordon Gunter.

Our last night on the Gordon Gunter was amazing. We had another unbelievable sunset with fantastic colors.  A friend of mine from Arizona said, “It makes our Arizona sunsets look very bland and I think they are some of the best I’ve seen.”  Then a group of Bottlenose dolphins visited the bow of the ship, so it was truly a remarkable night I will always remember.

sunsetfinal
Our final sunset on the Gordon Gunter.
sueongunter6_24
Enjoying the cool breezes of the Atlantic Ocean.

Question of the day? :  Why do you think the deep-sea fish have such large mouths?

Yaara Crane: Hydrography is Underway, June 24, 2013

NOAA Teacher at Sea
Yaara Crane
Aboard NOAA Ship Thomas Jefferson
June 22, 2013 – July 3, 2013 

Mission: Hydrographic Survey

SSS fish
The SSS looks like a fish on a line just before it gets lowered into the water.

Geographical area of cruise: Mid-Atlantic
Date: Monday, June 24, 2013 

Latitude: 38.81°N
Longitude: 75.10°W 

Weather Data from Bridge:
Wind Speed: 11.54 knots
Surface Water Temperature: 20.41°C
Air Temperature:  24.30°C
Relative Humidity: 86.00%
Barometric Pressure: 1018.16mb

Science and Technology Log

The plan of the day (POD) for today included launching two survey ships (also known as Hydrographic Survey Launches), fixing the MBES, and pulling up anchor. The survey launches must have at least two people aboard: the hydrographer in charge (HIC) and the coxswain. They go out most days collecting data from about 7:30am until 5:30pm. While the Thomas Jefferson (TJ) has been anchored, these small survey boats have still been able to go out and work. I will have more information about these smaller boats in my next post as I plan to go on tomorrow’s survey team to learn what these individuals do each day.

TJ FRB
The FRB is put into its cradle using the davit to lift it from the water.

We have been anchored just off the coast of Lewes, DE in the Harbor of Refuge since Saturday morning. The CO (commanding officer) paged me at 12:30 today to observe while we were heaving the anchor in. I was allowed to stand on the bow and lean over the side of ship to watch. Pulling up the anchor was excellent news because it meant that the equipment delivery had arrived and the data collection would be able to begin again. Just after the anchor came up, I watched the FRB (fast rescue boat) make its delivery and be lifted into its cradle by the use of davits overhanging the deck.

hydro monitors
The workstation by the bridge has 5 monitors working to make sure the hydrographers are getting clear data. The bottom right monitor shows the current sheet and line we are sailing on.

We then sailed for a while to make it to our survey grounds. The Thomas Jefferson collects data by sailing in specified lines through the ocean; navigating to the beginning of a line takes skill and practice. NOAA assigns survey sheets which are sections of water with hundreds of lines that have earned priority to be charted on a particular leg of a journey. It is imperative that the watch standers on the bridge keep the ship on its planned survey lines to ensure that the entire ocean floor in a specific sheet is covered.  If you follow the path of the TJ on NOAA’s shiptracker, you might be able to zoom in to see the TJ going back and forth along these lines that are spaced exactly 120m apart. The 120m lines are carefully determined based on the fact that the SSS can measure 75m in either direction. Due to the nature of acoustic imaging, the farther a sound wave travels, the worse its accuracy will become. Therefore, a 30 m overlap of the SSS data occurs with 120m line spacing and the farthest distances will be able to be analyzed twice. If you remember, the MBES sends out a swath or cone of sound waves, so it will never be able to reach the farthest parts of the lines without being in extremely deep water. If the SSS picks up irregularities towards the edges of the data, the entire ship will have to break course to sweep back over the area in order to collect MBES data on that point.

SSS image
The side scan sonar is doing its job showing us the sand patterns on the ocean floor. The black in the center of the image is the water column directly underneath the ship which cannot be imaged by the SSS.

Today was the first time that I really had the opportunity to see what this ship is all about, and I look forward to seeing what kinds of objects can be detected on the sea floor.

 Personal Log

 Yesterday, our kayak adventure around Lewes gave me the opportunity to chat with a lot more people about their backgrounds and roles on the ship. Although everyone is very welcoming, this is certainly a very busy vessel and I appreciated the time to talk with people when I knew I was not interrupting their work. I was buddied up with Eileen, a junior officer, and Steve, the second engineer. Eileen is the newest NOAA Corps Officer on board the TJ, and is in training for many different certifications. She and Charles, another junior officer, need to earn hours towards their FRB certification and spent some time driving the FRB on the ride back from kayaking to the ship. It is jet propelled and extremely responsive and maneuverable. I was able to drive it for a few minutes on my first day, and that thing can really move!

TJ menu
Today’s delicious menu selection

The mess area is still a very exciting area of the ship for me. Normally, I avoid the high school cafeteria but I just can’t get enough on the ship! It probably helps that I am only on the ship for a short amount of time, but so far I have been enjoying all of the food. The chef posts a menu every day, and meals are served at 7:00am, 11:30am, and 4:30pm. Outside of those hours, there is still food available in the form of a salad bar, ice cream bar, cold and hot drinks, cereal, and probably other things I have not yet discovered. All of these options are certainly a necessity because there is no take out or delivery in the middle of the Delaware Bay.

Did You Know?

 The anchor of the Thomas Jefferson weighs 3500 pounds. To clean off the mud from a dirty anchor, the ship will drag the anchor at surface level and let the running water of the sea do the cleaning.

TJ anchor
The anchor has been dragging in the water for several minutes. You can see that one side still has the mud caked on it from the ocean floor.
Yaara near anchor
I am in my safety gear as the crew begins to lift the anchor chain located behind me.

Robert Ulmer: Just Keep Walking, June 22, 2013

NOAA Teacher At Sea

Robert Ulmer

Aboard NOAA Ship Rainier

Underway from June 15 to July 3, 2013

Current coordinates:  N 56⁰56.023’, W 133⁰56.343’

(at Frederick Sound in Keku Strait off Kake, Alaska)

Mission: Hydrographic survey

Geographical area of cruise: Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date: June 22, 2013

Weather conditions: 14.08⁰C, overcast skies with increasing cloud coverage, 92.82% relative humidity, 1014.29 mb of atmospheric pressure, light variable winds (speed of less than 3.5 knots with a heading between 10⁰ and 19⁰)

Passing cruise ship
This large cruise ship is one of many seagoing vessels ships in Southeastern Alaska that rely on NOAA-produced nautical charts for safe navigation.

Explorer’s Log:  Long days on the trail

Fog in the morning at the mouth of Bay of Pillars
Thick fog had settled on Chatham Strait, where the launches would be surveying for the day, as seen from the ship’s anchored location in Bay of Pillars.

When we think about explorers, we usually focus on the “big moments” – the crescendos of excitement that build as the storytellers regale us with tales of daring escapes from danger, amazing sights visible only from the summit, or exotic flavors tasted upon the foreign shore.  But life-long explorers know that those moments are far outnumbered by the sometimes seemingly endless minutes or hours, days or weeks, maybe even months or years of simply walking the path, step after step after step, watching the slow passing of tree after tree after tree.

Those less thrilling hours rarely are described in the grand adventure stories, but in those countless footfalls lie many of the greatest parts of exploration, for it is only in those moments that the explorer has time to ponder.

Smooth water and thick fog
Smooth water and thick fog are common conditions in the navigable waterways of Southeast Alaska, underscoring the importance of good nautical charts.

In 1905 a very bright young man in his mid-twenties worked for a few years as a clerk in the patent office in Bern, Switzerland.  Although the post gave him access to interesting new inventions and processes being developed in electronics, thermodynamics, mechanics, and communications, his job often required him to grind through the daily routine of receiving, reviewing, and filing thousands upon thousands of technical and administrative documents, tasks which his brilliant mind could achieve without much effort.  Not too exciting, perhaps.  But it is only in that easy comfort of performing the same routine behaviors minute after minute that the young clerk found the quiet sanctuary to evaluate and synthesize a miasma of strange ideas and eventually synthesize them into five papers about matter, time, energy, space, and motion that would revolutionize the field of physics.

Indeed, not every person is Albert Einstein, but all explorers sometimes find themselves in that “cruise control” mode, where the body knows the routine mechanics to perform, and so the mind can invest in a different sort of exploration.  Inward.

A small cruise ship passing in Bay of Pillars
Small cruise ships can navigate deep into scenic waterways, like Bay of Pillars along Chatham Strait.
TAS Rob Ulmer casts the CTD device
Teacher At Sea Rob Ulmer uses the winch aboard launch vessel RA-6 to cast the CTD device, which gathers data about conductivity, temperature, and depth of the water in the column from the surface to the sea floor.

A gardener mowing back and forth across the lawn, a painter applying the brush line after overlapping line to cover the wall, and a swimmer pulling stroke after stroke to swim his half-mile of warm-up laps all gain skill with their craft over hours or miles or practice, and so their minds can be freed to wander a bit, perhaps contemplating more deeply the patterns in the passing clouds, maybe solving a puzzle that has been teasing at the edge of consciousness, or maybe considering how a hedge of heather might look if planted in a certain area of the landscape.  Or – just as meaningfully – maybe the explorer in those moments revisits something far more personal or spiritual or metaphysical, some conundrum or quandary or dilemma, whether recent or from long ago, in a way that is available only because of the serenity of the repetition.  Sometimes such musings simply aren’t accessible when the mind is occupied with more accelerated or more cumbersome activity.

The CTD and the winch mechanism
This winch mechanism can lower the CTD device (the tube to the left) through many fathoms of water.
AB Jeff Mays casting the "fish" with the MVP
AB Jeff Mays casting the “fish” with the MVP

And as the explorer’s mastery of basic skills evolves from novice toward more expert levels, his place on the learning curve changes, as well.  The learning curve where the novice stands is steep, as every bit of investment offers the possibility of relatively fast and tremendous growth, while the marginal returns for the wise and skilled explorer of the craft come subtly from patient observation and insight.  For the rookie woodworker, for example, every spin of the lathe is an iteration of powerful change to be controlled and investigated and marveled at, but the more advanced craftsman who has milled thousands of dowels in his journey toward expertise in his craft has room during the lathe-work to possibly discover some small nuance about cutting bevels or reading grains that would be lost even if offered to the rookie in his excited novitiate mindset.

Operating the MVP
AB Tony Nielsen operates the Moving Vessel Profile (MVP) to cast and recover the “fish” as Rainier conducts a multi-beam survey of the sea floor in Chatham Strait.
 "Fish" in the water
The “fish” in the water

Some of my own moments of greatest inspiration have arrived when my friend Rien and I have been wordlessly walking the autumnally brisk trails of the North Georgia mountains.  No longer burdened with the previously-taxing questions of how to deal with unstable rocks at my feet or what gait to use on a certain downhill slope, in those miles of simply continuing to walk forward my cleared mind has unfolded complete verses of poetry, bits of insight about soccer or macroeconomics or how to differently arrange the gear in my backpack, even exact phrasings for whole lessons or assessments to be used in my classroom.  Those thoughts simply couldn’t have reached such clarity in the exciting exhaustion of the first morning’s climb up Amicalola Falls.

Survey/Launch team meeting on the fantail
Survey/Launch team meeting on the fantail

Yesterday morning, after Field Operations Officer Mike Gonsalves finished the usual pre-launch meeting on the fantail and dismissed the crews to their boats (with my shift remaining aboard the ship to learn some data processing skills), I began one of my most common activities aboard Rainier, taking photographs of the scene.  Pictures of the FOO and the Chief Boatswain coordinating launch activities, pictures of the rest of the crew at work, pictures of the ship herself, pictures of the waters and land features surrounding the ship…  all very routine.

Fog and rock in distance as launch vessel departs to survey Chatham Strait
This is the view forward across the bow of NOAA Ship Rainier as a launch vessel departs to survey the sea floor of Chatham Strait.
Closer view of fog over rock
Isn’t it difficult to not see the fog above the rock island now that you’re looking for it?

But then it happened.  I noticed in the distance beyond the bow of the ship a slight something.  Something different than usual.  A small hemispherical island – a rock, really – extending ten feet or so above the waterline, protruding through the fog that hovered ethereally a few feet above the water in every direction.  But it was the fog that caught my eye.  The fog didn’t just surround the rock; it blanketed the rock at not quite exactly the same elevation that it otherwise maintained above the nearby sheet of flat, still water.  And in the quiet comfort of my rote and repeated clicking of the shutter, I had an epiphany, a sudden symphonic upwelling of clarity about pressure and temperature and fluid dynamics and light that simply could not have happened if my thoughts had been cluttered with hasty necessities of rapid activity.

FOO Mike Gonsalves and HAST Curran McBride discuss survey data in the plot room.
FOO Mike Gonsalves and HAST Curran discuss survey data in the plot room.

Like most insights, I’m not sure if or when that particular bit of understanding will ever matter again in my future, but at the moment it was pure and good in its value to the core of my inner explorer:  I saw something that I had not seen before.

Full of surprises!
Some very exciting information during multi-beam surveying aboard the launch vessel surprises TAS Rob Ulmer and HAST Curran.
Boys will be boys
A whole day of surveying aboard the launch vessel can become a long venture in close quarters!

So where does this soliloquy about walking the long and quiet path fit with my experiences aboard NOAA Ship Rainier?  For the past several days and for the next several coming days, two or three small, crewed launch vessels per day (and often the ship herself) are painting overlapping swaths of sonar across the sea floor in Chatham Strait.  Back, forth, back, forth….

Imagine mowing an enormous lawn miles long at a slow walking pace with a lawnmower that needs constant adjustment and calibration every time you pass a tree or shrub, all the while keeping data about the thickness of the grass, the color of the soil beneath, the amount of dew on the blades, and the exact rotational velocity of the motor.  And this lawn is not just enormous by usual standards, either.  It’s miles long, miles wide.  Rain, snow, wind, uneven ground, you just keep mowing.  And when you get finished for the day, not only do you know that you have dozens of days left before you finish mowing this lawn as it continues over the horizon, but you also discover as you look back out with your special viewing machinery at home that there are a few spots that you missed on the first pass and must clean up tomorrow before you can move forward, maybe because the mower blade malfunctioned, or maybe because the ground underneath was slightly tilted as you passed above it.  But you keep mowing, both because you want the job done, but also because you love the work and take great pride in your work product.

Noooo!!!!!
The boys finally reach a resolution in their debate about survey data.

Replace it with painting a giant wall, and the analogy to multi-beam sea floor hydrographic surveying still is nearly perfect.

Oh, and don’t forget that you have a partner at home who will spend hours analyzing every bag of grass clippings, sorting and organizing and then weaving every single blade of grass into a beautiful and varied quilt of fabric that she makes from the piece that you bring her after painstakingly separating out random bugs and sticks leaves from trees and shrubs that look like grass but aren’t….  Whew!  This partner (following the analogy) is a member of the post-launch evening processing crew, by the way, who begins work as soon as the launch vessels return and doesn’t finish until hundreds of lines of data have been uploaded, converted into other numerical and graphical forms, and then “cleaned” for initial post-survey analysis aboard ship before being more thoroughly analyzed for months or years at NOAA shore-side labs and offices before ultimately evolving into published nautical charts or other useful end-products.

Painting the floor
Launch vessel RA-4 “paints” the huge floor of Chatham Strait one slow swath at a time.
Same fishing boat, another pass
Aboard launch vessel RA-6, we passed this fishing boat several times while surveying a “polygon” of Chatham Strait.

Day after day, mile after mile, the NOAA survey teams explore the seas, quietly walking their own trail so that other explorers can more safely navigate their treks, as well.  And every once in an inspired while, the hydrographer can be heard uttering a gleeful, “Aha!” about some insight discovered along the way.

Keep walking, my friends, even when the trail is long.  Sometimes it is there that you will do your best exploring.

Passing a fishing boat
Another pass of the same fishing boat.  A long day for both crews, perhaps, but at least the magnificent scenery leaves plenty of room for pondering.

Robert Ulmer: Build Upon a Strong Foundation, June 19, 2013

NOAA Teacher At Sea

Robert Ulmer

Aboard NOAA Ship Rainier

Underway from June 15 to July 3, 2013

Current coordinates:  N 56⁰35.547’, W 134⁰36.925’

(approaching Red Bluff Bay in Chatham Strait)

Mission:  Hydrographic survey

Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date:  June 19, 2013

Weather conditions:  10.93⁰C, less than 0.5 km visibility in thick fog, 95.42% relative humidity, 1013.38 mb of atmospheric pressure, light variable winds (speed of less than 3 knots with a heading between 24⁰ and 35⁰)

 

Explorer’s Log:  Survey, sample, and tide parties

Scientists are explorers, wandering the wilderness of wonder and curiosity their with eyes and minds wide open to events, ideas, and explanations that no other humans may have previously experienced.  And by definition, explorers — including scientists — also are builders, as they construct novel paths of adventure along their journeys, built always upon the strong foundations of their own reliable cognitions and skill sets.

Ensign Rosemary Abbitt making a level sighting measurement
Ensign Rosemary Abbitt making a level sighting measurement

Starting from their own observations of the world around them, prior knowledge, and context, scientists inject creativity and insight to develop hypotheses about how and why things happen.  Testing those ideas involves developing a plan and then gathering relevant data (pieces of information) so that they can move down the path of whittling away explanations that aren’t empirically supported by the data and adding to the collective body of knowledge, so that they and others might better fathom the likely explanations that are behind the phenomena in question.

Rainier lowering a launch vessel
NOAA Ship Rainier lowers launch vessel RA-5 for a survey excursion.

Because progress along the scientific path of discovery and explanation ultimately depends on the data, those data must be both accurate and precise.  Often these terms are confused in regular conversation, but each word has its own definition.

Approaching the shore from the skiff
A view from the skiff of the shoreline where the benchmarks and tide gauge staff already are installed.

Accuracy is a description of the degree of closeness or proximity of measurements of a quantity to the actual value of that quantity.  A soccer player who shoots on goal several times and has most of his shots reach the inside of the net is an accurate shooter.  Likewise, a set of measurements of the density of a large volume of seawater is more accurate if the sample data all are near the actual density of that seawater; a measurement that is 0.4% higher than the actual density of the water is just as accurate as another measurement of the same water that is 0.4% below the actual density value.

HAST Curran McBride visually examining the condition of the tide staff
Before making more detailed data collections, Hydrographic Assistant Survey Technician (HAST) Curran first conducts a visual inspection of the previously-installed tide staff upon arriving at the shore.

Precision (also called reproducibility or repeatability), on the other hand, is the degree to which repeated measurements under unchanged conditions show the same results.  If every shot attempted by the soccer player strikes the left goalpost four feet above the ground, those shots aren’t necessarily accurate – assuming that the player wants to score goals – but they are very precise.  So, similarly, a set of measurements of seawater density that repeatedly is 5.3% above the actual density of the water is precise (though not particularly accurate).

HAST Curran McBride collecting data near the tide staff
HAST Curran collects data near the tide staff during the closing level run in Behm Canal.

The NOAA teams that conduct hydrographic surveys, collect seafloor samples, and gather data about tide conditions must be both accurate and precise because the culmination of their work collecting data in the field is the production of nautical charts and tide reports that will be used around the world for commerce, recreation, travel, fisheries management, environmental conservation, and countless other purposes.

Cabin of the launch vessel
Crew of the survey/sample team in the cabin of the launch vessel (and the Coxswain piloting the boat)

Hydrographic surveys of some sort have been conducted for centuries.  Ancient Egyptian hieroglyphs show men aboard boats using ropes or poles to fathom the depths of the water.  In 1807, President Thomas Jefferson signed a mandate establishing the Survey of the Coast.  Since that time, government-based agencies (now NOAA’s Office of Coast Survey) have employed various systems of surveying depths, dangers, and seabed descriptions along the 95,000 miles of navigable U.S. coastlines, which regularly change due to attrition, deposition, glaciation, tectonic shifts, and other outside forces.

Analyzing data aboard the launch
Hydrographic Senior Survey Technician Barry Jackson and Physical Scientist Kurt Brown analyze historic and new data from multi-beam sonar aboard the launch vessel.

For most of that history, data were collected through a systematic dropping of weighted lines (called “lead lines”) from boats moving back and forth across navigable channels at points along an imaginary grid, with calibration from at least two shore points to assure location of the boat.  Beyond the geometry, algebra, and other mathematics of measurement and triangulation, the work was painstakingly slow, as ropes had to be lowered, hauled, and measured at every point, and the men ashore often traveled alongside the boat by foot across difficult and dangerous terrain.  However, the charts made by those early surveys were rather accurate for most purposes.

Starboard of launch vessel RA-4
Starboard of launch vessel RA-4

The biggest problem with the early charts, though, was that no measurements were made between the grid points, and the seafloor is not always a smooth surface.  Uncharted rocks, reefs, or rises on the seabed could be disastrous if ships passed above them.

HSST Barry Jackson collecting sea floor sample
HSST Barry Jackson pulls a line hand over hand to retrieve a scooped sea floor sample from a depth of more than 45 meters in Behm Canal.
HSST Barry Jackson analyzing sea floor sample
… and then analyzes what the scoop captured: mud and gravel in this case.

Starting in the 1990s, single-beam sonar became the primary mechanism for NOAA’s surveys.  Still looking straight down, single-beam sonar on large ships and on their small “launch vessels” (for areas that couldn’t be accessed safely by larger craft) provided a much more complete mapping of the seafloor than the ropes used previously.  Sonar systems constantly (many times per second) ping while traveling back and forth across and along a channel, using the speed and angle of reflection of the emitted sound waves to locate and measure the depth of bottom features.

Handwritten notes about sea floor samples
Data about sea floor samples first are recorded by hand on a chart aboard the launch vessel before being uploaded to NOAA computers later.

Sound waves travel at different speeds through different materials, based on the temperature, density, and elasticity of each medium.  Therefore, NOAA also deploys CTD devices through columns of surveyed waterways to measure electrical conductivity (which indicates salinity because of ionization of salts dissolved in the water, thus affecting solution density), temperature (which usually is colder at greater depths, but not necessarily, especially considering runoff from glaciers, etc.), and depth (which generally has a positive-variation relationship with water pressure, meaning more pressure – and thus, greater density – as depth below the surface increases).

CTD device about to be deployed
This CTD device measures conductivity, temperature, and depth in the water. All three affect the speed of the sound waves in water, and the speed of sound is a necessary bit of data when using sonar (which tracks reflected pings of sound) to determine the distance to the sea floor.

The most modern technology employed by NOAA in its hydrographic surveys uses multi-beam sonar to give even more complete coverage of the seafloor by sending sound waves straight downward and fanned outward in both directions as the boat travels slowly forward.  Even though sonar beams sent at angles don’t reflect as much or as directly as those sent straight downward, uneven surfaces on the seabed do reflect some wave energy, thus reducing the occurrence of “holidays” (small areas not well-defined on charts, perhaps named after unpainted bits of canvas in portraits because the painter seemed to have “taken a holiday” from painting there).

Acquiring hydrographic data
FOO Mike Gonsalves and HAST Allix Slagle acquire hydrographic data with the ship’s Kongsberg EM-710 multi-beam sonar.
TAS Rob Ulmer retrieving sea floor sample in Behm Canal
Aboard the small launch vessel, everyone works. This is Teacher At Sea Rob Ulmer hauling in a sea floor sample in Behm Canal.

But that’s not all.  To help sailors make decisions about navigation and anchoring – and often giving fishermen and marine biologists useful information about ecology under the waterline – NOAA also performs systematic samples of the types of materials on the sea floor at representative points in the waterways where it conducts surveys.  Dropping heavy metallic scoop devices on lines* dozens of meters long through waters at various locations and then hauling them back aboard by winch or hand-over-hand to inspect the mud, sand, silt, gravel, rocks, shells, plants, or animals can be physically demanding labor but is necessary for the gathering of empirical data.

* A note about terminology from XO Holly Jablonski:  Aboard the ship, lines have a job.  Think of a “rope” as an unemployed line.

Additionally, Earth’s moon and sun (along with several underground factors) affect the horizontal and vertical movement of water on Earth’s surface, especially due to their gravitational pulls as Earth spins on its axis and orbits the sun and as the moon orbits Earth.  Therefore, information about tides is extremely important to understanding the geography of nautical navigation, as the points below the waterline are identified on charts relative to the mean low water mark (so sailors know the least amount of clearance they might have beneath their vessels), and points above the waterline are identified relative to the mean high water mark (including notation of whether those object sometimes are fully submerged).

Evidence of tidal changes along the shoreline of Behm Canal
Can you see the evidence of tidal changes along the shoreline of Behm Canal? Color differences form strata along the rocks, and lowest leaves of the trees give further evidence of the highest reach of the water.
Ensign Damian Manda manually levels the sighting rod
Ensign Damian Manda manually levels the sighting rod upon the “turtle” using a carpenter’s bubble-leveling device.

To gather accurate and precise data about tidal influences on local waters, NOAA sends tides-leveling shore parties and dive teams into difficult conditions – commonly climbing up, down, and across rock faces, traversing dense vegetation, and encountering local wildlife (including grizzly bears here in Alaska!) – to drill benchmarks into near-shore foundation rocks, install (and later remove) tidal gauges that measure changing water heights and pressures, and use sophisticated mathematics and mechanics to verify the levels of those devices.

Pondering the next measurement
Ensign Rosemary Abbitt and HST Brandy Geiger ponder the placement of equipment before the next level measurement.

Needless to say, this description is significantly less detailed than the impressively intricate work performed at every level by NOAA’s hydrographic scientists, and in the end, all of the collected data described in the paragraphs above – and more, like the velocity of the sonar-deploying vessel – must be analyzed, discussed, and interpreted by teams of scientists with broad and deep skills before the final nautical charts are published for use by the public.

Portable tools of the trade
A leveling rod is balanced on the highest point of a “turtle,” positioned carefully to be seen from multiple points.

As you choose where and how to proceed in your own journeys, remember that you can be more confident about your decision-making by using information that is both accurate and precise.  And keep exploring, my friends.

View from the benchmark
This is the view from the benchmark atop a rocky outcropping (under an 80-foot evergreen) along Behm Canal while righting a measurement rod with the tide gauge leveling party.

Did You Know?

NOAA Ship Rainier in Behm Canal with launch vessels underway
NOAA Ship Rainier in Behm Canal with launch vessels underway

Every ship in the NOAA fleet also is a voluntary mobile weather station, and so are many other seagoing vessels around the world.  For many years ships have been required to report their locations and identities on a regular basis to agencies like the U.S. Coast Guard and local or regional harbormasters.  Those periodic reports were (and still are) vital for local traffic control on the waters and for helping to provide quick response to emergency situations on vessels at sea.

View aft while launch is underway
The view aft through Behm Canal from the launch vessel

Eventually, someone insightful realized that having the ships also provide weather reports from their positions along with those identity-and-location reports would make a much richer and broader network of timely data for the National Weather Service, which is another branch of the National Oceanic and Atmospheric Administration.  As NWS adds the weather data from those many boats to the data gathered at land-based NWS stations and from voluntary land-based reporters of conditions, their models and forecasts become stronger.

(For more info about being a volunteer weather observer or volunteering with NOAA in some other capacity related to oceans, fisheries, or research, please visit www.volunteer.noaa.gov.)

Especially because weather conditions are the results of interactions among local phenomena, regional climate, and the global systems, building more accurate and precise forecast models depends on information from everywhere, but the result is that everyone benefits from the better forecasts, too.

Evidence of tectonic activity and rundown
Southeast Alaska is area with frequent tectonic activity, including uplift and earthquakes. Here a scar among the trees on the mountainside shows evidence of tectonic shifts, which also creates a ready path for meltwater to move downhill from the snowy mountaintop to the seawater below, taking trees and soil with it.
NOAA Ship Rainier ready for the returning skiff
NOAA Ship Rainier waits offshore, ready to receive the skiff returning with the tide/level shore party.

Marla Crouch: Pitch and Roll, June 24, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 23, 2013

Weather Data from the Bridge: as of 2100
Wind Speed 6.30 kts
Air Temperature 11.7°C
Relative Humidity 73.00%
Barometric Pressure 1,004.20 mb

Latitude:  56.42N   Longitude: 158.20W

Science and Technology Log

Who can tell me the direction longitudinal and transverse waves move?  Think about the electromagnetic spectrum; what is the relationship between wavelength and frequency?  The physics of these wave actions are experienced in fields other than earthquakes (seismic), and light (optics) and sound (audio).

Picture provided by NOAA NWS Prediction Center
Picture provided by NOAA NWS Prediction Center

There are two different types of water waves that mariners regularly encounter, wind waves and swell waves.  An analogy for wind waves and swell is a wind wave is to weather as swell is to climate.  In other words, wind waves are local and swell occurs over a great distance.

Waves are formed when repeated disturbances move through a medium, such as, air, earth and water.  As the wind moves or blows across the open waters, energy is transferred from the friction of the moving air particles to the waters’ surface creating wind waves.  The speed, and fetch (unchanged direction) of the wind, and the distance the wind has traveled unimpeded; influence the amplitude and frequency of the waves.  As wind speed picks up so does the amplitude of the waves.  Wind waves can be identified by their white caps.  Wind waves have short wave lengths.

Graphic courtesy of Tammy Pelletier, WA State Dept. of Ecology http://www.vos.noaa.gov/MWL/apr_06/waves.shtml
Graphic courtesy of Tammy Pelletier, WA State Dept. of Ecology
http://www.vos.noaa.gov/MWL/apr_06/waves.shtml

Swells are a formation of long wavelength surface waves, which travel farther and faster than short wavelength wind waves.  Swells can be formed by storms that occurred somewhere else in the ocean.  For example, Tropical Storm Leepi formed off the China coast south of Japan, and was active June 17 – 19, 2013.  The energy from Leepi’s 40 mph winds and rain radiates outward from the storm, like the ripples that form when you drop a rock in a puddle of water, creating swells.  Swells can travel in a multitude of directions as they bounce off landmasses back into the open waters.

Wind waves and swells transfer energy to ships, such as the Oscar Dyson.  The energy causes ships to pitch, roll and yaw.

Pitch, roll, and yaw are three dynamic ways crafts, such as airplanes and ships move in a fluid.  In my “Surf your Berth” blog I used a teeter totter as an example of pitch.  If you think about the way energy moves in waves, pitch is a longitudinal wave where the energy is moving front to back, so that the bow of the ship goes up and down.  Roll is a transverse wave, the energy is moving side to side, rolling the ship from port to starboard (left to right).  To describe yaw, think about sitting in a chair that swivels.  Yaw is the swiveling action of you in the chair moving in the chair or a ship rotating around a vertical axis.  Watch the horizon in the video to get an idea of what pitch looks like from the vantage point of the bridge of the Oscar Dyson.

If you turn your field of view 90°, so you are looking either port or starboard and see the same motion that is roll.

The officers of the Oscar Dyson work to navigate through both the wind and swell waves to give us the smoothest ride possible.

Personal Log 

Recently we experienced sustained wind speeds between 30 and 40 kts.  Needless to say, we were a pitchin and a rollin.  Chiachi Island afforded us calmer seas, as we reached the lee (wind shadow) side of the island.  I noticed something different in this last encounter with rough seas, instead hearing the water race past the hull, this time the water slammed into the side of the Oscar Dyson.  The crashing transformed some of the wave’s kinetic energy into thunderous claps of sound…BAM!…BAM!  What caused the difference, I’m not sure, maybe we were in a convergent zone, before reaching the lee, where wind and seas raced around the island creating a collision akin to clapping your hands together that buffeted the Dyson from both sides.

What do we do aboard ship to cope with the pitch and roll?  We anchor ourselves.  Chairs at our work stations, do not have casters and are tethered to the desk with a cord.  The dressers in our berths have straps to keep the draws shut and the closet doors lock into their closed position.

On a ship the dining hall is called the Mess.  Here the chairs are tethered to the floor.

Yaara Crane: First Day Aboard, June 22, 2013

NOAA Teacher at Sea
Yaara Crane
Aboard NOAA Ship Thomas Jefferson
June 22, 2013 – July 3, 2013

Mission: Hydrographic Survey
Geographical area of cruise: Mid-Atlantic
Date: Saturday, June 22, 2013

Latitude: 38.81°N
Longitude: 75.10°W

Weather Data from Bridge:
Wind Speed: 10.27 knots
Surface Water Temperature: 20.59°C
Air Temperature: 20.60°C
Relative Humidity: 79.00%
Barometric Pressure: 1023.18mb

Science and Technology Log

The TJ
My first view of the NOAA ship Thomas Jefferson.

This morning I came aboard the Thomas Jefferson via small boat transfer from the pilot station dock in Lewes, Delaware. Since coming on board, I have been welcomed by so many people, toured the ship, had a safety training, cautiously drove the small boat around the Delaware Bay, and tried to learn some background about hydrographic surveys. That is quite a lot of new things to process in only 5 hours!

The major purpose of hydrography is to create a thorough imaging of the ocean floor, particularly to warn mariners of any obstructions or shallows. There is evidence that nautical charts showing depth have been in use since as early as the sixth century BCE, and can easily be created through the use of a lead weight and a string. These days, NOAA ships have much more high tech ways of surveying the ocean floor. The Thomas Jefferson spends most of its time at sea charting waterways and coastlines to ensure safe travels for both private and commercial mariners to be able to navigate safely. Priorities in a nautical charting mission are based on factors including: waterway usage rates, stakeholder requests, rates of change to the sea floor (both natural and anthropogenic), and age of the chart’s source. For example, a waterway to a port used by oil tankers would be very important to survey because the result of a tanker running headlong into an obstruction would be disastrous. After Hurricane Sandy hit the East Coast in October 2012, the Thomas Jefferson was assigned to survey the sea floor of New York City’s harbor in case of any new obstructions that might have been blown in undetected. No other ship was allowed to sail through the harbor until the Coast Guard received the new charts. So far this summer, the Thomas Jefferson has already spent countless hours surveying the area around Long Island Sound and the Delaware Bay.

To have a better grasp of the major scientific research that occurs on a hydrographic research vessel, I spent a portion of the afternoon speaking with Ensign Andrew Clos. Ensign Clos mentioned that the two most important tools for data collection are the side scan sonar (SSS) and the multi-beam echo sounder (MBES). These two tools work through the use of sound waves to collect both 2D and 3D data. The SSS and the MBES send sound waves which are reflected back to the ship and transformed into images analyzed by the scientists on board. The side scan sonar is towed by the ship in very carefully spaced horizontal lines to gather the initial data about the existence of any objects in the water. An acoustic image is created and analyzed for anything out of the ordinary, in which case the MBES is launched for further investigation. The MBES is hull-mounted to the ship and survey launches, and lets out sound waves in a 128° cone which much more accurately determines the depth and position of the object. The MBES can collect millions of data points in a day, which is converted into three-dimensional images.

side scan sonar from NOAA
This SSS image is of the wreck of the Herbert D. Maxwell. The white area to the upper right is called a shadow because the sonar cannot pass into that area. (Photo courtesy of NOAA)
mbes noaa
This MBES image shows a fuller picture of the wreck of the Herbert D. Maxwell. (Photo courtesy of NOAA)

The scientists aboard spend many hours sifting through the data, and correcting the data for differences in depth based on tidal flows and water data. Sound waves travel through water at approximately 1500 meters/second (m/s), much faster than the 340 m/s in air. However, differences in salinity and temperature can impact the accuracy of measurements. All of the branches of NOAA must work together to piece together the puzzle of the ocean floor.

Personal Log

Rehoboth Beach
Hanging out at the beach the day before getting aboard the TJ.

This has been quite a busy week for me, which has culminated in this spectacular adventure. Monday was our last day of final exams, and today I feel like that was a lifetime ago! I spent most of yesterday morning driving to Delaware, and was rewarded with spending the afternoon relaxing on Rehoboth Beach. As it turns out, relaxing is on the table for tomorrow, too. The TJ is waiting on a repair to the MBES, and will need to stay anchored close to port for at least one more day. Commander Krepp has allowed some of the members of the crew to arrange for a day out paddling and kayaking around the beach. Still, there is work to be done and safety to consider aboard a NOAA vessel, so even that excursion has to be carefully managed into two shifts.

Weather-wise, it has been a beautiful weekend. There is a slight breeze, but not enough to make waves worth mentioning. The TJ is also anchored just behind a breakwater which helps to keep waves at bay. All of this adds up to a very calm shipboard experience, with barely any feeling of rocking or swaying while aboard the ship. I have rarely suffered from motion sickness and hope to continue my good record throughout this cruise. No seasickness means I can make my way over to the ice cream bar for a little afternoon snack…

Did You Know?

Fossil remains of horseshoe crabs have been found spanning approximately the last 450 million years. They are called living fossils because they are some of the rare species that have survived extinction with little genetic diversity.

Horseshoe crab
The horseshoe crab is a living fossil found on Delaware’s shores.

 

Adam Renick, The DIDSON Pilot, June 21, 2013

NOAA Teacher at Sea
Adam Renick
NOAA Ship Oscar Elton Sette
June 12th – June 26th, 2013 

Mission: Kona Integrated Ecosystems Assessment http://www.pifsc.noaa.gov/kona_iea/
Geographical area of cruise: The West Coast of the Island of Hawaii
Date: Friday, June 21, 2013

Current Air Temperature: 75° F
Sea Surface Temperature: 77° F
Wind Speed: 16 knots

Happy Solstice Everybody! Welcome to astronomical summer!

Giacamo Giorli explains the DIDSON deployment process to the team.
Giacomo Giorli explains the DIDSON deployment process to the team.

What is a Didson?

The DIDSON sonar in a protective case.
The DIDSON sonar in a protective case.

We are well into the second week of our cruise and I want to tell you all about a new pilot project that NOAA is working with through the Marine Mammal Research program at the Univ. of Hawaii that is using a DIDSON sonar. A DIDSON (Dual frequency IDentification SONar) is an advanced type of sonar that has many advantages over a traditional sonar for finding fishes and other marine life.

Images of fish on a DIDSON . http://www.adfg.alaska.gov/index.cfm?adfg=sonar.didson
Images of fish on a DIDSON . http://www.adfg.alaska.gov/index.cfm?adfg=sonar.didson

The first advantage of a DIDSON is that it gives us a very highly detailed image of what types of marine life are present in the water. When our shipboard acoustics team “sees” that there is a layer of creatures in the water column it appears as very small dots on a computer screen.

Here you can see the DIDSON going down to record the scattering layer (the very thin line near the finger).
Here you can see the DIDSON going down to record the scattering layer (the very thin line near the finger).

This is great because it tells us the depth and location, but it does not tell us what it is. When we see something of interest, we can deploy the DIDSON to give us an actual “picture” of that creature or even a video of its behavior. The reason I am describing the “imaging” properties of this tool in quotes is that it is not a camera and it does not use light to see at all. Rather, it uses high frequency sound waves to produce an image much like a sonogram gives us a picture of a baby in a mother’s uterus.

Comparison of different types of sonar.
Comparison of different types of sonar.

This leads us to another major advantage of the DIDSON over traditional technologies such as beam sonar or videos. This thing can go very deep into the ocean to explore the life that is there. If you recall back to my previous post you will remember that mesopelagic fish hang out much deeper in the water column during the day than at night. Trawling that deep is challenging and requires more effort and resources than using the DIDSON. If we want to see what is down there we can deploy the DIDSON into the scattering layer and get a sense of the marine life in the deeper parts of the ocean. Also, because it uses sound it can give us data about behaviors that are occurring in the dark regions of the ocean.

Mr. Giorli wishing luck to the DIDSON equipment as it is deployed.
Mr. Giorli wishing luck to the DIDSON equipment as it is deployed.

Giacomo Giorli and others that are leading this project on the cruise are still going through the data they’ve collected with the DIDSON.  So far, they have seen a lot of success and have a identified a few squids – but they won’t tell us more than that until they go back to the lab to fully analyze their data.  “We don’t exactly know what is down there right now, but with emerging technology, one day we will,” says Mr. Giorli. See a video clip of the DIDSON data here.

The ever-useful duct tape makes its debut on this cruise.
The ever-useful duct tape makes its debut on this cruise.

Rosalind Echols: Preparing for my adventures! June 23, 2013

NOAA Teacher at Sea

Rosalind Echols

Aboard NOAA Ship Rainier

July 8-25, 2013

 

Mission: Hydrographic Survey

Geographical area of cruise: Kodiak, Alaska

Date: June 24, 2013

Greetings from Philadelphia, almost 5,000 miles away from Kodiak, Alaska, where I will be meeting up with the NOAA ship Rainier in a few short weeks. A few years ago, one of my students made me an award that characterized my personality with the phrase, “I’m so excited!” and this is how I feel about my upcoming cruise with NOAA. Between the science, the opportunity to work with some amazing people, and the scenery, I can’t believe my good fortune in having this opportunity.

Rosalind in Alaska
Rosalind (right), NOAA Teacher at Sea during her last Alaskan adventure

My name is Rosalind Echols, and I teach students physics at the Science Leadership Academy in Philadelphia. I also coordinate our “Capstone” senior project program, and teach a ceramics elective. I like to stay busy, so in my “free time”, I coach ultimate Frisbee and cross country. One of the most exciting features of the school I teach it is that our whole curriculum is project based, meaning that all of the learning is contextualized and applicable to settings beyond the classroom. I am looking forward to being able to bring what I learn this summer on the Rainier back to my classroom in the form of new and exciting projects. Although Philadelphia is close to the now-infamous “Jersey Shore,” my students do not have a great deal of experience with the ocean, particularly in the realm of science, so I hope that this experience helps me identify ways to make oceanographic topics more relevant to their lives.

The main mission of the Rainier is a hydrographic survey, mapping the sea floor in coastal areas to support NOAA’s nautical charting program. This is particularly important because it allows chart-makers to identify areas of possible danger as well as safe shipping routes. If you are looking for more information right away, you can check out the Rainier’s homepage, but rest assured, I’ll be sharing plenty of information through this blog as I learn more about our mission! From reading about past missions, I have found that even in re-surveying areas previously charted, the ships sometimes find new features on the sea floor which, had they remained unknown, could have been dangerous to ships in the area. The Rainier does this research using a variety of sonar systems, both on board the Rainier itself and from several smaller boats it can launch.

Rainer
NOAA Ship Rainier at sea

I will be with the Rainier for 18 days, just shy of its 22-day endurance limit. During this time, we will be sailing around the Shumagin Islands and possibly other places on the Alaska Peninsula, starting and ending in Kodiak, Alaska. As a native Seattle-ite, I am particularly looking forward to the scenery and the weather in Alaska, as it should remind me of my home town. I also can’t wait to share what I see and learn with my students back in Philadelphia, most of whom have never been out in this direction.

Adam Renick, Getting To Know the Ocean – The Kona Ecosystem, June 16, 2013

NOAA Teacher at Sea
Adam Renick
NOAA Ship Oscar Elton Sette
June 12th – June 26th, 2013 

Mission: Kona Integrated Ecosystems Assessment http://www.pifsc.noaa.gov/kona_iea/
Geographical area of cruise: The West Coast of the Island of Hawaii
Date: Sunday, June 16, 2013

Current Air Temperature: 78° F
Sea Surface Temperature: 79° F
Wind Speed: 20 knots

Personal Log
 

Sunrise in Hawaii
Sunrise in Hawaii

All is well on the Sette! Skies have been clear, waters have been relatively calm and the mood onboard has been positive. With the cooperative work of the scientists, the crew’s expert ship handling and Clem and Jay’s fine cooking it has been a very interesting week for me. For years I have taught about physical oceanography with a focus on what we know, not necessarily how we know it. I had a sense of how things were done in general; using sonar and taking samples, but I never understood the details of how we can target specific locations to study in such a vast ocean to get a picture of it as a whole system. In just a few days aboard this research vessel I have been given a look at how ocean science is conducted and how our knowledge about the expansive oceans is built one piece of thoughtful data at a time. In the last week I have learned how a well-organized research plan is executed and have also learned about some of the difficulties of conducting science at sea as well.

 
Science and Technology Log – Night Trawling
 

The zones of life in the ocean.
The zones of life in the ocean.

One of my nightly tasks is to help a team of scientists conduct trawls of the mesopelagic zone to identify the organisms that live there. The mesopelagic zone (pictured) is also known as the twilight zone because it is where there is a small amount of sunlight that penetrates the water, but not enough for photosynthesis to occur. If you recall from my last blog, the Sette has an active acoustics team that is using active sonar to identify layers of organisms at specific depths in the water column. During the daytime this layer is too deep for our nets to catch them. But at nighttime this layer migrates up towards the surface allowing us catch them with in a net in a process called a trawl. We do two trawls each night. Before each trawl the acoustics team tells the trawl team the depth of the target layer. The deck crew then deploys a fairly large net down to that depth and drags it through the water to scoop up the organisms that we have targeted. Blog4 (1)After about an hour of doing this the net is pulled back up to the ship where all the creatures are collected in a bag called a “cod end”. It may sound fairly simple, but this process requires the coordination of many different people as the scientists need to communicate with the deck operations crew, and the deck crew has to work with the captain to ensure that the very long net line hits the target and does not get tangled or damaged in the process. Keep in mind that this is happening at 1:00am with 20 knot winds and 10 foot waves. It is a wonder to see and be a part of this operation.

Krill...
Krill…

Once we have collected all of the organisms we move on to sorting the catch. We separate the contents of the net into five main categories and then measure the number, mass and volume of each of the types. Perhaps the most commonly abundant of the groups that we classify are mesopelagic fish, which are dark in color and contain photophores to provide them camouflage in the night. Cephalopods (squid) are also quite common along with gelatinous creatures such as jellyfish and crustaceans over 4cm in length, such as shrimp. The final category of interest to us is the shore-fish, which are juvenile fish that will eventually move more towards the land or reefs once they are bigger. The shore-fish are typically the most beautiful looking of the catch.

Shore-fish sorting
Shore-fish sorting

Everything that is left over is then lumped into a general category called miscellaneous, which is mainly composed of krill. Some cool stuff we’ve gotten in the bag that don’t really have their own category have been two cookie-cutter sharks, a seahorse and two remoras.

Blog4 (4)
Examining a Cookie-Cutter Shark
Shark
Close-Up of Shark

So what does this all have to do with cetaceans? I have yet to mention them in my blogs. By studying the composition of the mesopelagic layer we can better understand the food chain and ecosystem that the whales and dolphins depend on. Next week when we begin actively searching for cetaceans we will be able to better understand their behaviors because we have background data on where their food is, what it is composed of and how it behaves. Hope all is well back on land…

 
Best,
Adam Renick
NOAA Teacher at Sea

Eric Velarde: Beginning Seafloor Dredge Tows, June 17, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Monday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 17, 2013

Weather Data from Bridge
Latitude: 40.07°N
Longitude: 73.05°W
Atmospheric Pressure: 1025 mb
Wind Speed: 4.6 knots
Humidity: 85%
Air Temperature: 18.33°C
Surface Seawater Temperature: 18.46°C

Science & Technology Log

Suspending flight of the HabCam V4 & beginning the first of the seafloor dredge tows was the focus of work on June 17, 2013. In order for seafloor dredge tows to occur, the HabCam V4 is withdrawn from the sea to eliminate risk of accidental collision or entanglement.  After the science team raises the HabCam V4 to a safe depth, the engineering team assumes responsibility of HabCam V4 retrieval through winch operation on the loading deck. When not in operation, the HabCam V4 rests on the loading deck for cleaning & maintenance until seafloor dredge towing is complete. While being a delicate scientific recording instrument, the HabCam V4 also possesses the engineered fortitude to withstand the demands of oceanic scientific research.

HabCam V4 Withdrawal
HabCam V4 Withdrawal

Dredges aboard scientific vessels are 8’ wide, New Bedford style commercial scallop dredge frames, fitted with a ring bag and sweep on the bottom.  The ring bag is built from 2” interconnected metal facets.  Additionally, a 1.5” polypropylene liner is installed inside the ring to capture all sizes of Sea Scallops. In contrast, commercial vessels have two 15’ wide dredges with 4” rings so that younger, smaller scallops pass through the net. Once the dredge is lowered to the seafloor, it is dragged behind the vessel for 15 minutes at a speed of 3.8 knots before being lifted onto the vessel for sorting, categorization, and measurement. The engineering team assumes responsibility of lowering & raising the dredge while the science team dons foul weather gear for the messy, but detailed analysis of the catch.

Engineering Team Raising Dredge Tow
Engineering Team Raising Dredge Tow

Once the dredge tow catch is aboard, collaboration between the science and engineering teams occurs so that the catch can be quickly, but accurately sorted into species. All dredge tows are focused on analyzing Atlantic Sea Scallop populations at predetermined points on the ships trajectory. In addition, fish, and sometimes sea stars and crabs require subsampling to assess their population as well. Sea Scallops must be weighed and measured en masse before being returned to their seafloor habitat. In addition, subsamples of Scallops are dissected so that the sex, gonad weight, and meat weight can be recorded.

Measuring Scallops with FSCS
Measuring Scallops with FSCS

All scientific analysis of captured specimens occurs in the scientific lab, which houses FSCS (NOAA Fisheries Scientific Computer system) which is a combination of touch-screen computer monitors, electronic measuring boards, and digital weight scales. The scientific lab is portable, loaded with scientific sampling equipment in Lewes, DE by the scientific team before being carefully loaded onto the vessel prior to departure. Working & cleaning in the scientific lab is nearly effortless due to its engineered design, allowing for streamlined operation.

Scientific Laboratory
Scientific Laboratory

Personal Log

One of my favorite aspects of the seafloor dredge tows is the dissection of the scallops. I enjoy dissection because it is slower than the rest of the operations that occur after the catch has been sorted, giving me time to observe and record the internal anatomy of the scallops. I also enjoy dissection as it grants me time to work in systematic symmetry with the luminous La’Shaun Willis, a Bennett College ’98 Alumnus. Her warming energy is radiant, making me feel as if I am back in Greensboro, teaching & learning alongside my students at The Early/Middle College at Bennett. Listening to her speak about her life journey causes me daydream about the scientific possibilities that await my students when I return to Greensboro, North Carolina with this newfound experience to fuel their continued character, leadership, and academic development. I am constantly filled with inspiration as she shares priceless nuggets of wisdom with me.

Scallop Subsampling
Scallop Subsampling

Following each seafloor dredge tow, the science and engineering teams work to shuck the largest of the scallops for closer analysis of meat weights when the science team returns to the lab in Woods Hole, Massachusetts. Admittedly, I am not very adept at shucking, but I am learning quickly from some of the most talented shuckers I have come into contact with. They transform shucking into a scientific art of speed, precision, and accuracy.

Shucking Scallops
Shucking Scallops

One of the benefits of working from Midnight-Noon is that I get to soak in the warmth of the rising sun, which, as expected, is breathtaking. Each new day has been filled with awesome scientific beauty, wonder, and energy. Several days of seafloor dredge tows will succeed today, eventually followed by the return of the HabCam V4 to the sea as the vessel makes its returning voyage to port.

Sea Sunrise
Sea Sunrise

Did You Know?

Atlantic Sea Scallops inhabit the seafloor from Cape Hatteras at their southernmost range, to Newfoundland at their northernmost range.

-Mr. V

Sue Cullumber: Drifting Away, June 21, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/21/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:  Time:  21.00 (9 pm)
Latitude/longitude:  3734.171ºN, 7507.538ºW
Temperature: 20.1ºC
Barrometer: 1023.73 mb
Speed: 9.6 knots

IMG_0878
Getting ready to launch the buoy – photo by Chris Taylor.
launchingdrifter
Launching the buoy from the ship’s stern – photo by Chris Taylor.

Science and Technology Log: 

This week we launched a Global Drifter Buoy (GDB) from the stern of the Gordon Gunter.  So what is a GDB? Basically it is a satellite tracked surface drifter buoy.  The drifter consists of a surface buoy, about the size of a beach ball, a drogue, which acts like a sea anchor and is attached underwater to the buoy  by a 15 meter long tether.

Drifter tracking: The drifter has a transmitter that sends data to passing satellites which provides the latitude/longitude of the drifter’s location. The location is determined from 16-20 satellite fixes per day.  The surface buoy contains 4 to 5  battery packs that each have 7-9 alkaline D-cell batteries, a transmitter, a thermistor to measure sea surface temperature, and some even have other instruments  to measure barometric pressure, wind speed and direction, salinity, and/or ocean color. It also has a submergence sensor to verify the drogue’s presence. Since the drogue is centered 15 meters underwater it  is able to measure mixed layer currents in the upper ocean. The drifter has a battery life of about 400 days before ending transmission.

buoy
Stickers from students at Howard Gray School.
decoratingdrifter
Attaching the stickers to the buoy – photo by Kris Winiarski.

Students at the Howard Gray School in Scottsdale, Arizona designed stickers that were used to decorate the buoy. The stickers have messages about the school, Arizona and NOAA so that if the buoy is ever retrieved this will provide information on who launched it.  In the upcoming year students at Howard Gray will be tracking the buoy from the satellite-based system  Argos that is used to collect and process the drifter data. You can follow our drifter here, by putting in the data set for the GTS buoy with a Platform ID of 44932 and select June 19, 2013 as the initial date of the deployment.

Why are drifter buoys deployed?

In 1982 the World Climate Research Program (WCRP) determined that worldwide drifter buoys (“drifters”) would be extremely important for oceanographic and climate research. Since then drifters have been placed throughout the world’s oceans to obtain information on ocean dynamics, climate variations and meteorological conditions.

IMG_0886
The Howard Gray School drifter on its ocean voyage.

NOAA’s Global Drifter Program (GDP) is the main part of the Global Surface Drifting Buoy Array, NOAA’s branch of the Global Ocean Observing System (GOOS).  It has two main objectives:

1. Maintain a 5×5 worldwide degree array (every 5 degrees of the latitude/longitude of world’s oceans) of the 1250 satellite-tracked surface drifting buoys to maintain an accurate and globally set of on-site observations that include:  mixed layer currents, sea surface temperature, atmospheric pressure, winds and salinity.

2. Provide a data processing system of this data for scientific use.

bongossunset
Bongo nets going out for the plankton samples.
meshsamples
Plankton from the different mesh sizes. The left is from the smaller mesh and contains much more sample. Photo by Paula Rychtar.

EcoMon survey: We are continuing to take plankton samples and this week we started taking two different Bongo samples at the same station. Bongo mesh size (size of the holes in the net) was changed several years ago to a smaller mesh size of .33 mm. However, they need comparison samples for the previous nets that were used and had a mesh size of about .5 mm.  They had switched to the smaller net size because they felt that they were losing a large part of the plankton sample (basically plankton were able to escape through the larger holes). We are actually able to see this visually in the amount of samples that we obtain from the different sized mesh.

dolphinflying
Common Dolphins were frequent visitors to the Gordon Gunter.

Personal Log:

It’s hard to believe that my Teacher at Sea days are coming to a close. I have learned so much about life at sea, the ocean ecosystem, the importance of plankton, data collection, and the science behind it all.  I will miss the people, the ocean and beautiful sunsets and the ship, but I’m ready to get back to Arizona to share my adventure with my students, friends and family. I want to thank all the people that helped me during this trip including: the scientists and NOAA personnel, the NOAA Corps and ship personnel, the bird observers and all others on the trip.

Did you know? Drifters have even been placed in many remote locations that are infrequently visited or difficult to get to through air deployment.  They are invaluable tools in tracking and predicting the intensity of hurricanes, as well.

Question of the day?  What information would you like to see recorded by a Global Drifter Buoy and why?

shipsunset-2
Another beautiful sunset at sea.

Marla Crouch: Cameras and the Shark, June 22, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 
 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 22, 2013

Weather Data from the Bridge: as of 2000
Wind Speed 20.02 kts
Air Temperature 8.4°C
Relative Humidity 96.00%
Barometric Pressure 995.9 mb

Latitude:  55.86N   Longitude: 159.17W

Science and Technology Log

Cam Trawl, Critter Cam, Drop Cam, Trigger Cam (dubbed “the contraption”), and a camera that will be used on Acoustic Vessel of Opportunity (AVO) project, are different camera systems scientists are testing and using on this leg of the pollock survey to help monitor the biology in the region. Each camera is designed for a specific application.

Cam Trawl is attached immediately before the codend of a survey midwater trawl net, and takes pictures of the fish swimming by.  Cam Trawl allows scientists to look at what depth the fish were captured, and use this information to help identify specific fish echoes on the sonar graphs.  In one of our trawls, we were able to see pictures of a female Salmon Shark entering the net.  She was quickly measured and released.

Picture of a female Salmon Shark taken be the Cam Trawl camera.  Picture provided by NOAA
Picture of a female Salmon Shark taken be the Cam Trawl camera. Picture provided by NOAA

Critter Cam is attached to the survey net on the Oscar Dyson and takes pictures of little critters, like krill and different types of plankton, that are too small to be captured in a trawl net.

Pictured from left to right.  Macrozooplankton krill, ctenophores, small jellyfish, young of the year pollock,  juvenile smelt
Pictured from left to right. Macrozooplankton krill, ctenophores, small jellyfish, young of the year pollock,
juvenile smelt.  Pictures provided by NOAA.

The Drop Cam is a tethered stereo camera that is lowered to take pictures of the sea floor.  This instrument is going through a series of sea trials on this cruise, where the lights, exposure, and battery life are all being tested and fine tuning adjustments are being completed.  Battery life is a concern, as both the cameras and the lights require energy to operate, and the scientists want to maximize the amount of time data is being collected .  In order to conserve energy a depth sensor trip switch was added that turns the system on at 15 m depth. This addition allows the camera to continually take 10 pictures a second for a longer time on the sea floor.  After this cruise the Drop Cam heads west to help survey the coral reefs west of the Islands of Four Mountains were we started our pollock survey heading east.  Yes, there is coral in the cold waters of the Gulf of Alaska and the Berring Sea.

Octopus
Octopus picture provided by NOAA
Brittle stars
Brittle stars.  Picture provided by NOAA.
Juvenile Yelloweyed Rockfish
Juvenile Yelloweyed Rockfish.

Trigger Cam, which the Dyson’s crew has dubbed “the contraption”, is attached to an anchor and lowered to the sea floor.  The anchor we are using is a sablefish pot (a trap that is normally used to catch fish on the bottom), which has a buoy line attached, and the buoy marks the location of the camera on the surface.  There are six Trigger Cams in development; the concept is that the cameras are deployed in a series a few nautical miles apart and left for 3 to 4 hours before retrieving.  To conserve energy, this piece of equipment is designed with a motion sensor.  An infared camera (fish cannot see infared light) runs at very low resolution (produces a blurry picture, as the water is in constant motion). When something, such as a school of Pacific cod, swims by, the motion is detected, camera flashes are triggered and a high resolution (clear) picture is taken.  When the Trigger Cam system is fully operational, scientists hope to collect more in-depth evidence about the fish population in the deployment areas.

Deployment of the Trigger Cam.  AKA The Contraption.  Picture provided by NOAA.
Deployment of the Trigger Cam. AKA The Contraption. Picture provided by NOAA.
School of Pacific Cod taken by Trigger Cam.  Picture provided by NOAA.
School of Pacific Cod taken by Trigger Cam. Picture provided by NOAA.

The AVO Cam is designed to attach to a survey bottom trawl net and take picture of the fish passing through, without being caught.  There are two cameras (stereo) mounted so that field of vision intersects at a specific distance.  The two cameras and the point of intersection can be used in a process similar to triangulation that allows the length of the fish swimming through to be measured. The stereo photography process is the same technology that is used in the making of 3D movies. The AVO Cam will be used in a survey that is carried out onboard chartered commercial fishing vessels (“vessels of opportunity”).

Readying the AVO camera for sea testing.
Readying the AVO camera for sea testing.
The stereo camera data is input into measuring software, which calculates  the length of the fish in cm.  Screen shot provided by NOAA.
The stereo camera data is input into measuring software, which calculates the length of the fish in cm. Screen shot provided by NOAA.

Personal Log 

I enjoy listening to the various conversations that the scientists have about what they are seeing on the sonar displays and in the pictures, how the equipment is being used, when data are inconclusive the hypothesizing about the phenomena, and the time need to complete the different science studies.  There is only so much time.  Today’s conversation revolved around the need to hide from the weather!

An area of low air pressure is forecasted to kick up a gale force storm, and the safety of the ship, crew and science team is an important consideration in our travels.  With this in mind, the Commanding Officer of the Oscar Dyson and the science team are looking for areas of safe harbor where we are sheltered from the worst of the storm and can still do science work. I wonder will we be on the lee side of an island, in a bay or fjord?  Time will tell.

Did You Know?

To date we have traveled 2670.50 nmi since leaving Dutch harbor.

Beverly Owens: Science on Board NOAA Ship Henry Bigelow, June 18, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 18, 2013

Weather Data from the Bridge:
Air temperature: 13.50 oC (56.3 oF)
Wind Speed: 20.05 knots (23.07mph)

Science and Technology Log

Teacher at Sea Beverly Owens, and Dewey the Dragon at the Helm
Teacher at Sea Beverly Owens, and Dewey the Dragon at the Helm

On a research vessel such as NOAA Ship Henry B. Bigelow, does the ship support the science? Or are the ship’s activities separate from those of the Science Crew?  I didn’t realize how much the Ship’s Crew and the Science Crew worked hand-in-hand until I toured the Bridge.

First off, the ship is what’s known as an FSV. What does FSV stand for? FSV stands for Fisheries Survey Vessel. The primary responsibility of the Henry B. Bigelow is to study and monitor the marine fisheries stocks throughout New England (the Northeastern section of the United States). There are many scientific instruments aboard the Henry B. Bigelow that allow crew members and visiting science teams to do this and other work.

The ship has multiple labs that can be used for many purposes. The acoustics lab has many computers and can be used for modeling data collected from multibeam sonar equipment.  The chemistry lab is equipped with plentiful workspace, an eyewash, emergency shower, and fume hood. Our TowCam operations are being run from the dry lab. This space has nine computers displaying multiple data sets. We have occupied the counter space with an additional eight personal laptops; all used for different purposes such as examining TowCam images or inputting habitat data. The wet lab is where the collection sorting, and filtering take place. It is used during fisheries expeditions to process and examine groundfish.  During our research expedition, the wet lab is used mostly for staging TowCam operations. We also process sediment and water samples that were collected from the seafloor.  Sediment is collected using a vacuum-like apparatus called a slurp pump; water is collected in a Niskin bottle.  The sediment is sieved and any animals are saved for later examination.  Water samples are also filtered there, to remove particulate matter that will be used to determine the amount of food in the water column.

Walking around the ship, I noticed a psychrometer set, which is used to monitor relative humidity, or moisture content in the air. There is also a fluorometer, which measures light emitted from chlorophyll in photosynthetic organisms like algae or phytoplankton. The CTD system measures physical properties of the ocean water including conductivity/salinity, temperature, and depth. Additionally, the ship has a thermosalinograph (therm = heat, salin = salt, graph = write). Saltwater is taken into the ship and directed toward this instrument, which records the sea surface salinity and sea surface temperature.

The crew of the Henry B. Bigelow not only supports the research efforts of the science team but is also actively involved in conducting scientific research. Their instrumentation, knowledge, and team work enable them to protect and monitor the western North Atlantic waters and its living marine resources.

 Personal Log

Dragon on the Bridge
Dewey the Dragon is plotting the course.

Dewey the Dragon, all the way from Crest Middle School, enjoyed getting a tour of the Bridge. Dewey the Dragon learned how to steer the ship, read charts, and monitor activity using devices such as the alidade. Thanks to Ensigns Katie Doster and Aras Zygas for showing us around.

Did You Know?

Teacher at Sea, Beverly Owens, using the Alidade on the FSV Henry B. Bigelow
Teacher at Sea, Beverly Owens, using the Alidade on the FSV Henry B. Bigelow

The alidade is a device that allows people on the ship to sight far away objects, such as land. The person on the ship spots three separate points on land uses these sighting to determine the location of the ship. Alidades can also be used as a tool when making and verifying maritime charts.

Beverly Owens: What Is That? June 23, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 23, 2013

Weather Data from the Bridge:
Air temperature: 17.23 oC (63.014 oF)
Wind Speed: 6 knots (6.90 mph)

Science and Technology Log:

We’ve seen amazing and beautiful animals living in these deep water canyons, many of which I did not recognize. During the progression of each tow I find myself asking the scientists around me, “What is that?” But that is what science is all about: being curious and trying to obtain the answers.

No matter how many hours I’ve sat on watch, or how many TowCam images I’ve looked at on the computer monitor, it’s still exciting to be one of the few people who get to see images directly from the ocean floor! It’s incredible that a large metal apparatus with a camera can send images and data thousands of meters through a tiny cable back to computers on the ship. As the pilots navigate TowCam through the water, images are sent back to the ship every 10 seconds.

Image Highlights taken using TowCam during the Canyons CSI research expedition.
Image highlights taken using TowCam during the Canyons CSI research expedition.

So what do we see in the images that are being sent back? I’ve gotten to see amazing things living more than a mile below the ocean. These include octopods and squids,  skates, sea pens, anemones, delicate brittle stars, bivalves, and lush colorful coral gardens. All these organisms live on the  bottom of the ocean in cold, dark water and under extreme amounts of pressure.

Morphology: The structure of a corallum.
Morphology: The structure of a corallum.

How many different kinds of deep-sea corals are living at the bottom of the ocean? At least 71 species are known to occur  off the northeastern coast of the U.S.; and new species are likely to be discovered.  Many of the deep-sea corals look similar in color or structure. How do scientists tell them apart? They use taxonomic keys and DNA analysis to identify species.  Dichotomous keys are a systematic way of identifying organisms by making a series of choices based on an  organism’s characteristics. These keys are particularly useful if you don’t have instrumentation to conduct a DNA analysis.

Earlier this week, marine ecologist Dave Packer from NOAA’s National Marine Fisheries Service taught me how to use a dichotomous key for deep-sea corals. Corals are actually animals, even though many of them look plant-like in shape, so they belong in the Kingdom Animalia, the Phylum Cnidaria, and the Class Anthozoa. We began by discussing animals in the four Orders of deep-sea corals within the Anthozoa that are found off our northeastern coast: Scleractinia (stony corals), Antipatharia (black corals), Alcyonacea (soft corals and sea fans), and Pennatulacea (sea pens). Compare  the corals shown below. You will notice that each group has a different style or appearance.

The Four Orders of Corals.
The Four Orders of Corals

Even though corals appear to be morphologically simple animals, they are highly detailed. Individual corals can be very small. Look at the image to the left to become familiar with some of the structures. Below are some additional features that may be found on different types of corals.

Some additional features that may be found in corals.
Some additional features that may be found in corals

Mr. Packer showed me a piece of coral that we would be “keying out.”  By looking at the surface of it, we could tell it was a stony coral and belonged to the Order Scleractinia. Stony corals are usually very hard to the touch.  Then, we examined its characteristics. Look at the picture to the right, and see if you can identify the characteristics that we examined on this coral:

Try your hand at Taxonomy
Try your hand at Taxonomy
  1. Is it solitary (grows alone) or is it colonial (grows with other coral polyps)?
  2. Are the septa (fins sticking out at the top) smooth or rough?
  3. Are the coral polyps only on one side, or scattered in a random pattern?
  4. Is the coenosteum (portion of the skeleton between the polyps that looks like tree branches) porous or smooth?
  5. Corals reproduce by “budding.” Do new corals bud inside an older coral (intratenticular) or are polyps added to the outside near older coral polyps?
  6. Does it have 24 septa?

Check your answers below to see if you got these questions correct!

Drum roll, please… This coral is Solenosmilia. Try pronouncing that one! Going through an actual dichotomous key requires answering many more questions and making more choices. Coral polyps and structures can be so small that often a microscope is necessary to look at some parts. Sometimes corals may look very similar, so DNA testing is conducted to confirm the identification.  Dichotomous keys can be used in identifying many other types of organisms as well, such as plants and fungi.

Want to try your hand at using a dichotomous key? Try this sweet activity using candy! Think about the characteristics of the candy pieces listed in the picture and key: Skittles, M & M’s, Gummy Bears, packaged Lemon Heads, unpackaged Lemon Heads, Dum Dum lollipops, Sugar Babies, Atomic Fireball, Mike and Ike’s, Tootsie Rolls, and Gobstoppers. What characteristics do they have in common? If you were going to sort them, how would you begin? We’re going to start with packaged versus unpackaged. Continue to follow along with the Candy Dichotomous Key until all the candy is sorted. How are the candy pieces similar? How do they differ?  You have now used  a dichotomous key to identify candy!

Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)
Candy Dichotomous Key (click to enlarge)

Check your answers to the Coral identification:

  1.  Colonial
  2. The septa are rough
  3. The coral polyps  appear to be randomly scattered
  4. The coenosteum is smooth
  5. These corals are intratenticular – notice how some appear to be budding off from one another.
  6. No.

    Beverly Owens, Teacher at Sea, with coral sample of Solenosmilia
    Beverly Owens, Teacher at Sea, with coral sample of Solenosmilia

Personal Log:

One of my favorite marine organisms is the starfish. We have seen many brittle stars during the course of our research expedition. There have been many large white brittle stars, and many tiny pink brittle stars that live symbiotically with certain corals.

Did You Know?

Corals are actually animals? They belong in the Kingdom Animalia. Corals can live colonially, with other coral animals, or can be solitary and develop alone.

Robert Ulmer: Quo Vadimus? June 16, 2013

NOAA Teacher At Sea

Robert Ulmer

Aboard NOAA Ship Rainier

Underway from June 15 to July 3, 2013

Current coordinates:  N 55⁰47.254’, W 130⁰58.264’

(at anchor in Behm Canal at the mouth of Chickamin River)

Mission:  Hydrographic survey

Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date:  June 16, 2013

Weather conditions:  26.04⁰C, scattered altocumulus clouds, 32.91% relative humidity, 1012.18 mb of atmospheric pressure, light variable winds (speed of less than 3 knots with a heading between 26⁰ and 51⁰)

A bit of breathing room in Wrangell Narrows
A rare bit of breathing room in the passage of NOAA Ship Rainier through Wrangell Narrows

Explorer’s Log:  Preparing for the transit through Wrangell Narrows

When watching a great concert, recital, or athletic event, we often forget the hours upon hours of preparation that were invested before the starting whistle or the rise of the curtain.  History remembers and recites the first few moments of Neil Armstrong’s walk on the surface of Earth’s moon, but too often neglected from that history are the many years of research, discussion, calculation, prediction, and practice by thousands of people – including Armstrong – prior to that famous “one small step,” for without those advance preparations the brilliant moment likely never would have occurred.

Photos at the top of Everest belie the training, packing, mapping, and grueling climb that precede the snapshot.  Last-minute buzzer beaters arise out of years of dribbling and shooting in empty gyms long after scheduled team workouts end.   The revolutionary insights of Copernicus and Kepler were built upon hundreds of previous models and millions of recorded observations and related calculations.  Great campaigns are waged on drawing boards long before they approach the battlefield.

Chart showing approach to Wrangell Narrows
This is the chart used during the navigational team meeting in preparation for Rainier’s approach to Wrangell Narrows.

Aboard NOAA Ship Rainier the culture of preparation is omnipresent.  Posted on the door of my stateroom and carried in my pocket at all times is a billet card that delineates where I am to report and what task I am assigned in each of several emergency situations aboard ship.  Within an hour of getting underway from the port of Juneau, the alarm sounded for a fire drill, and every person aboard reported smartly to his or her assigned station.  Heads were accounted, gear was readied, and some crew members even donned full firefighting suits and deployed hoses and fans to address the fictional fire in the XO’s office.  Because every person aboard knew his or her role in advance, the ship was prepared for the drill.  And more importantly, because the entire ship participated actively in the drill, dealing with a genuine emergency, if necessary, will be more seamless and effective.

Then only ten minutes later, the alarm rang again.  This time an abandon ship drill.  As assigned, I retrieved my emergency gear and moved quickly to Muster Station 1 on the starboard bridge wing, where ACO Mark Van Waes explained in detail what would happen in the event of such an emergency.

Teamwork and Safety first
As this sign above the fantail proudly displays, NOAA Ship Rainier values teamwork and puts safety first in all operations and missions.
Leaving the dock at Juneau Port
Careful navigation requires attention to details, like avoiding this small dock while leaving Juneau Port.

Of course, most of the preparatory work aboard Rainier is not about emergency situations, but rather is focused on readying for the work of navigating and operating the ship or the scientific missions of conducting surveys and samples, and that aspect of life aboard ship is non-stop.  Everywhere around me, crew members and scientists are constantly working together, giving formal and informal trainings and lessons, offering one another ideas, insights, questions, and answers, unencumbered by the impediments of pride and arrogance that too often prevent achievement through growth.  To the left of me, a young ensign is given room to make navigational decisions, while to my right two expert hydrographers consult available data and each other while they brainstorm about technical and theoretical issues on their own horizons.

Passing Petersburg, Alaska
The entrance to Wrangell Narrows is alongside the town of Petersburg, Alaska.
Reviewing the data and documents during the mission
Scientists from the survey team review data and documents while aboard the launch.

And the gathering of minds aboard Rainier is impressive.  Today the hydrographic survey team assembled in the wardroom to talk about the upcoming week’s launches of smaller vessels to perform multi-beam sonar surveys and gather bed samples from the floor of Behm Canal.  Under the guidance of FOO Mike Gonsalves, data were shared, schedules were outlined, and every member of the team – regardless of rank or role – was encouraged to share thoughts, concerns, and inquiries relevant to preparation for the task at hand, the ultimate task of this leg of Rainier’s mission.  Like those other great events throughout history, here is yet another example of prior preparation preventing poor performance at the critical moment.  And those were not the last conferences regarding the survey launches, either.  A meeting regarding safety and other last-minute issues was held on the fantail before putting the launches out, and the various people aboard each small vessel constantly interacted to update and modify their ideas before executing their actions.

(Note:  My next blog post will be about the scientific survey launches, so stay tuned!)

The view forward through Wrangell Narrows
A panoramic view of the passage forward through Wrangell Narrows

The most impressive preparation during the past few days, though, was that of the navigational crew.  After hours of work compiling past data and available current information and building itemized route plans for passage through the potentially-treacherous Wrangell Narrows, Ensign JC Clark led a large and comprehensive meeting to discuss every bit of the upcoming traverse.  Utilizing charts, mathematics, weather forecasts, and expert opinions, the group of men and women in the boardroom created a plan of execution that considered everything from tides to local traffic, from channel depths to buoy patterns.  Adjustments were made in an air of excitement tempered by the confidence of experience, preparation, and skill.

Alidade on starboard bridge wing
This device (called an alidade) on the starboard bridge wing is used for visual bearings.

And when the ship approached the town of Petersburg at the mouth of Wrangell, the preparation paid off.  Turn after turn, command after command, the teamwork was superb, and the resulting passage was seamless.  The ride was so smooth as the bridge maneuvered Rainier through the slalom in that deep and narrow fjord, that only the beautiful scenery itself was breathtaking.

Chief Boatswain Jim Kruger practicing knots
During a brief opportunity to look away from the water, Chief Boatswain Jim Kruger worked on maintaining his expert knot-tying skills.

We tend to envision genuine explorers as being people who dare to travel beyond the horizon, choosing adventure over caution every time they set out.  But the truth is that every great explorer, long before he lifts his foot for the first step of the travel, asks himself and his companions:  Quo vadimus?

Where are we going?

Pre-launch meeting on the fantail
Field Operations Officer Mike Gonsalves conducts one last survey team meeting on the fantail before the launches get underway.

The answer to that question might be a physical location, or it could just as easily be a direction.  Up that mountain.  Toward that little island.  Around the bend.  It could even be broad and metaphorical.

Sea lions basking on a buoy at the entrance to Wrangell Narrows
The ACO pulled out the binoculars to answer his own question of why that red buoy at the entrance to Wrangell Narrows was listing so much to the right. The tilt was because these sea lions were using the buoy to bask in the warm near-solstice sun.

But regardless of the short answer, the great explorer knows that the value of good preparation ultimately is the maximization of adventure can be maximized.  Explorers may appear to disregard caution, but in fact, they have done the training, built the skills, plotted the course, and considered the likely obstacles in order to address that caution before getting underway.

But regardless of the short answer, the great explorer knows that the value of good preparation ultimately is the maximization of adventure can be maximized.  Explorers may appear to disregard caution, but in fact, they have done the training, built the skills, plotted the course, and considered the likely obstacles in order to address that caution before getting underway.

ACO Van Waes shared with me a superb insight:  The difference between a road map and a nautical chart is that a road map outlines a suggested path of travel, while the chart simply shows the traveler what things are out there.  The hydrographic survey teams and supporting scientists who work for NOAA make nautical charts so that seagoing explorers can continue the great human endeavor of creating their own maps to turn curiosity into discovery, and I am very proud to spend these weeks working and learning among the people who keep that grand tradition going forward.

So prepare yourselves, practice your skills, plan a bit, and choose a direction or two.  And then keep exploring, my friends.

Personal Log:  Father’s Day

On the day before I left Florida I cropped my hair closely and stopped shaving my face (for the first time ever), in part to minimize the need for maintenance away from home, and also as a minor-league scientific experiment to compare rates of hair growth on the face and on the crown.  After five days the chin, cheeks, and jawline seem to be winning the race.  But the most interesting datum – as so often is the case in scientific tests – is a peripheral notation:  When passing a reflective window this morning, I saw a familiar face framed by the short beard and small wrinkles at the edges of the sunglasses under the brim of my hat, but the face that I saw wasn’t my own.  This third Sunday in June, thousands of miles from home, sort of pensively half-smiling at a fleeting thought that was blending with a pretty view of the treeline off starboard, I saw the face of my dad looking back at me.  And my smile grew a bit softer and fuller when I caught glimpses of my sons in the reflection, too.

So happy Father’s Day to you three other Ulmer men who do so much to define this Ulmer boy.  I’m proud of you, and I love you guys.

And on behalf of children everywhere, happy Father’s Day to the rest of you readers who have undertaken the great task of raising kids.  Your work is important.  

Did you know?

Underway through Gastineau Channel
Underway through Gastineau Channel, outbound from Juneau

The ship’s propellers are called screws because essentially they spiral through the water to propel the boat forward by pulling water from in front and pushing it backward.  NOAA Ship Rainier has two screws, one starboard (right) and one port (left), and they spin in opposite directions to make smoother and more efficient fluid dynamics.  On this ship the screws constantly spin, but they are tilted differently to increase or decrease forward propulsion.

To increase forward vessel speed, the screws hang with a vertical profile so that the water moves horizontally backward from the boat, thus pushing the boat forward.  To decrease forward vessel speed, the screws are tilted toward a more horizontal plane, decreasing the backward push of water, and consequently reducing the ship’s thrust force.  It’s very much like holding your open, flat hand outside the window of a moving car and feeling the wind push it backward, upward, or downward, depending upon the angle of your palm relative to the car’s (and the wind’s) trajectory.  Newton’s Third Law of Motion says that every action comes with an equal and opposite reaction, and so the more directly backward the water is pushed, the more directly forward (with the same amount of force) the ship is pushed in the opposite direction.

Eric Velarde: Rosette C.T.D. Analysis & HabCam V4 Operation, June 15, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Monday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 15, 2013

Weather Data from Bridge
Latitude: 38°19.0778 N
Longitude: 74°15.9625 W
Atmospheric Pressure: 30.7in
Wind Speed: 11.5 Knots
Humidity: 70%
Air Temperature: 66.4°F
Surface Seawater Temperature: 66.2°F

Science & Technology Log

Deploying the Rosette to collect the first water sample for C.T.D. analysis & flying the HabCam V4 was the focus of work on June 15, 2013. The Rosette is deployed so that water samples can be collected to analyze the Conductivity, Temperature, and Depth (C.T.D.) of the seawater, providing data on the physical aspects of the Atlantic Sea Scallop’s (Placopecten magellanicus) habitat. The engineering team assumes responsibility of the Rosette, which is carefully lowered into the ocean through winch operation on the bridge. Once the Rosette has reached near the seafloor, it collects seawater and is then carefully retrieved through winch operation on the bridge. The seawater is then collected into an individual sampling bottle for analysis & calibration of the instrument.

Rosette C.T.D. Apparatus
Rosette C.T.D. Apparatus

Digital image rendering of the C.T.D. analysis allows for graphic visualization of the gathered oceanographic information, as well as calibration of the instrument. Analyzing the information demonstrates the two distinct layers of the ocean, separated by a relatively abrupt dividing boundary, which defines them. Atlantic Sea Scallops (Placopecten magellanicus) inhabit the seafloor in the lower layer of the ocean, whereas Plankton and Sea Scallop larvae can be found in the upper layer. Presentation of the C.T.D. readout gives accurate data of the Voltage (purple), Oxygen (blue), Temperature (red), and Salinity (green) levels.

C.T.D. Readout
C.T.D. Readout

As stated in my previous post, the HabCam V4 takes a tremendous amount of teamwork in order to operate at its maximum capacity. Correspondence with the engineering team is required to launch & retrieve the HabCam V4, the pilot must remain focused on ensuring that the HabCam V4 is close enough to the seafloor for maximum image quality, while at the same time being at a safe distance to prevent accidental collision, and the co-pilot is focused on incoming images & server traffic at a 2-monitor interface. All participating members of the crew must be attentive, communicative, and actively engaged in the contributing activities of other team members at all times.

HabCam V4 Co-Pilot Interface
HabCam V4 Co-Pilot Interface

The best way to describe piloting the HabCam V4 is to compare it to a video game, albeit one that has no “extra lives”. There is a pressure sensitive fiber optic cable feed & retrieval control lever that allows the pilot to either decrease or increase the depth of the HabCam V4. It is vital to maintain a safe distance while being in close enough range of the seafloor so that the incoming images are properly exposed and recognizable for the co-pilot. The optimum range is between 1.7 – 1.9 meters +/- 0.2 meters. Piloting the HabCam V4 during satisfactory weather is nearly effortless once having become acclimated to the 5-monitor interface and the control lever. Piloting the HabCam V4 during foul weather is quite difficult, requiring constant conscious concentration on all variables (seafloor depth, HabCam V4 depth, sonar readout, and fiber optic cable feed & retrieval) in order to prevent an accidental collision with the seafloor.

HabCam V4 Piloting
HabCam V4 Piloting

Co-piloting the HabCam V4 requires attention to the incoming images, as well as server traffic. Incoming images must be screened so that identified individual species can be time-stamped and tagged for analysis. Using software, the co-pilot can either tag observed species using digital identification markers, or manually input text to identify a particularly intriguing image that they wish to highlight for analysis. It is important to ensure that incoming images are being written to the server for digital archiving and future annotation. Digital data management, a scarcely celebrated 21st century character trait, is one of the many strengths of the crew aboard this vessel.

HabCam V4 Co-Piloting
HabCamV4 Co-Piloting

Personal Log

Despite a few bouts of violent seasickness, I have been having the time of my life while aboard the R/V Hugh R Sharp. The crew possesses seemingly infinite amounts of sincerity, honesty, and intelligence. The continued operation of this wonderfully engineered human machine has occurred without error, and will continue to do so while under the watchful eyes of the leadership heads. Thus far my favorite aspect of this research experience has been co-piloting the HabCam V4. Having vast amounts of digital imagery stream before my observation makes me feel as though I am at home, screening digital images that I stumble upon for both scientific beauty & significance.

HabCam V4 Co-Piloting
HabCam V4 Co-Piloting

In addition to the technological aspects of this experience, I have also found solace in the empathetic energy provided by the ship’s captain, Jimmy Warrington. His humor, experience, and leadership create an ideal teaching & learning environment. While many may dread the monotonous nature of a safety briefing, the one provided by the Captain was both engaging and informative. Following safety briefing, newcomers to the R/V Hugh R. Sharp are required to don a safety immersion suit in less than 60 seconds. The safety immersion suit is more commonly referred as a “Gumby Suit”. The suit is quite impressive, being both insulating and buoyant. It possesses a safety whistle, flashlight, interpersonal locking hooks, and even an inflatable pillow. It is reassuring to know that above all else, safety is the primary focus of the leadership on this vessel.

Safety Immersion Suit or "Gumby Suit"
Safety Immersion Suit or “Gumby Suit”

Being on duty from Midnight-Noon causes me to miss the opportunity to observe sunsets at sea on most nights, but I have been able to experience a few and they are simply the most breathtaking sunsets that I have ever seen. Watching the night divide the day is both awe-inspiring and thought provoking. Despite my colorblindness, I feel that I am still capable of absorbing all of the electromagnetic energy that the sun provides during this hour of magic.

Sunset Storm
Sunset Storm

Dredge tows will be the focus of upcoming days, and is something that I am looking forward to. As a biologist, I find all living organisms infinitely beautiful and stimulating. I cannot wait.

-Mr. V

Did You Know?

The Atlantic Sea Scallop Fishery is the largest & most valuable scallop fishery on planet Earth, valued at $580,000,000 in 2011.

Marla Crouch: Gumbi Marla and Setting Course, June 18, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 
 

Mission: Pollock Survey
Geographical area of cruise: Gulf of Alaska
Date: June 18, 2013

Weather Data from the Bridge: as of 1900
Wind Speed 13.48 kts
Air Temperature 7.0°C
Relative Humidity 99.00%
Barometric Pressure 1,010.00.5 mb

Latitude:  54.31N   Longitude: 159.80W

Science and Technology Log

Another fashion statement – Gumbi Marla

Here I am, all zipped up in my immersion suit.
Here I am, all zipped up in my immersion suit.

I’ve donned an immersion suit, also known as a survival suit.  One of the first things I did when I came aboard was to locate this suit and my life vest, two pieces of equipment that save lives.  In the event we had to abandon ship, the survival suit would keep me both warm and afloat until rescue.  During our evacuation drill we needed to unpack and get into the suit, and be completely zipped up in 60 seconds or less.  Getting into the suit was much easier after I took my shoes off, as the soles caught on the fabric of the suit.  The suit is made of neoprene, which was invented in 1930.  SCUBA wetsuits are also made of neoprene, and even some laptop and tablet cases.

In an earlier blog I talked about the CTD being used to calibrate the sonar aboard the Oscar Dyson, but not all technologies on the Dyson are as high tech as the CTD and sonar equipment.  In fact you can build a weather station at home that is similar to some of the equipment used by the Dyson’s crew.  Below is a picture of a hygrometer.  There are actually two hygrometers aboard, one is located on each side of the bridge.  Hygrometers are used to measure relative humidity (how much moisture is in the air).   Also pictured is the wind bird which shows the direction the wind is moving.  The propeller was actually turning rapidly when the picture was taken.  The camera was able to “stop” the action.  The wind bird is mounted atop the jack staff, high above the bow.

Hygrometers are weather instruments used to measure relative humidity.
Hygrometers are weather instruments used to measure relative humidity.

Wind bird

The following link shows you how to build six instruments for monitoring the weather.

http://oceanservice.noaa.gov/education/for_fun/BuildyourownWeatherStation.pdf

If you checked out the above link, how many snow days to you think the kids in North Dakota had?

Did you check out ship tracker?  If you did, the screen shot below will look familiar.  The blue lines in the water display the Dyson’s course.  Each segment of the course is called a transect.  Transects are numbered, enabling scientists to easily reference a location.

Oscar Dyson's course as of 6 18 13
Oscar Dyson‘s course as of 6 18 13

Are you wondering why we have traveled in rectangular patterns?  The scientists establish this course for a several reasons:

  1. Transects run perpendicular to the coast line, covering a wide range of bathymetry over the shortest distance.
  2. Regularly spaced transects (as opposed to randomly spaced or scattered) are correlated with historical data, and are the best way to describe the distribution of pollock.
  3. The combination of transects collects sufficient data to allow scientists to estimate the overall size of the pollock population with a high degree of certainty.

Does anyone have an idea about the meaning of “bathymetry” and a “leg”?  No, in this case a leg is not something you stand on.  Bathymetry is the shape and depth of the ocean floor, and a bathymetry contour line on a chart connects points of equal depth (like a topographic map).  A leg, in this context, is a segment of the overall distance covered in the survey.

The information collected during this year’s survey helps determine the number of pollock that can be caught in next year’s fishing season.

Here is the ship tracker link, you can check out the Dyson’s course and other NOAA ships as well.

http://shiptracker.noaa.gov/shiptracker.html

Personal Log 

I want to revisit the sonar of Mystery Mix One.  In my last blog I talked about what was happening near the surface of the ocean.  This time I want to focus beneath the sea floor.

Graphic provided by NOAA
Graphic provided by NOAA

Look beneath the red, yellow, and green bands, depicting the sea floor, at the blue color, notice how the density of color changes over time.  The density of the color tells scientists about the composition of the sea bed.  The denser the color, the denser or harder the seafloor is likely to be; probably, the places with the dark, dense color are rocky areas, which attract the fish schools seen in the water above.

Looking at this graph reminds me of an experiment that my husband worked on, when he worked for Charles Stark Draper Labs, in Boston, MA.  He worked on a Gravity Gradiometer that was sent to the moon on Apollo 17.  The gradiometer measured the changes in gravity.  The changes in gravitational strength give scientists information about what lays beneath the moon surface, like the sonar provides information about the sea bed.  The Gravity Gradiometer was a very specialized version of equipment that is commonly used in prospecting for oil on Earth.  I am sharing this story because, in class, one of our foci is to take what we know and apply the knowledge to a new scenario.  Next question:  Where will what we know now, take us in the future?

Did You Know?

Some fish can see color.

Sue Cullumber: Testing the Water and More, June 19, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/19/2013
Geographical area of cruise: The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude: 3853.256 N, 7356.669W
Temperature: 18.6ºC
Barometer: 1014.67 mb
Speed: 9.7 knots

CTDscreen
CTD reading on the computer. Blue is density, red is salinity, green is temperature and black indicates the depth.

Science and Technology Log:

Even before the plankton samples are brought onboard, scientists start recording many types of data when the equipment is launched. The bongos are fitted with an electronic CTD (conductivity, temperature and density) and as they are lowered into the ocean the temperature, density and salinity (salt content) are recorded on a computer. This helps scientists with habitat modeling and determining the causes for changes in the zooplankton communities. Each bongo net also has a flow-through meter which records how much water is moving through the net during the launch and can is used to estimate the number of plankton found in one cubic meter of water.

ZIplankton
Zooplankton (Z) and Icthyoplankton (I) samples.

The plankton collected from the two bongo nets are separated into two main samples that will be tested for zooplankton and icthyoplankton (fish larvae and eggs). These get stored in a glass jars with either ethanol or formalin to preserve them. The formalin samples are sent to a lab in Poland for counting and identification. Formalin is good for preserving the shape of the organism, makes for easy identification, and is not flammable, so it can be sent abroad.  However, formalin destroys the genetics (DNA) of the organisms, which is why ethanol is used with some of the samples and these are tested at the NOAA lab in Narragansett, Rhode Island.

sueplankton
Holding one of our zooplankton samples – photo by Paula Rychtar.

When the samples are returned from Poland, the icthyoplankton samples are used by scientists to determine changes in the abundance of the different fish species. Whereas, the zooplankton samples are often used in studies on climate change. Scientists have found from current and historic research (over a span of about 40 years) that there are changes in the distribution of different species and increases in temperature of the ocean water.

At the Rosette stations we take nutrient samples from the different water depths. They are testing for nitrates, phosphates and silicates. Nutrient samples are an important indicator of zooplankton productivity. These nutrients get used up quickly near the surface by phytoplankton during the process of photosynthesis (remember phytoplankton are at the base of the food chain and are producers). As the nutrients pass through the food chain (zooplankton eating phytoplankton and then on up the chain) they are returned to the deeper areas by the oxidation of the sinking organic matter. Therefore, as you go deeper into the ocean these nutrients tend to build up.  The Rosettes also have a CTD attached to record conductivity, temperature and density at the different depths.

Chris-DICtests
Scientist, Chris Taylor, completing the dissolved inorganic carbon test.
CO2test
The dissolved inorganic carbon test uses chemicals to stop any further biological processes and suspend the CO2 in “time”.

Another test that is conducted on the Rosettes is for the amount of dissolved inorganic carbon. This test is an indicator of the amount of carbon dioxide that the ocean uptakes from outside sources (such as cars, factories or other man-made sources). Scientists want to know how atmospheric carbon is affecting ocean chemistry  and marine ecosystems and changing the PH (acids and bases) of the ocean water. One thing they are interested in is how this may be affecting the formation of calcium in marine organisms such as clams, oysters, and coral.

New word: oxidation – the chemical combination of a substance with oxygen.

canal
Cape Cod canal.

Personal Log:

This week we headed back south and went through the Cape Cod canal outside of Plymouth, Massachusetts. I had to get up a little earlier to see it, but it was well worth it.  The area is beautiful and there were many small boats and people enjoying the great weather.

smallboat
Small boat bringing in a new group to the Gordon Gunter.

We also did a small boat transfer to bring five new people onboard, while three others left at the same time. It was hard to say goodbye, but it will be nice to get to know all the new faces.

dolphinsthree
Common Dolphins swimming next to the Gordon Gunter.

So now that we are heading south the weather is warming up. I have been told that we may start seeing Loggerhead turtles as the waters warm up – that would be so cool.  We had a visit by another group of Common Dolphins the other day. They were swimming along the side of the ship and then went up to the bow. They are just so fun to watch and photograph.

We have been seeing a lot of balloons (mylar and rubber) on the ocean surface. These are released into the air by people, often on cruise ships, and then land on the surface. Sea turtles, dolphins, whales and sea birds often mistake these for jelly fish and eat them.  They can choke on the balloons or get tangled in the string, frequently leading to death. Today, we actually saw more balloons than sea birds!!! A good rule is to never release balloons into the air no matter where you live!

balloon
A mylar balloon seen in the water by our ship.

Did you know?  A humpback whale will eat about 5000 pounds of krill in a day. While a blue whale eats about 8000 pounds of krill daily.

Question of the day?  If 1000 krill = 2 pounds, then together how many krill does a humpback and blue whale consume on a daily basis.

Blue Whale, Balaenoptera Musculus
Blue Whale, Balaenoptera Musculus

Beverly Owens: What Skills Are Important in Becoming a Scientist or Engineer? June 17, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 17, 2013

Weather Data from the Bridge:
Air temperature: 17.60 oC (63.68 oF)
Wind Speed: 13.41knots (15.43mph)
Water Depth of current dive: approximately 1800 m (5905 ft)

Science and Technology Log

I have been amazed in watching the Science Crew (scientists and TowCam engineers) operate this week.  With any challenge that is presented, they work as a team to make minor adjustments, troubleshoot, and correct any issues that may arise. That got me thinking…what skills or characteristics are important in becoming an engineer or a scientist?

I surveyed the Science Crew, and based on their responses, have developed a list of skills important for scientists and engineers:

  1. Have a positive attitude.
  2. Be an excellent student. Learn to think independently.
  3. Be a good writer.
  4. Communicate well with others.
  5. Develop analytical thinking skills.
  6. Volunteer or become familiar with resources, like labs, museums, or other scientific institutions.
  7. Develop strong math skills.
  8. Develop computer skills or computer programming skills.
  9. Perseverance: If you make a mistake you can’t get down about it. You have to pick yourself up and try again.
  10. Curiosity: If you are curious, you’ll be passionate about what you’re studying, and will be able to communicate that to others. If you’re passionate, you will persevere and work through the challenges.

Personal Log

During my Teacher at Sea experience, I have had the opportunity to observe the Science Crew during many different activities. Below are some skills or characteristics that I have seen exhibited by the scientists and engineers involved in this research expedition.

  1. Work as a team.
  2. Cooperate: Get along with others.
  3. Be tenacious and persevere; be steadfast, never give up.
  4. Look at things from different perspectives; think “outside of the box.”
  5. Listen to and respect other people’s ideas.
  6. Focus on the task at hand.
  7. Think things through before jumping in.
  8. Come up with hypotheses or solutions and test them. If the solution doesn’t work, try another one.

As science teachers, we try to instill these traits in our students in the classroom. Whether it is completing a group project, conducting a lab, or taking notes, there is always opportunity to improve our science and engineering skills.

Did You Know?

One feature of the deep ocean is that this region of ocean is subject to very high pressure due to the tremendous weight of the water above. So, how about a demonstration?

Take one Styrofoam cup, decorate it, and send it over a mile deep in the ocean. What happens to the Styrofoam cup?

It shrinks! Why? Pressure in the ocean increases about 1 atmosphere for every 10 m increase in depth. The increased pressure compresses the air inside the Styrofoam, and the cup condenses. It’s the same reason why your ears start “popping” when you drive to an area of higher elevation, like the mountains, or fly in an airplane. In that case, increase in altitude means a decrease in pressure

Increased pressure at the bottom of the ocean caused the Styrofoam cup to shrink.
Increased pressure at the bottom of the ocean caused the Styrofoam cup to shrink.

Robert Ulmer: Perspectives on a Glacier, June 14, 2013

NOAA Teacher At Sea

Robert Ulmer

(En route from Jacksonville, Florida to NOAA Ship Rainier and at port in Juneau, Alaska)

Will be underway from June 15 to July 3, 2013

At port in Juneau:  N 58⁰17.895’, W 134⁰24.684’

Mission:  Hydrographic survey

Geographical area of cruise:  Southeast Alaska, including Chatham Strait and Behm Canal, with a Gulf of Alaska transit westward to Kodiak

Log date:  June 14, 2013

Weather conditions at port:  19.08⁰C, scattered cumulus clouds with little vertical extent against bright blue skies, 43.05% relative humidity, 1017.36 mb of atmospheric pressure, wind speed of 9.5 knots with a heading of 79⁰

Port of Juneau
A panoramic view of the Port of Juneau with a cruise ship beginning its exit of Gastineau Channel

Explorer’s Log:  Mendenhall Glacier

Flying across the North American continent at an altitude of 34,000 feet is an experience somewhere between looking down upon a held globe and walking across the terrain.  Maybe that’s too obvious a sentence for starting this second blog entry, but the fact of that obviousness is the necessary beginning, I think.

Marker on the trail to Mendenhall Glacier with Ensign Steven Wall
As we walked the few miles through Tongass National Forest and across or around several mountains along the West Trail to Mendenhall Glacier, Ensign Steven Wall and I followed piled stone trail markers called cairns.

Crossing the skies above the glaciers of western Canada and eastern Alaska, I was overwhelmed by the sheer majesty of the sights below me.  Stretching from one horizon to the other, mile after seemingly endless mile of nearly blinding albedo from frozen water reflecting the sunlight of the approaching solstice at the nearly-Arctic latitude, interrupted only occasionally by jutting dark crags of towering mountains with just enough warmth or slope to slough the otherwise boundless field of snow, and dotted here and there by impossibly sapphire pools of today’s meltwaters.  Eons of valleys carved by the almost imperceptibly unhurried slog of ice advancing under the magnitude of its own weight.  Cascades of energy waiting, breathing, crawling, leashed only by the chilly bonds of molecular attraction below a certain thermal mark.  But the hiker in me instantly feels a frostbitten ache in the ankles and knees just from peering downward at the tremendous glaciers from the warmth of the airplane cabin, entirely based on the mere consideration of just one day’s walk across the frozen sheet, thousands of frigid footfalls constituting a single-digit of traversed miles, at best.   Truly, the glaciers are awesome when seen from an airplane.

At the toe of Mendenhall Glacier, just before a calving
These ice formations are at the leading face of Mendenhall Glacier as it slowly creeps along and melts into the lake and river below. Even though they seem small, the rocks beneath the ice are more than twenty-five feet high above the water line in this picture! About an hour after I took this photograph, a chunk of ice calved away from the glacier, making an explosive sound that could be heard for miles.

On a globe in my classroom, though, those magnificent glaciers are mere splotches of white and maybe a bit of texture for the fingertips, an entirely different paradigm, to be sure.  Accurate, proportional, and contextually appropriate on a cardboard sphere that must display the major surface features of an entire planet.  Excellent for showing young people comparative and relative size and location in order to launch discussions about geography, tectonics, Earth’s axial tilt, or the water cycle, but not likely to send shivers through the imaginations of the young students whose travels more often are flights of fancy rather than physical treks to distant lands.

The west side of Mendenhall Glacier, viewed from below
This was our first close-up view of Mendenhall Glacier. The “ramp” of ice that you see on the right is more than one hundred feet high.

The point of this comparison?  A study in perspective.

Where a biologist sees a species of tree (or maybe a whole ecosystem), a painter sees verticality or varieties of green, and a carpenter sees a cabinet.  Importantly, all three observers are valid, correct, and good in their perspectives.  Perhaps more importantly, not one of those perspectives has to be deemed wrong just so that the others can be right at the same moment.  Likewise, the globe and the look-down from the airplane both are meaningful in providing totally different perspectives on the same glaciers.

Ice cave at Mendenhall Glacier
Pressure, temperature, and friction work together to carve holes and caves in glaciers, some of which are big enough to walk through… with safety gear, of course!

Therefore, I was overjoyed to hear on my first morning after boarding Rainier a bit of enthusiastic encouragement (and a quick primer on how to use a can of bear spray!) from the ship’s XO, Holly Jablonski, insisting that Ensign Steven Wall and I should spend the day actually exploring Mendenhall Glacier above the Tongass National Forest, just outside the Juneau city limits.  With snacks and drinks in hand, Ensign Wall and I were dropped at the head of the West Trail, where we hiked through a few miles of verdant evergreens and mosses, over and around a few mountains, and up a rock face before arriving at the toe of Mendenhall Glacier.  Abruptly, here in front of me was a rippled wall of ice with folds so large that singular words of description are insufficient to capture their enormity.  What had appeared from miles across the meltwater lake to be small chunks of ice at the face of the glacier now were towers more than 140 feet tall, and yet their backdrop still showed them to be relatively tiny.  In the river below were chunks of floating ice that had fallen forward from the glacier’s leading edge, seemingly just a few feet wide… until I saw kayaks completely dwarfed next to them like flies next to football stadiums.

Kayaks among the calvings in Mendenhall Lake
If you look closely, you’ll see that the black specks on the lake are kayaks, which will give you some idea of the size of the “small” icebergs adrift in the water below Mendenhall Glacier.
Twenty-foot crevasse in Mendenhall Glacier
What appears to be a small crack really is a crevasse more than twenty feet deep, and its small drainage cave continues downward for more than 150 feet to the lake below the glacier.

Indeed, the ice was cold, but the feelings at the front of my thoughts were more about size and power, awe and beauty.  Nothing in my previous education had prepared me for my sudden inability to appreciate the magnitude of the behemoth.  Crawling through caves of ice and walking on the surface of the ice was both spiritually overwhelming, as I joined something so much larger in size and time than any human experience, and also tremendously frightening, as the sound of every creak and every drip striking a floor hundreds of feet below the edges of the hole served as a reminder of my fragility at the hands of such forces.

Next, though, I surprisingly was struck by exactly the opposite of the feeling that I had expected:  Rather than feeling the tremendous difference between the frozen landscape in front of me and the 90-plus Fahrenheit degrees that I left before dawn just one day earlier in Florida, I was moved instead by an overwhelming sense of unity, sort of a bridge between the airplane view and the globe view about glaciers that already had passed through my mind.  I couldn’t escape the connection between this mountainous ice sheet and the swampy lowlands where I live thousands of miles to the southeast, because ultimately it is the existence of this frozen ocean atop the mountains of Alaska (and its neighboring icecap, extending toward the planet’s pole) that leaves the great liquid oceans of Earth at a lower level, thus exposing the small peninsula of Florida that I call home at the far other corner of the continent.  And then I saw everything around me differently:  The flowing ice around the peaks looks very much like the wind-blown sands at the beginnings of beach dunes, the small deltas in the mud from the trickles of meltwater are shaped identically to the much larger region surrounding the Suwannee River as it crashes into the Gulf of Mexico, and the wetland grasses miles below the glacier are nearly twins of the salty marshes near Florida’s Intercoastal waterway.  While very different, also quite the same in many ways.

Delta beneath a rivulet near the toe of Mendenhall Glacier
A delta is formed when running water meets the friction of an obstacle in its path (often a larger body of water) and spills leftward and rightward of its banks, making a triangular shape (like the shape of the Greek letter delta) in the nearby land when seen from above. This tiny delta is at the end of a rivulet at the base of Mendenhall Glacier, but it has the same basic form as larger river deltas all over the world.

As my students and friends hear me say so often, we are the sum of our stories, and every story is interesting if told from a meaningful or exciting perspective.

If I simply had described the past few days of my life as a series of long and uneventful flights followed by a walk among some trees and ice chunks, it wouldn’t have been untrue; it just would have been less interesting.  We all know that the best stories often come from places of familiarity, but spun with unfamiliar points of view.  During the next three weeks, I look forward to hearing and sharing ideas and insights with scientists, mariners, stewards, and technicians aboard Rainier as together we explore the same scenery along the waterways of Alaska, but from our own different perspectives… and then sharing those stories with you here.

Hikers on Mendenhall Glacier
By finding the ice features along the left wall of this picture on other photos in this blog may give you some additional perspective about the tremendous size of Mendenhall Glacier, as here you can see a group of hikers along the edge of a meltwater stream.

In our hurried world of expediency, cell phones, and paved highways, perhaps we too often put on blinders to see our travels from only one frame of reference.  As you walk your own paths, I challenge you – as I again challenge myself – to look at each new thing in several ways before closing any doors of possibility or windows of perspective.  Keep exploring, my friends.

Explorer’s Supplemental Log:  Juneau, Alaska

Tlingit totem pole and wall painting on Village Drive in Juneau
The native Tlingit people carve and paint totem poles and other images to tell stories, record events, and celebrate or worship. Central to their totemic imagery is the great raven, a powerful bird of the local skies. The items in this photograph are at the entry to Village Drive, where many members of the Tlingit Tribe still live just a few blocks from the water in downtown Juneau.

Before my excursion to Mendenhall Glacier, I first was taken to the ship port in Juneau, where NOAA Ship Rainier has been at port for two weeks.  Despite the late hour of my arrival, the sun at this northern latitude so near the beginning of summer remained far above the horizon, and so I decided to explore the local city on foot.

Blooming flowers in Juneau
Many colorful flowers bloom in the warming air in and around Juneau as summer approaches.

Juneau, the Alaskan state capital, is nestled among several evergreen-rich yet white-capped mountains on both banks of the mighty Gastineau Channel, which carries its glacial headwaters eventually to the distant Gulf of Alaska in the North Pacific Ocean.  While Juneau has served as host for my shipmates during their hours of liberty in the past several days, the city traces its history both to the discovery of gold in the nearby mountains and waters and to the native Tlingit people who moved from nearby Auke Bay.  During the past century and a half, those beginnings have laid a strong foundation for commercial ventures in mining, exploration, and government alongside a rich cultural heritage that still is seen in the stories told by the totem poles at the entry to Village Drive.  Further, those roots have since grown as other visitors and new residents have brought their own religions, cultures, and curiosities, resulting in a small and beautiful city of varied flavors and voices, a city whose shopkeepers, fisherman, sailors, citizens, and guests mingle their perspectives into a lovely harmony with those of the soaring eagles, boisterous ravens, playful otters, and hungry gulls.

Juneau movie theater building
Downtown Juneau has many beautiful older buildings, like this one, which houses the movie theater (a favorite evening site for ship crews ashore).
Alaska Senate Chambers
Senators represent their home districts as they debate, negotiate, and legislate in the Alaska Senate Chambers in the state capital city of Juneau.
Russian Orthodox church in Juneau
This is the oldest Russian Orthodox church in North America, constructed in the 1800’s to educate and convert the local Tlingit people.

Did you know?

Like other living things, languages grow, ingesting new ideas and experiences, and then converting them into written or spoken symbols called words.  The study of vocabulary often reveals another important lesson in perspective, as word roots give us clues about how the inventors of those words saw the items and events in their own worldviews.

For example, a glacier is an enormous sheet of ice, but the etymological root of that word is the same root that underlies glass (which looks like ice in its nearly-clear, fragile, appearance of solidity) and glaze (which means to coat or polish a surface so that it appears to be covered in ice, a metaphor that is extended into frosting and icing on cakes).  And in many European countries, you can order a frozen treat by asking for a glacé.  Also, when a frozen chunk of the leading face of a glacier breaks free of the main body of the glacier, the event is called a calving, as the inventor of that term in that context must have seen the many ways that the event is like the birthing of a smaller baby cow from its much larger mother.

(By the way, calved chunks of glaciers that fall into bodies of liquid water don’t sink, but rather they float to become icebergs.  Most substances become denser when they freeze from liquids into solids, but water is unusual.  The buoyancy of water ice – which you’ve experienced on a small scale every time that you see ice cubes floating in a glass of drinking water – is caused by the greater density of liquid water compared to the lesser density of frozen water, as electrochemical forces lock water molecules into a more spread-out lattice during the freezing process than those same molecules experience as they flow more closely around one another in the liquid state.)

NOAA Ship Rainier at port in Juneau
NOAA Ship Rainier at port in Juneau, Alaska

Marla Crouch: The Mystery and Surf Your Berth, June 14, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8 – 26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 14, 2013

Weather Data from the Bridge: as of 1900
Wind Speed 9.57 kts
Air Temperature 6.84°C
Relative Humidity 81.00%
Barometric Pressure 1,030.5 mb

Latitude:  53.52N   Longitude: 166.34W

Science and Technology Log

The sonar on the Oscar Dyson recently created the graph below.  The graph displays the sea floor, the red, yellow, and green bands toward the bottom and along the top a few meters from the surface the layer of green and red, is the mystery.

Graphic provided by NOAA
Graphic provided by NOAA

The echoes, that create the graph do not look like fish.  The scientists recognize that something is there, the questions is, what?  Further exploration is done, but nothing definitive is found. This creates a bit of a dilemma, which initiates a whole series of conversations about trouble shooting the equipment, using different data gathering techniques (something different than a trawl), and hypothesizing about what is creating the image since there are no apparent biology.  Could the image be created by something physical in the water?  Until the make-up of the image can be identified the sonar signature, is titled and recorded as Mystery Mix One.

Taina Honkalehto, one of the scientists on this cruise, tells me that they have been encountering Mystery Mix One for a number of years here, in the Gulf of Alaska, and in different parts of the ocean at different times of the year. Mystery Mixes Two and Three are floating around as well.

Investigating Mystery Mix One:  Time stamp 12 June 2013, 050952 GMT (This time stamp equates to 8:09 almost 8:10 p.m. June 11, 2013 PDT.)

The stereo camera, which I talked about in my last blog, is a new piece of equipment that scientists are using to collect data about the ocean floor and the biology of the region.  The stereo camera was launched and submerged to a depth of 50m into the middle of Mystery Mix One, and left at that depth for 30 minutes while the Oscar Dyson drifted with the mix.  When the pictures were downloaded, the only identifiable objects were copepods, big copepods. Remember “big” is a relative term, big compared to what? Copepods can be smaller than 1 mm in length.  These big copepods are probably 6 to 8 mm.

The light image in the upper left-hand corner is a copepod.  Picture provided by NOAA
The light image in the upper left-hand corner is a copepod. Picture provided by NOAA
This is a clearer picture of a copepod. This is a clearer picture of a copepod.     Picture courtesy of comenius.susqu.edu
This is a clearer picture of a copepod.
Picture courtesy of comenius.susqu.edu

The strong sonar image created by the copepods heighten the mystery; starting another round of questions and discussions by the scientists.  Why are copepods creating such a strong sonar signature?  Why are the copepods so prominent on 18 kHz? (18 kHz is a low frequency that usually captures echoes from large objects, while small things like copepods would be seen at higher frequencies, like 200 kHz.)   Could something else be in Mystery Mix One, something that was not seen by the camera?  The discussion goes on creating a working hypothesis; the signature is being created by a combination of the copepods themselves, whatever they are feeding on and gases, being produced.  Not all the scientists are in agreement.  If Mystery Mix One was to be sampled again, would you get similar results?

Pictures from the stereo camera provided one piece of possible evidence that may lead to answering the question, “What is in Mystery Mix One?”

The next day another piece of possible evidence is added.  Oscar Dyson’s sea water intake filter is cleaned and what is found?  Krill and big copepods.  Pictures are taken and the evidence is recorded in the scientists’ journal. More evidence needs to be collected, but advances are being made to identify Mystery Mix One.

Krill are in the red ringed filter.  Copepods can be seen at the bottom of the bucket.
Krill are in the red ringed filter. Copepods can be seen at the bottom of the bucket.

Personal Log 

The first few days out at sea the waters were really calm, 1 to 3 foot swells or seas, which feels like the soothing glide of a rocking chair.  Now however, weather is moving in; wind speed is up around 15kts and the swells are about 9 ft.  Friday’s forecast is for 30kt winds and 12ft. seas.  Looking at the big picture, 9 to 12 foot seas are not very big.  But, walking around the ship with seas of that height requires due diligent to safely navigate the passage ways and steep stairs.  And you definitely need to mind the doors, make sure the door is securely latched and when opening hold on tight, as you don’t want the door to get away from you. Somebody might be standing on the other side.  Another activity that can prove challenging is getting into and out of your bunk.

The berths, or rooms, aboard ship are, for the most part, designed for two people. Look at the picture of my berth.  You can see a desk, chair, dresser and two draped bunk beds.  Mine’s the top bunk.  Our room is just about even with the water line.  That is important to know, because the lower you are in the ship the less dramatic the motion.  I’ll talk about the pitch and roll of the ship in a future blog

This is my berth.
This is my berth.

Now imagine yourself lying on a teeter totter.  You are right above the fulcrum, so you are nice and level.  An unbalanced force is now affecting your teeter totter, your feet go up your head goes down and you slide a little.  Then there is a change and you head goes up your feet go down and you slide back.  This back and forth motion is continuous, and the motion presses you into the teeter totter.  I call this the sloshing phenomena, because all the while you are teeter tottering you hear the sea water rushing pass the hull.  But wait, there is more.  Your teeter totter only moves in two dimensions, but we live in three dimensions.  Keep your teeter totter going, up and down, hear the water stream by and add a sideways roll, back and forth.  Don’t fall off your teeter totter.  You are not quite ready to surf your berth yet, sometimes the up and down, and side to side movements occur so quickly that you actually loose contact with your teeter totter.  Now you’re surfing!  I have yet to find the seat belt for my bunk.

Remember I said that my berth was low in the ship, there are only a few berths on this level, and more berths are two and three floors above me. Now think about a metronome.  If you’re not sure what a metronome is think about a windshield wiper on a car.  Both the metronome and the windshield wiper make small movements at the pivot point or fulcrum; the further away from the fulcrum the greater the range of motion. Think about how the motion is magnified as you move up from the water line.  Those folks above me are really surfing.

Did You Know?

When Taina and I were talking about Mystery Mix One she said the 18 kHz frequency ensonifying the larger fish.  I think ensonify is a cool word. I wonder if Mrs. Sunmark or Mrs. Delpez (our school’s band and orchestra teachers) have used the word ensonify in their classes?  Can any of you tell me what ensonify means?

Did you know you can follow my voyage on NOAA’s ship tracker website?  Here is the link.

http://shiptracker.noaa.gov/shiptracker.html

In my next blog, I have another fashion statement – Gumbi Marla!  And maybe something about the moon and Apollo 17.


Eric Velarde: First Day at Sea & HabCam V4 Operating Systems Management, June 13, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Monday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 13, 2013

Weather Data from Bridge
Latitude: 38°47.3002 N
Longitude: 75°09.6813 W
Atmospheric Pressure: 30.5in (1032.84mb)
Wind Speed: 14.5 Knots (16.68mph)
Humidity: 70%
Air Temperature: 19.2°C (66.6°F)
Surface Seawater Temperature: 19°C (66.2°F)

Bridge Weather Data Collection
Bridge Weather Data Collection

Science & Technology Log

Cleaning, stabilizing, and testing the Habitat Mapping Camera System, or HabCam V4 was the focus of work on June 13, 2013. This work was done to ensure that all image collection & processing during the Sea Scallop Survey proceeds without any technical mishaps. Following cleaning, the HabCam V4 fiber optic cable needed to be stabilized to minimize vibrational interference using an ingenious combination of copious amounts of galvanized electrical tape & zip-ties. Once the HabCam V4 fiber optics cable was properly stabilized, the vessel set out to sea to conduct preliminary testing to ensure that all systems were operating properly.

Stabilizing the HabCam V4 Fiber Optic Cable
Stabilizing the HabCam V4 Fiber Optic Cable

What distinguishes the HabCam V4 from other HabCam systems is that the HabCam V4 records Stereo-Optic images (3D images) using 2 cameras in order to give an unprecedented view of the ocean floor organisms and their habitat substrate in the highest image quality available. In addition, the HabCam V4 also possesses a side scan acoustics system, which allows the HabCam V4 Pilot (AKA, “Flyer”) to visualize the sea floor using Sonar technology. Visualizing the sea floor using Sonar allows for more precise HabCam V4 flying so that the HabCam V4 is kept at a safe  distance from the sea floor, which is contoured similarly to Earth’s continents.

HabCam V4 Pilot Interface
HabCam V4 Pilot Interface

Flying the HabCam V4 requires tremendous amounts of teamwork, as there are several operations that must occur simultaneously to ensure seamless HabCam V4 winch operation, data retrieval & image annotation. The Pilot is stationed behind a 5 screen interface where the following information is received: fiber optics cable feed & receival (smaller, upper left screen), loading deck real-time camera feed (upper left screen), Sonar visualization (upper right screen), altimeter/fathometer data (lower left screen), and HabCam V4 real-time image feed (lower right screen). The HabCam V4 is controlled in the Dry Lab by the Pilot who uses the interface to determine how much of the fiber optics cable is needed to be fed or received so that the HabCam V4 remains at a safe distance from the sea floor.  A winch operator is stationed on the loading deck to assist in managing fiber optics cable feed & retrieval. In addition to piloting and winch operation, a co-pilot works at a 2 screen interface to monitor the movement of the HabCam V4 relative to the vessels motion, as well as annotate the incoming images in real time so that observed organisms can be categorized, flagged, and timestamped.

Vic & Amber Piloting/Co-Piloting HabCam V4 in Dry Lab
Vic & Amber Piloting/Co-Piloting HabCamV4 in Dry Lab

Due to incoming severe weather & HabCam V4 data retrieval complications, the vessel had to return to port in Lewes, DE to ensure the safety of all crew members & scientific technology. The vessel is set to return to sea once the seas have calmed down and when the HabCam V4 is at its full operational capacity.

Incoming Severe Weather
Incoming Severe Weather

Personal Log

This experience seems like a living dream. Flying from Raleigh-Durham International Airport into Philadelphia International Airport was a breathtaking flight. The clouds were wispy, full, and complex. My mind was filled with anxious anticipation, and perhaps quixotic wonder & awe. As the plane descended, I was still wandering in the clouds in my mind. Even the drive from Philadelphia to my hotel in Rehoboth, Delaware where I spent the night before boarding the vessel seemed to be filled with restless excitement.

Philadelphia Clouds
Philadelphia Clouds

I’ve been working hard to become well acquainted with everyone and everything on board. This has already become a life changing experience for me. I have never had the opportunity to eat, sleep, and work in such an immersive scientific environment until this experience. Being in such close proximity to other scientific minds is very fulfilling, providing transcendental feelings of scientific curiosity, sincerity, and beauty. My natural tendency to introvert has begun to fade and I cannot stop the feeling of wanting to contribute as much as possible to the successful operation of the vessel and our mission.

R/V Hugh R Sharp Stern View
R/V Hugh R Sharp Stern View

Mindfulness, teamwork ethic, and lightheartedness are shared integral parts of everyones personality and are key features of the personified identity of the R/V Hugh R Sharp. Teamwork is contagious aboard this vessel, and it is simply the most wonderful scientific feeling I have had in a long time. One of the unique relationships that I have made is with La’Shaun Willis, a ’98 graduate of Bennett College. Never had I imagined that I would have the opportunity to work with a Bennett Belle on this cruise. She makes me feel at home. I cannot wait to share this relationship with my students, faculty, and our higher education partner, Bennett College.

La'Shaun Willis, NOAA Museum Specialist
La’Shaun Willis, NOAA Museum Specialist

In addition to interacting with the scientific team while completing dredge tow sorting & HabCam V4 operation, I plan on developing an understanding of the operation of the vessel itself through the engineering team. The engineers operate behind the scenes and provide an invaluable resource, the full functioning of the vessel itself. I am extremely interested in how, specifically, the vessel navigates through the seas, how waste and water are managed, and the logistics that are behind the planning of this tremendous voyage.

Engineering Team & HabCam V4
Engineering Team & HabCam V4

The weather has been improving and I feel that the best has yet to come. I cannot wait.

-Mr. V

Did You Know?

The HabCam V4 takes up to 10 images per second, which are stitched together to create a mosaic image, allowing for the visualization of a larger area than a single image could offer.

HabCam V4 Mosaic (image Courtesy of Dvora Hart)
HabCam V4 Mosaic (image Courtesy of Dvora Hart)

Sue Cullumber: Navigating for Plankton – It’s a Team Effort! June 15, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date:  6/15/2013
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Latitude/longitude:  4234.645N, 6946.914W
Temperature: 15.4ºC, 60ºF
Barometer: 1011.48 mb
Speed: 9.4 knots

Science and Technology Log:

Plankton is everywhere throughout the ocean, so how are the stations chosen and mapped?

IMG_9715
Looking over the map of our strata – photo by Cristina Bascuñán

Scientists first decide on a specific region or strata that they want to sample.  Then within this strata a specific number of stations is determined for sampling.  NOAA has developed a computer program that then randomly selects stations in the strata.  After these stations are generated, scientists play “connect the dots” to find the best route to get to all the stations. Once the route is generated adjustments are made based on time, weather and the team’s needs. These are plotted on a map and sent to the ship to see if further adjustments will need to be made.

IMG_9716
Map of our area of strata. We are currently following the red line. Many of the original stations to the east were dropped from the survey.

When the ship receives the map from the science party, they plot all the stations and make a track line to determine the shortest navigable route that they can take. Frequently the map that is originally provided has to be adjusted due to weather, navigation issues (if there is a shoal, or low area, the route may have to be changed), or ship problems. Once they come up with a plan, this has to be re-evaluated on a daily basis. For example during our survey we left four days later than planned, so many of the stations had to be taken out. Furthermore a large storm was coming in, so the route was changed again to avoid this weather. The Operation’s Officer onboard (Marc Weekley on the Gordon Gunter) speaks with the science party on a daily basis to keep the plan up to date and maintain a safe route throughout the survey.

IMG_9343
The Gyro Compass on the Gordon Gunter.
IMG_9642
The Sperry Marine – shows the location of vessels near the Gordon Gunter.
IMG_9700
Commanding Officer, Jeff Taylor, at the bridge with Ops Officer, Marc Weekley at the watch.

Ship Technology: The Gordon Gunter and all other NOAA vessels use many types of equipment to navigate the ship.  They have an electronic Gyro Compass which is constantly spinning to point to True North (not magnetic north).  This is accurate to a 10th of a degree and allows for other navigation systems on the ship to know with great accuracy what direction the ship is pointing. It also is used to steer the ship in auto pilot. When needed they can switch to manual control and hand steer the ship. They also have a magnetic compass onboard, if all electronics were to go out on the ship.  Also on the bridge are two radars, which provides position of all boats in the area and is used for collision avoidance. Underway, the Captain requires the ship to stay at least 1 nautical mile from other vessels unless he gives commands otherwise.

Once a station is reached the ship has to position itself so it will not go over the wire that is attached to the survey equipment.  Taking into consideration all of  the elements, which includes the wind speed, current weather conditions and the speed of the current, they usually try to position the boat so that the wind is on its port side.  In this way the wind is on the same side as the gear and it will not hit the propellors or the hull. The ship’s sonars determine the depth of the ocean floor and the scientists use this information to lower their equipment to a distance just above this depth.

IMG_9738
Cathleen Turner and Kevin Ryan take water samples from the Rosette.

Vocabulary:

Bow – front of the ship

Stern – back of the ship

Port – left of bow

Starboard – right of bow

Personal Log: 

Brrr… it’s cold!  To avoid the big storm we headed north to the Bay of Fundy that is located between Maine and Nova Scotia.  Seas were fairly calm, but was it cold at 9º C (48ºF), but with the wind chill it was probably closer to 5.5ºC (42ºF)!  We are now heading south so it is starting to warm up, but luckily it won’t be as hot as Arizona!

Loggerheadshark - tom
Loggerhead turtle being tracked by a Blue Shark – photo by Tom Johnson
readyfortakeoff
Shearwater trying to take off.

 

 

 

 

 

 

 

Trying to take photos of animals in the ocean is very difficult.  You have to be in the right place, at the right time, and be ready. Today we saw several sightings of whales, but they were in the distance and only lasted a second.  During this trip, there was also a sighting of a shark attacking a Loggerhead turtle, but by the time I got to the bridge we had passed it by.  Lately we have seen a great variety of sea birds including:  shearwaters, puffins, sea gulls, and about twenty fiver other types. Even though it can be a little frustrating at times, it is still very calming to look out over the ocean and the sunsets are always amazing!

shipinpinkandbluew
Sailing into a beautiful sunset

I can’t believe that there is only one week left for the survey.  Time has gone so fast and I have learned so much.  Tomorrow we are doing a boat exchange and some people are leaving while others will come onboard.  I will miss those people that are leaving the ship, but look forward to meeting new people that will join our team.

Did you know?  The ratio of different salts (ions) in the ocean water are the about same in all of the world’s oceans.

puffin
One of the pufffins we saw up by Maine.

Sue Cullumber: Plankton, Food for the Sea! June 13, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/13/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:  Time:  8:25 am
Latitude/ Longitude:  4200.0122N, 6758.0338W
Temperature:  12.4ºC
Barometer:  1007.26mb
Speed:  9.1 knots

Science and Technology Log:

Why study plankton?  Plankton are at the bottom of the food chain. Remember they are free floating organisms that drift with the currents. That means that they provide food for many other animals and those animals are then eaten by larger animals and so on.  Therefore, plankton are important in the fact that if something happens to them, then the whole food chain is affected.

IMG_8991
Scientist, Chris Taylor, and Fisherman, Cliff Ferguson, bring the Bongo net back onto the ship.

So researchers are interested in learning all about the different types of plankton, their distribution and abundance in the ocean.  They want to answer questions such as: Have these factors changed over time?  Are we finding different kinds of plankton in different locations?  Has the amount of plankton changed?  How do the changes in the abundance and species of plankton affect higher trophic (feeding) levels?

Types of Plankton:

phaeocystis-phytoplankton
Phytoplankton on the surface of the water.

Phytoplankton – The plants of the sea. They carry out photosynthesis, so they are found in the water column where light is able to reach. This can vary depending on how clear the water is.  If water is very clear, they can be found at deeper levels because the light can penetrate farther.  These are the primary producers of the ocean, providing food for the first order consumers – mainly some types of zooplankton.

Amphipods, the two larger organims, and Copepods, the pink organisms– some of the many types of zooplankton we are finding.

Zooplankton – Animal-like plankton.  These vary immensely by size, type, and location. They are classified by their taxonomy, size, and how long they stay planktonic (some only are planktonic in a larval stage where others are for their entire life) .  These plankton are consumers with some eating the phytoplankton and others eating other zooplankton. These are extremely important as larger consumers eat them and then even larger organisms eat these.

fishlarvae
Fish larvae in among some copepods.

Icthyoplankton – Fish larvae or eggs. These float and drift in the water and, therefore, are considered planktonic.  Since these are only planktonic for part of their life, they are called meroplankton.  Organisms that are planktonic their entire life are called holoplankton.

Vocabulary:

Plankton – free floating organisms that drift with the current.

Trophic level – position an organism occupies in the food chain.

Taxonomy – how scientists classify organisms.

Holoplankton – organisms that are planktonic their entire lives.

Meroplankton – organisms that are planktonic for only part of their lives.

I interviewed our lead scientist onboard the Gordon Gunter who studies plankton:

chrismelrose
Lead Scientist – Chris Melrose

Name: Chris Melrose

What is your Position? Research Oceanographer

What do you do?  Principal investigator on  the Northeast Fisheries’ Ship of Opportunity project.  We collect data from merchant vessels that are crossing areas that we are interested in. I also work on the Ecosystem Monitoring Surveys where my main area of interest is primary production and phytoplankton. They are the base of the food web and tell you a lot about the functioning of a marine ecosystem.  Much of my work was in coastal regions where there were concerns about eutrophication, the enhanced primary production due to inputs of nutrients from pollution.

Why is your work so important?  We are studying the planet we all live on and we are in a period of environmental change. Long term monitoring programs, like this one, allow us to compare data from the present with the past to see how things have changed and also helps us to make predictions about what will happen in the future.

Why did you decide to become a marine scientist and work with NOAA and ocean science?  I grew up on the island of Martha’s Vineyard and always had an interest in the ocean. It was a hobby, but now it’s a career.

What do you enjoy most? I like science and being able to be out in the field – it is more of an adventure than just being in a lab.

What part of your job is most unexpected? When you are out in the ocean, there are always surprises – nature, weather or difficulties with ships, so you always have to be ready to adapt.

How long have you worked for NOAA and as a marine scientist?  From 1998 to 2004 I was with NOAA as a graduate student, from 2004 to 2010 as a contract employee and in 2011 I became a full-time employee.

What is your favorite type of plankton?  Diatoms because they have so many different shapes and geometric designs.

What is your favorite marine animal? Octopus as they are clever and it is amazing how they can change their color and shape.

If a student is interested in pursuing a career in marine science, what would you suggest to them?  Science and math are very important and you would need to attend graduate school.

What type of education do you need? At least a master’s degree to become a research scientist.

suewithbongos
Spraying down the Bongo nets – photo by Chris Melrose.

Personal Log:  

I am now getting use to my shift, noon to midnight.  At each station we put out the Bongo nets or Rosettes (more often the Bongos) and then we have to wash them down and strain out the plankton in a sieve to be saved later for the research. It gets a little harder and colder towards the end of the shift, but it has been very interesting seeing all the variety of plankton we are finding and how it changes from station to station.

stormwave2
Waves were a little higher during a very foggy day on the Gordon Gunter.

Yesterday was very foggy and a little more rocky.  It was very hard to see anything, but still beautiful to look at the ocean around us.  Today it is clearer, but still somewhat rocky.  Sightings have been few, but we were able to catch some whales in the distance by seeing them “blow” – spirt out water through their blow holes.  A Storm is on the forecast and we have had to change our route. We will not be going as far east as planned and will head north to avoid the main barrage of the storm.

The ocean is such an amazing place, with all its life and vastness. It makes you realize just how small you are and how big the world really is!

oceansunsetshipgood
Sunset off the stern of the Gordon Gunter.
zooplank
Euphausid- commonly known as krill

Did you know? Many types of whales feed exclusively on euphausid (or krill), a shrimp like zooplankton.

Question of the Day: What is your favorite type of plankton?

Beverly Owens: Vacation Cruise – June 13, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013
 

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 13, 2013

Weather Data from the Bridge:
Air temperature: 16.70 oC (62.06 oF)
Wind Speed: 25.17 knots (28.96mph)

Science and Technology Log

Waypoints for TowCam expedition
Waypoints for TowCam expedition

“You get to go on a two-week cruise for vacation!”

This is the misconception that some people had, when I told them initially that I would be participating as a NOAA Teacher at Sea.  On a vacation cruise and a research cruise, participants stay an extended period of time on the ocean, and they receive three meals a day.  That is pretty much the end of the similarities between these types of cruises.  During a scientific research expedition, there is a mission to accomplish. For example, this trip is examining sites that are known or predicted to be deep-sea coral and sponge habitats.

Many multibeam bathymetric maps are consulted to find the most suitable sites to investigate. Bathymetric maps are similar to topographic maps with the exception that bathymetry applies to the topography of the ocean floor. Most of the major structure-forming deep-sea corals are found on hard substrate. Thus, areas of soft sediment are not the most likely places to find the majority of coral species, however many other organisms like brittle stars and anemones, may be found there.

There is a lot of preparation that goes into planning and coordinating a research “cruise.” The Chief Scientist must put in a request for a research vessel, and must assemble a science crew that has the skills and research interests that align with the research mission. In the months leading up to the research trip, the science party will discuss specific science objectives, protocols and potential study sites. Every participant must receive medical clearance, which includes having a TB (tuberculosis) test, and a recent tetanus vaccination.

The Chief Scientist, with input from the science team, determines which areas of the ocean to examine, and what type of technology to use to explore the ocean. Weather and waves may prevent some of the “dives” from taking place. Safety first – the conditions must be safe enough for the TowCam operators and deck crew to be outside during deployment as they lower TowCam safely into the ocean.

This bathymetric map displays the topography of the ocean floor.
This bathymetric map displays the topography of the ocean floor.

During TowCam deployments, many things must be done to make the dive successful. The Chief Scientist selects several points (waypoints) along a survey line within a canyon. These points help guide the ship during the TowCam deployment.  To get TowCam into the water requires a lot of communication and coordination of efforts. The winch operator and deck crew are responsible for getting TowCam into the water. The winch operator is in constant contact with the TowCam pilot and  controls the wire that lowers TowCam into the water. At a certain depth, the control is passed to the TowCam pilot in the lab who uses a joystick to lower the camera to the ocean floor.  The pilot and the Bridge are in constant communication during the dive. The Bridge controls the ship and follows the track for the survey. The TowCam pilot analyzes data displayed on several computer monitors in order to make the most informed decisions as they guide the camera through the water column by moving TowCam and up and down in the water column.  In addition, a variety of data are collected during the deployment.  I have been logging data during the night shift deployments. I help keep track of variables  such as depth, winch wire tension, latitude, longitude, and altimeter readings along the survey track.  All this information will be invaluable to scientists examining the data collected during this research cruise.

 Personal Log

At Crest Middle School, we try to teach our students critical thinking skills: think for themselves, make informed decisions, gather data, predict, and draw conclusions. This research trip is a prime example of how skills that students acquire in school will be beneficial for them in the future. When completing a task such as logging data, I have to decide what the important events are that have occurred in the TowCam dive, and to phrase those items in a way that others will understand.

TAS Beverly Owens logging data
TAS Beverly Owens logging data

 Did You Know?

TowCam is about the size of a refrigerator. It has one large high-resolution camera that takes pictures every 10 seconds. It also has a CTD, which records conductivity (salinity), temperature, and depth. TowCam also carries several Niskin bottles, used for water collection at depth and a slurp pump that pulls sediment from the ocean floor into a container for later analyses.

.

Adam Renick, Heading Out and The Science Begins, June 13, 2013

NOAA Teacher at Sea
Adam Renick
NOAA Ship Oscar Elton Sette
June 12th – June 26th, 2013 

Mission: Kona Integrated Ecosystems Assessment http://www.pifsc.noaa.gov/kona_iea/
Geographical area of cruise: The West Coast of the Island of Hawaii
Date: June 13, 2013

The Oscar Elton Sette in port.
The Oscar Elton Sette in port.

Personal Log       

Blog2 (7)
The ocean brings us life.

 I arrived in beautiful Honolulu, HI, where I prepared myself to sail on the Sette. In what seemed like no time at all I was aboard and operations were underway. Meeting the team of scientists and the crew of the Sette has been a very welcoming experience and I look forward to getting to know them all better. I will interview and write some biographical sketches for them later. Mahalo, thank you.

Blog2 (4)
Heading out of Pearl Harbor

Heading out to sea on Wednesday was a great way to get our sea legs under us. Leaving beautiful Pearl Harbor past the picturesque Honolulu skyline butted up against Diamond Head could hardly get any better. That is, until our first wildlife sighting – a green sea turtle breached the surface right next to our boat to wish us a safe journey.

Once we left the calm of the harbor the sea started rocking and rolling almost immediately. Without the islands to protect us, the wind picked up and waves started tossing the boat all around. I quickly transitioned from enjoyment of the beauty to holding on to my lunch. The seasickness lasted through the safety drills and well into the night as we sailed southeast to Kona, our research destination.

Blog2 (6)
Research Site off the Kona Coast

I spent the afternoon trying to identify my sensations as they were occurring. Was I pitching or rolling, or both? Pitch is when the front of the ship, the bow, goes up and down. Roll is when the ship leans left and then right from its center of axis. Once my stomach settled down it actually became quite fun to lie in my bunk as everything around me got thrown into the air. My dreams of being able to fly were coming true. No worries though, by sunrise the seas had calmed and the beautiful Hawaiian sunrise began our first day of scientific operations.

 Science and Technology Log

Blog2
Jessica at the Active Acoustics ELab

Science operations began just before sunrise with two very important tasks. The first, called active acoustics, will be ongoing 24hrs/day for our entire two-week cruise. This important task uses the ship’s hull-mounted echo sounder to locate layers of marine animals that cetaceans such as whales and dolphins might like to eat.  These layers of animals are composed of small fish, shrimp, and squid that tend to group together in a layer at specific depths at different parts of the day and night. We use the sonar to track that layer of creatures, which allows us to drop down nets to that specific ocean depth to catch some of them in a process called a trawl. These trawls will be conducted twice each night to sample these layers and to learn more about their composition.

Blog2 (5)
Me taking care of the CTD after its deployment.

The other ongoing scientific procedure that was begun today is the conductivity-temperature-depth (CTD) casts. A CTD is a tool (pictured) that is lowered deep into the ocean and allows us to measure some of the most important physical and chemical characteristics of the water, which are depth, salinity, dissolved oxygen and temperature. Additionally, the CTD has a fluorometer attached to it that tells us the amount of phytoplankton, or chlorophyll, that is in the water. As the CTD is being pulled back up it also collects 10 samples of water in tanks for us to analyze in the lab. We try to determine the size and structure of the phytoplankton and zooplankton community, the amount of nutrients and the amount of chlorophyll in the water at different depths. This data will help the scientists make connections between the physical properties of the water and its biological productivity.

So much more to write about, but that is all for today…

Best,
Adam Renick
NOAA Teacher at Sea

Marla Crouch: Checking Out the Fish! June 12, 2012

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013 

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 12, 2013

Weather Data from the Bridge: as of 2300
Wind Speed 12.30 kts
Air Temperature 6.10°C
Relative Humidity 98.00%
Barometric Pressure 1,009.6mb

Latitude:  54.22N   Longitude: 164.65W

 Science and Technology Log

Here I am all decked out in my rain gear in the wet lab, ready to sort the catch of our first bottom trawl.  Quite a fashion statement, don’t you think?

Me in my slime gear.
Me in my slime gear.

Walleye Pollock (latin name Theragra chalcogramma), a fish that lives both on and above the seafloor, is the main target of the Pollock survey, but information about other sea life is also collected.  When we start sorting the catch from this bottom trawl, the primary population is Pacific Ocean Perch (POP, Sebastes alutus).  The POP is a member of the Scorpaenidae or scorpionfish family and has poisonous spines.  When handling the fish I have to be really careful of the very sharp spines to avoid injury.  Fortunately, the POP’s teeth are not as formidable as their spines, so I can grab them by the mouth to safely move them around.

After we sort the catch the total weight of each species is recorded.  We collect additional biological data on the POP, by first sorting them by “Blokes” or “Sheilas.”  I’ll let you figure out what characterizes Blokes and Sheilas.   After the sorting, each fish in the sample is laid on an electronic measuring board (mm) to determine and record the length of the fish.  In this survey the length of the fish is measured from the tip of the mouth to the center of the “v” in the tail, this is know as the fork length.

Other populations being sampled are plankton and the jellyfish that were collected in a Methot trawl.  Here Abigail McCarthy is sorting two types of zooplankton krill (also called euphausiids) and jellyfish that were collected.  Once the sorting is completed, then the quantity and weight of the krill and the jellyfish is recorded.  One of the areas Abby is investigating is if there is a correlation between the krill population and the location of baleen feeding whales.  Abby wonders how far away the whales can smell or sense dinner?  Who can tell me which species of whales are baleen feeders?

Sorting krill and jellyfish
Sorting krill and jellyfish

Another tool the scientists use to collect data is a tethered stereo camera that takes 10 pictures/second. Using the pictures I am counting and sorting fish by species.  Look at the pictures and you’ll see a Gorgonia sea fan and a basket star.  The camera has a stationary photo length, so objects closer to the camera appear bigger.  In the picture with the sea fan, you are also seeing krill.  You can use the pairs of images from the stereo cameras to measure the size of the organisms that appear in the images.

The two cylinders in the center are the cameras and the four other cylinders are strobe lights.
The two cylinders in the center are the cameras and the four other cylinders are strobe lights.
The sea fan is a member of the soft coral family.
The sea fan is a member of the soft coral family.  Krill can be seen in front of the sea fan.  Picture provided by NOAA.
The basket star is a type of sea star.  Here the basket star is open waiting for dinner to drift by.
The basket star is a type of sea star. Here the basket star is perched on top of a sea sponge open waiting for dinner to drift by.  Picture provided by NOAA

Personal Log 

When the Oscar Dyson sailed from Dutch Harbor we head west to the Islands of Four Mountains, a cluster of volcanic isles.  On one isles is Mt. Cleveland, which on May 5th was actively spewing lava.  As we pass, Mt. Cleveland is quietly shrouded in dense cloud cover.  Darn, cannot check eruption off my “Want to see” list.  I don’t think I’ll see an aurora either as the cloud cover has been thick.

This is the south side of Onalaska.  Dutch Harbor is on north side facing the Bering Sea.
This is the south side of Unalaska. Dutch Harbor is on north side facing the Bering Sea.

Science aboard the Oscar Dyson runs 24/7.  Both the Dyson’s crew and the science team work in twelve hour shifts.  For the Dyson’s crew the day is broken into two shifts, from midnight to noon and noon to midnight.  The science team shifts are from 4 a.m. (0400 hrs.) to 4 p.m. (1600 hrs.) and 1600 hrs. to 0400 hrs. I am on the 1600hrs to 0400hrs shift; morning and night run all together.  A note here, when the scientists collect data the time stamp is Greenwich Mean Time (GMT).  GMT is eight hours ahead of us here in Alaska.

Did You Know?

I’ve discovered that you can slosh in your berth.  Check out the next blog for “Surf Your Berth.”

Beverly Owens: The Tenacity of a Scientist, June 13, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission: Sea Corals and Benthic Habitat: Ground-truthing and exploration in deepwater canyons off the Northeast
Geographical Area: Western North Atlantic
Date: June 11, 2013

Weather Data from the Bridge:
Air temperature:18.4 oC (65.12 oF)
Wind Speed: 24.56 knots (28.26 mph)

 

Science and Technology Log

The Tenacity of a Scientist

The science crew has been divided into two teams – the day watch (noon to midnight), and the night watch (midnight to noon). Those who are on “watch” are expected to be around the science labs while on duty. When TowCam is deployed, members of the science party on watch should be in the Dry Lab to monitor images and record data.

My watch is midnight to noon. Did I mention that my normal bedtime is 9:00? It will take a little while to get adjusted to this new schedule.

While the TowCam is in the water, the “Dry Lab” is bustling with activity. The TowCam operators, and some of the ship’s crew, ensure that the equipment is safely deployed. After lowering TowCam to a specified depth, control of TowCam is passed from the Bridge to the TowCam pilots. It is interesting to see how this large piece of machinery is operated. The pilot uses a joystick to raise or lower TowCam to the correct depth just above the ocean floor. In addition to the joystick controller, the pilot must also interpret data that is being recorded by TowCam or the ship. Knowing the wind speed, tension of the winch wire, altimetry, and depth are all variables that help the pilot to make the most informed decisions about the placement of TowCam.

Even with the best planning and most precise implementation, sometimes things go awry. For example, a cable may break, or the altimeter may not be registering correctly. During a research cruise such as this, spare parts, tools, and other materials must be packed for the voyage. There are no trips to the hardware store when you’re out in the middle of the ocean!

After yesterday’s practice dive, the engineers made some adjustments to TowCam so that it could work to its optimum capability. After adjustments have been made, a series of tests are run on TowCam to ensure that everything is working properly. After testing is complete, TowCam will be deployed again, allowing us another glimpse of the ocean floor.

Beverly Owens: Scientist Spotlight – Dr. Liz Shea, June 11, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission: Sea Corals and Benthic Habitat: Ground-truthing and exploration in deepwater canyons off the Northeast
Geographical Area: Western North Atlantic
Date: June 11, 2013

Weather Data from the Bridge:
Air temperature: 18.4 oC (65.12 oF)
Wind Speed: 24.56 knots (28.26 mph)

Science and Technology Log

Dr. Liz Shea, recording data during the first TowCam dive
Dr. Liz Shea, recording data during the first TowCam dive

Dr. Shea is from Wilmington, Delaware, where she is the Curator of Mollusks at the Delaware Museum of Natural History. In this role, Dr. Shea manages collections and conducts research. There are over 250,000 mollusks in collections including snails, clams, and cephalopods. She received her Bachelor’s degree from William and Mary, her Master’s from the Virginia Institute of Marine Science, and her Ph.D. from Bryn Mawr College.

While working on her Master’s degree, Dr. Shea conducted her research on squid paralarvae (very small hatchlings), but recently has been more involved in collecting deep-sea squids and octopods. Her recent work includes using Magnetic Resonance Imaging (MRI) technology to examine morphological characters that will help distinguish between species.   Through Dr. Shea’s research, scientists are now able to identify cirrate octopod hatchlings to the genus level.

Dr. Shea has always been interested in the ocean. While at the beach as a child, she enjoyed looking at creatures from the ocean. As an undergraduate student, Shea held an internship at the Smithsonian Institution, and worked with several scientists who studied cephalopods, mollusks such as octopus, squid, and Nautilus. During her internship, her mentors impressed upon her that there is still much left to learn about cephalopods, and plenty of research still to be done.

Additionally, Dr. Shea has volunteered in the past to lead 5th grade students in a squid dissection. One unique thing Dr. Shea liked to teach the children is that there are many ways in which an organism’s body might be organized.

Dr. Shea tries to go on one research cruise per year. For Dr. Shea, these types of cruises are, “Always the highlight of my year.”

Marla Crouch: Hello Dutch Harbor, Alaska, June 8, 2013

NOAA Teacher at Sea
Marla Crouch
Aboard NOAA Ship Oscar Dyson
June 8-26, 2013

Mission:  Pollock Survey
Geographical area of cruise:  Gulf of Alaska
Date: June 8, 2013

Weather Data from the Bridge: as of 1900
Wind Speed 9.57 kts
Air Temperature 6.84°C
Relative Humidity 81.00%
Barometric Pressure 1,030.5 mb

Latitude:  53.52N   Longitude: 166.34W

Science and Technology Log

The Oscar Dyson is harbored in Captains Bay and there is much to do aboard before we set sail on our cruise.  Some equipment needs to be off loaded and stored while other equipment needs to be loaded and secured.  The Science Team checks their berth (room) assignments, drop off their gear, and begin the task of readying the equipment.

“What are the properties of sea water?”  Are you thinking liquid?  There are three properties that scientists routinely check, they are temperature, salinity and density.    The Dyson’s crew deploys an instrument referred to as the CTD.  The CTD contains sensors which continuously measure the Conductivity, Temperature and Depth of the water. The CTD is sent to the bottom to create a profile of the temperature and salinity (as measured by how well the water conducts electricity or its ‘conductivity’) and then is brought back to the surface.  On the way back up water samples are collected at per determined depths, in the grey bottles. The collected water samples are measured to calibrate the sensors on the CTD.  This information is then used to calibrate the sonar.

There are five grey water sample bottles on this CTD.
There are five grey water sample bottles
on this CTD.

Sonar uses sound waves called pings that bounce off objects creating echoes.  The echoes are recorded and used to create pictures of the sea floor and other object, such as schools of fish.  To calibrate the sonar a round shiny ball that reflects the pings is submerged beneath the ship. The scientists know the expected strength of the echo from the sphere given the water temperature and salinity, allowing them to calibrate the sonar. Sometimes fish interfere with the calibration process. Fish are curious creatures and want to investigate the shiny sphere, getting in the way of the pings and slowing down calibration.

When the calibrations have been completed we set sail.  As the Dyson sailed out of Captains Bay, we encountered dolphins jumping out of the water and whales surfacing. Perhaps they were feeding on the large school of fish seen in the sonar.

The sonar shows the sea floor, the band of blue, yellow and red. The schools of fish are the pink groupings.   The water depth is 123.23m.
The sonar shows the sea floor, the band of blue, yellow and red. The schools of fish are the pink groupings.
The water depth is 123.23m.

Personal Log 

Before leaving Seattle, I was told my luggage might not be on the same flight as I was on into Dutch Harbor.  The airport in ‘Dutch’ has a short runway and is serviced by turbo prop aircraft that seat 33 passengers.  When I checked in, I was asked for my weight and any carry-on.  The airline uses the total loaded weight of the aircraft to calculate how much runway is needed to take off and how much fuel is needed to reach the next refueling point.  Upon boarding the plane, the passengers were told that 87 pounds of luggage would not make the flight and more than likely the bags would be on tomorrow morning’s freighter– weather and volcanic activity permitting!  I kept my fingers crossed that my bag was in the cargo hold.  A little over an hour into the flight, we landed in King Salmon for refueling.  Shortly after landing, we were once again airborne for the 1 ½ hour flight to Dutch Harbor.  In route along the volcanic chain of Aleutian Islands, you can see peaks visibly venting steam and Mt. Pavlof’s snowy surface is blackened with fresh ash.  The Oscar Dyson will sail past several of these active volcanoes.  Looks like I’ll be adding a volcanic eruption to my list of “want to see” while aboard the Dyson. I am also hoping to see the Aurora Borealis and pods of Humpback and Orca whales.  Landing at Dutch Harbor I realized why weather is a crucial factor for safe touch downs.  A section of Mt. Ballyhoo has been blasted away to make room for the runway.  Peering out the window, one gets the feeling that the tip of the wing is barely whisking past the face of the cliff.  On the other side of the runway is the water of Iliuliuk Bay.  Good news, my luggage and I landed at the same time!

Dutch Harbor attracts many bird watchers, as bald eagles, puffins, rock ptarmigans and other birds are abundant here.  Juvenile bald eagles are dappled brown and white and blend into the rocky shore and crags of the steep cliffs.  This time of year, signs warning of nesting eagles are also abundant.  As birds tend to use me for target practice I am very mindful of the warnings.

Thankfully, I was not dive bombed by any eagles or other birds!
Thankfully, I was not dive bombed by any eagles or other birds!
At least 3 eagles are in this picture one adult  and two juveniles.  Can you find all three?
At least 3 eagles are in this picture one adult
and two juveniles. Can you find all three?

Before boarding the Oscar Dyson I visited the Museum of the Aleutians.  The exhibits feature information about life and culture in the Aleutians and how WWII impacted the people.  One of the displays featured several handmade parkas constructed from the gut (intestine) of seals and walruses.  The material is both light weight and water proof.

Parka made of gut.
Parka made of gut.

Just south of the museum is Bunker Hill towers above Dutch Harbor, and one can still see the zigzag pattern of the WWII  trenches etched into the landscape.  There is a trail to the bunker atop the hill; I think I’ll go for a walk.  Almost to the top of Bunker Hill about 700 feet above Dutch Harbor the panoramic vistas of Captains Bay, Dutch Harbor and the City Unalaska are spectacular.

Taken about half way up Bunker Hill.
Taken about half way up Bunker Hill.
Bunker atop Bunker Hill
Bunker atop Bunker Hill
Dutch Harbor with Mt. Ballyhoo in the background.

Did You Know?

The Gulf of Alaska helps to generate much of the seasonal rainfall along the west coast of British Columbia, Washington, and Oregon.  The strong surface currents, as high as 1.7kph (1.9mph) in the southern reaches combine with the cold arctic air to create these weather systems that affect our weather and climate.

Eric Velarde: ¡Preparando Para el Viaje! (Preparing for the Trip!) June 10, 2013

NOAA Teacher at Sea
Eric Velarde
Aboard R/V Hugh R. Sharp
Wednesday, June 13, 2013 – Tuesday, June 24, 2013

Mission: Sea Scallop Survey
Geographical Area: Cape May – Cape Hatteras
Date: June 10, 2013

Personal Log

Mr. Velarde & Rudy (the family poodle)
Mr. Velarde & Rudy (the family poodle)

¡Hola! I am Mr. Eric Velarde, 9th-12th grade Honors Earth/Environmental Science, Honors Biology, and Physical Science teacher at The Early/Middle College at Bennett in Greensboro, NC. I have had the distinct honor of experiencing my first 3 years of teaching at a truly wonderful, unique learning community. The Early/Middle College at Bennett is located on the historic campus of Bennett College and serves as a nurturing learning environment for aspiring, young women. Our students are engaged in their learning through academic scholarship, leadership & character development, and service to others.

I am intensely excited about sharing this research experience with my students, colleagues, and the general public. It is my plan to create several interactive, engaging, and personalized learning modules from the experience that educators can easily access and adapt for their students. These learning modules will focus on utilizing NOAA’s research, 21st century technology, and collaborative learning strategies to leverage the participation of historically underrepresented groups in the atmospheric & ocean science fields in America. In addition, I plan to use my experience with photography to help unveil the details behind ocean science research careers to provide students with an in-depth experience of what it feels like to be a scientist at sea.

R/V Hugh R. Sharp
R/V Hugh R. Sharp (Image Courtesy of NOAA)

I will be aboard the R/V Hugh R. Sharp from June 13th-25th to assist the Ecosystems Survey Branch of the Northeast Fisheries Science Center in a survey of the Atlantic Sea Scallop (Placopecten magellanicus) to determine distribution and abundance in the mid-Atlantic. Biological analysis will occur through ocean-floor dredging, sorting & categorization of specimens, and Hab-Cam photography. Data collected will be used to assess the abundance of the population, health of the population, and the sustainability status of the fishery.

The Grand Canyon in Summer 2009
The Grand Canyon in Summer 2009

Growing up in Phoenix, Arizona has instilled in me a deep, sincere love of Geology & Geography which I still hold today. Upon moving to Greensboro, NC I began to shift my interests towards Agriculture through involvement with the National FFA Organization. My undergraduate career consisted of juggling the study of Biology, Women’s Studies, and Photography at The University of North Carolina at Chapel Hill. As my 2010 graduation neared, I enrolled in the UNC-Baccalaureate Education in Science & Teaching (UNC-BEST) program to prepare for lateral entry licensure as a high school science teacher. Upon graduation I promptly earned employment with Guilford County Schools with my current school, where I worked for 2 years before earning my licensure with Guilford County Schools Alternative Certification Track (GCS-ACT). I am now a licensed educator and I plan on spending the rest of my life in education.

Sisters in Science & LSAMP Scholar Collaborative Lab
Sisters in Science & LSAMP Scholar Collaborative Lab

Working with our higher-education partner, Bennett College, has afforded me a significant amount of working time and space to facilitate character development within the Science, Technology, Engineering, and Mathematics (STEM) fields with the Sisters in Science (SIS) mentorship program. Select Early/Middle college students who express interest in STEM are paired with a Bennett College Louis Stokes Alliances for Minority Participation (LSAMP) scholar to help foster their interest in STEM. Students perform laboratory experiments, participate in service learning initiatives, travel to scientific conferences, and attend scientific lectures with their mentors. SIS has now expanded to include Brothers & Sisters in Science (BSIS) for Middle School students, and continues to reap the benefits of funding from the Anne L. & George H. Clapp Charitable and Educational Trust Foundation.

Nowadays I find myself constantly reassessing how I’ve facilitated a culture of lifelong learning, college & career readiness, and scientific curiosity in my students. Through professional development with North Carolina New SchoolsNational Youth Leadership Council, and the numerous opportunities provided by my school administrative team I have been able to begin to focus on character development, a growing passion of mine.

It is clear that this will be a significantly enriching experience both for myself and for students. More opportunities like the Teacher at Sea program are needed to help leverage teacher understanding of the size and scope of the field of science if we are to continue to advance our education, technology, and ultimately, our humanity into the far reaches of the Universe.

All the best,

-Mr. V

Sue Cullumber: Hooray, We Are Finally on Our Way! June 10, 2013

NOAA Teacher at Sea
Sue Cullumber
Onboard NOAA Ship Gordon Gunter
June 5–24, 2013

Mission: Ecosystem Monitoring Survey
Date: 6/10/13
Geographical area of cruise:  The continental shelf from north of Cape Hatteras, NC, including Georges Bank and the Gulf of Maine, to the Nova Scotia Shelf

Weather Data from the Bridge:
Time:  21:30 (9:30 pm)
Longitude/latitude: 40.50289N, 68.76736W
Temperature  14.1ºC
Barrometer 1017.35 mb
Knots  10.2

sueleavingport
Leaving Newport – photo by Chris Melrose.

Science and Technology Log:

After several ship issues, we were able to finally head out from Newport, RI on June 9th after 4 extra days in dock.  We have started the survey and are using two main types of equipment that we will deploy at the various stations: CTD/Bongo Nets and CTD Rosette Stations.  We were originally scheduled to visit about 160 stations, but due to the unforeseen ship issues, these may have to be scaled back.  Some of the stations will just be the Bongo and others only the Rosette, but some will include both sets of equipment.

Bongos
Bongo and baby bongos being deployed during the survey.

A bongo net is a two net system that basically, looks like a bongo drum.  It is used to bring up various types of plankton while a CTD is mounted above it on the tow wire to test for temperature, conductivity and depth during the tow. The two nets may have different sizes of mesh so that it will only  filter the various types of plankton based on the size of the holes.  The small mesh is able to capture the smaller phytoplankton, but the larger zooplankton (animals) can dart out of the way and avoid being captured. The larger mesh is able to catch the zooplankton but allows the phytoplankton to go through the openings. There are regular bongo nets and also baby bongo nets that may be launched at the same time to catch different types of plankton.

rosetteinwater
Rosette CTD returning to the surface.

The Rosette CTD equipment is a series of 10 cylinders that can capture water from different depths to test for nutrient levels and dissolved inorganic carbon, which provides a measure of acidity in the ocean. These are fired remotely via an electronic trigger that is programed by a computer program where each cylinder can be fired seperately to get 10 samples from different depths.  It also has several sensors on it to measure oxygen, light and chlorophyll levels, as well as temperature and salinity (salt) from the surface to the bottom of the water column.

plankton
Copepods and Krill from one of the bongo net catches.

Our first station was about 3 1/2 hours east of Newport, RI and it was a Bongo Station.  I am on the noon to midnight shift each day.  So on our first day, during my watch, we made four Bongo stops and two CTD Rosettes. Today we completed more of the Bongos on my watch.  We are bringing up a variety of zooplankton like copepods, ctenophores, krill, and some fish larvae.  We have also seen quite a bit of phytoplankton on the surface of the water.

sueinsurvivalw
Wearing the survival suit – photo by Cathleen Turner.

Personal Log:

Being on a ship, I have to get used to the swaying and moving about.  It is constantly rocking, so it can be a little challenging to walk around.  I have been told that I will get used to this and it is actually great when you want to go to sleep!  Luckily I have not had any sea sickness yet and I hope that continues!  We completed several safety drills that included a fire drill and abandon ship drill where we had to put on our survival suits – now I look like a New England Lobster!

dolphinsfav
Common dolphins swimming off the ship’s bow.
blueshark
Blue shark swimming beside the Gordon Gunter.

Today was an amazing day – was able to see Right Whales, Blue Sharks and Common Dolphins – with the dolphins surfing off the ship’s bow!  The Northern Right Whale is one of the most endangered species on the planet with only 300 left in the wild.  One of the reasons there are so few left is that swim on the surface and were excessively hunted and there feeding areas were within the Boston shipping lanes, so they were frequently hit by ships. Recently these shipping lanes have been moved to help protect these animals.  So I feel very privileged to have been able to see one!

Did you know? Plankton are the basis for the ocean food web.  They are plentiful, small, and free floating (they do not swim). The word plankton comes from the Greek word “planktos” which means drifting. “Plankton” from the TV show SpongeBob is actually a Copepod – a type of zooplankton.

Copepod
Copepod

Question of the day:  Why do you think it is important that the scientists study plankton?

Yaara Crane: Ready for Summer Adventure, June 10, 2013

NOAA Teacher at Sea
Yaara Crane
(Not Quite Yet) Aboard NOAA Ship Thomas Jefferson
June 22, 2013 – July 3, 2013 

Mission: Hydrographic survey
Geographical area of cruise: Mid-Atlantic
Date: June 12, 2013 

Personal Log

Riley
My adopted black lab puppy, Riley

Hi everyone! My name is Yaara Crane, and I live in Falls Church, Virginia with my husband and 5-month old puppy, Riley. I am in the last week of my 7th year teaching for Fairfax County Public Schools. I applied for the NOAA Teacher at Sea program for multiple reasons, including expanding my knowledge of chemistry into new applications that can be relevant to my students. One of the exciting things about going on a Mid-Atlantic cruise will be that I am studying our “backyard” ocean; how much more relevant can it get?  I read that part of this year’s mission is to investigate the effect of Hurricane Sandy, which certainly affected us here in Virginia. We lost school days to the hurricane, so it will be very educational to learn what happened to our coastline due to the hurricane.

When I was picking my major at the University of Maryland, I immediately chose chemistry and stuck with it all four years. I have always been enthralled by science and thought I would spend my life doing research. However; I found that when I added my second major in education, I couldn’t imagine the idea of being alone in a lab when I could be surrounded by people all day instead! This experience lets me have the best of both worlds for a couple of weeks. Hopefully my time spent at sea will help me teach my students to expand their horizons and really think outside the box about what life could look like after high school or college.

This past school year, I taught General Chemistry and IB Chemistry to a very diverse group of students at Annandale High School. The coolest part of being a chemistry teacher at Annandale? Our mascot is the Atom! We are located inside the Washington, D.C. capital beltway and have had our diversity recognized by a visit from Michelle Obama and the first lady of South Korea last year. I love having students from all parts of the world who bring fresh and unique perspectives to my classroom each and every day. Also, teaching IB Chemistry requires my students to work on an interdisciplinary collaborative project. This past year, we studied the sustainability of our local Lake Accotink. Maybe next year, we can use the resources that I will learn while at sea to expand our horizons from the lake to the bay or the ocean.