Kevin McMahon: Midnight Mapping! July 13, 2014

NOAA Teacher at Sea

Kevin McMahon

Aboard the NOAA ship Pisces

July 5 – July 18, 2014


Mission: Southeast Fisheries Independent Survey

Geographic area of the cruise: Atlantic Ocean, off the coast of North Carolina and South Carolina

Date: July 13, 2014

Weather Information from the Bridge

Air Temperature:            27.6 °C

Relative Humidity:         73%

Wind Speed:                  5.04 knots


Science and Technology Log

Someone is always working on the Pisces. When Nate Bacheler and the other fishery scientists have finished their work for the day collecting fish, it is show time for the hydrographers, the scientists who map and study the ocean floor. Their job is to map the ocean floor to help Nate find the best places to find fish for the next day.  Warren, Laura, David and Matt were kind enough to let me join them and explained how they map the ocean floor while on board the Pisces.

People have learned over the years that some fish like to hang out where there is a hard bottom, not a sandy bottom. These hard bottom areas are where coral and sponges can grow and it also happens to be where we usually find the most fish.

Instead of using a camera to find these hard bottom habitats, the mapping scientists use multibeam sonar. Here is a simple explanation on how sonar works. The ship sends a sound wave to the bottom of the ocean. When the sound wave hits the bottom, the sound bounces back up to the ship.

Since scientists know how fast sound travels in water, they can figure out how far it is to the ocean floor. If the sound wave bounces back quickly, we are close to the ocean floor. If the sound wave takes longer, the ocean floor is farther away. They can use this data to make a map of what the ocean floor looks like beneath the ship.

The neat thing about the Pisces is that it does not send down one sound wave only. It sends 70 waves at once. This is called multibeam sonar.

Single Beam versus Multibeam sonar.  Can you see why scientists like to use multibeam sonar?

Single Beam versus Multibeam sonar. Can you see why hydrographers like to use multibeam sonar? Credit: NOAA

So, now you know how sonar works in simple terms.

But it gets a little more complicated. Did you know that sound speed can be affected by the water temperature, by how salty the water is (the “salinity”), by tides, and by the motion of the ship?  Computers make corrections for all of these factors to help get a better picture of the ocean floor. But, computers don’t know the physical properties of our part of the ocean (because these properties change all the time) so we need to find this information and give it to the computer.

To find the temperature of the ocean water, the mapping scientists launch an “XBT” into the water.  XBT stands for “expendable bathythermograph.”  The XBT records the changes in water temperature as it travels to the ocean floor.  It looks like a missile.  It gets put into a launcher and it has a firing pin. It sounds pretty dangerous, doesn’t it!  I was excited to be able to fire it into the water.  But, when I pulled out the firing pin, the XBT just gently slid out of the launcher, softly plopped into the ocean, and quietly collected data all the way to the ocean floor.


Kevin McMahon nervously holding the XBT Launcher and waiting for the order to fire.

Kevin McMahon nervously holding the XBT Launcher and waiting for the order to fire.


Kevin McMahon watches as the XBT gently plops out of the launcher.

Kevin McMahon watches as the XBT gently plops out of the launcher.


With the new data on water temperature, the hydrographers were able to create this map of the ocean floor.

Example of an Ocean Floor Map

Example of an Ocean Floor Map


In the map above, blue indicates that part of the ocean floor that is the deepest. The green color indicates the part of the map that is the next deepest. The red indicates the area that is most shallow.

Nate talks to the hydrographers early in the morning and then predicts where the hard bottom habitats might be. In particular, Nate looks for areas that have a sudden change in elevation, indicating a ledge feature.  If you had Nate’s job, where would you drop the 6 traps to find the most fish?  Look at the map below to see where Nate decided to deploy the traps.


The green dots are the spots where Nate dropped the traps in hopes of finding fish.

The green dots are the spots where Nate dropped the traps in hopes of finding fish.


To find out more about using sound to see the ocean floor and to see an animation of how this works, click on this link:

 NOAA: Seeing the Ocean Floor


Personal Log


We have now gotten into a regular routine on the ship.   The best part of the day for me is when we are retrieving the traps. We never know what we will see. Sometimes we catch nothing. Sometimes we find some really amazing things.


Here are a few of my favorites:


Closer view of sharksucker on my arm

Closer view of sharksucker on my arm


Somebody is crabby.

Somebody is crabby.


Sea stars with beautiful navy blue colors

Sea stars with beautiful navy blue colors


A pair of butterflyfish

A pair of butterflyfish


Did you know?

The ocean is largely unexplored.  Maybe someday you will discover something new about the ocean!


John Bilotta: A World of Wonder under the Waves, Days 1-4 in the South Atlantic MPAs, June 20, 2014

NOAA Teacher at Sea

John Bilotta

Aboard NOAA Ship Nancy Foster

June 17 – 27, 2014


Mission: South Atlantic Marine Protected Area Survey

Geographical area of cruise: South Atlantic

Date: June 20, 2014

Weather: Sunny with clouds.  26.6 Celsius.  Wind 13 knots from 251 degrees (west).  1-2m seas from the north.

 ** Note: Upon request, note that if you click on any picture it should open full screen so you can the detail much better!


Science and Technology Log

Research mission objectives – what am I doing out here?

Gathering data on habitat and fish assemblages of seven species of grouper and tilefish in the South Atlantic MPAs . These species are considered to be at risk due to current stock levels and life history characteristics which make them vulnerable to overfishing.   Information gathered will help assess the health of the MPAs, the impact management is having, and the effectiveness of ROV exploratoration to make these health assessments.

Science Part I:  Multibeam sea floor mapping  Multibeam sonar sensors — sometimes called multibeam acoustic sensors echo-sounders (MB for short)  are a type of sound transmitting and receiving system that couple with GPS to produce high-resolution maps of the sea floor bottom. See how it works by checking out this cool NOAA animation. MB mapping is occurring all night long on the Nancy Foster by a team of expert mappers including Kayla Johnson, Freidrich Knuth, Samantha Martin, and Nick Mitchell (more on them and their work and NOAA careers in a future blog).  Our Chief Scientist Stacey Harter has identified areas to map.

OK, so we aren't exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist in one of my first pictures.

OK, so we aren’t exactly MB mapping in this photo but I wanted to introduce everyone to my host Chief Scientist Stacey Harter in one of my first pictures.

By morning, after the mappers have worked their magic on the data, Stacey is able to see a visual representation of the sea floor.  She is looking for specific characteristics including a hard sea floor bottom, relief, and ridge lines – important characteristics for the groupers, tilefish, hinds, and other fish species under protection and management.   Stacey uses these maps to determine transects for ROV exploration.  Those transect lines are used by both the scientists driving the ROV and the navigation crew aboard the Nancy Foster.  Once down on the ocean floor, the ROV pilot follows this transect and so must the ship high above it in the waves driven by the crew.  Although 3 floors apart – it’s amazing to hear the necessary communication between them.  (Watch for one of my future posts that will highlight a MB map and a sample transect line.)

Science Part II:  ROV exploration – Completion of 8 dives

By the time this posts, we will have made 8 dives with the SubAtlantic Mohawk 18 ROV from University of North Carolina. (perhaps we will have made more dives because internet via satellites is slow and I am uncertain when this will really get posted.)

JB and ROVs first date aboard the aft deck on the Nancy Foster

JB and ROVs first date aboard the aft deck on the Nancy Foster

The ROV joined the mission with its two pilots, Lance Horn and Jason White.  Pilots extraordinaire but I otherwise see them as the ROV’s parents guiding and caring for its every move.  The technology aboard the ROV is incredible including a full spectrum video camera, a digital camera, sensors to measure depth and temperature, and 4 horizontal thrusters and one vertical thruster with twin propellers.   The ROV has donned a pair of lasers which when projected on the sea floor allow the scientists to measure items.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

JB attaching the CTD probe to the ROV with instructions from Steve Matthews.

John receiving launch instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.

John receiving ROV deployment instructions from Andy David; including about how the cable attaches to the ROV and the fiber optic line.


ROV deployment

ROV deployment


The ROV control station is daunting!  As one may imagine, it does include three joysticks accompanied by multiple switches, buttons, lights and alarms – all just a fingertip away from the ROV pilot.   Five monitors surround the pilot – some of them are touch screen activated adding more to the selection of options at their fingertips.  Is a Play Station a part of your daily routine?  Perhaps you should consider a career at NOAA as a ROV pilot!

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital pictures, 6.  Laptop controlling digital pictures, and 7.  Multiple DVD recorders.

ROV operations station. 1. Power supply, 2. Joystick controllers, 3. Multiple switches, 4. Four monitors for the ROV pilot alone, 5. Two monitors for the video and digital picture technician, 6. Laptop controlling digital pictures, and 7. Multiple DVD recorders.


While the ROV drives and explores a set transect line, six additional scientists and assistants identify and record habitat, fish species, invertebrates, and other items that come into vision on any one of the monitors scattered around the lab located inside the ship.  Two scientists are recording fish species and a scientist accompanied by me the past two days are identifying habitat and invertebrates.

JB Invertebrate Logging

John assisting Stephanie Farrington (not pictured) with habitat and invertebrate identification and logging.

Of course, the ROV is on the move constantly, so fish and items of interest are flying by – you don’t have time to type or write so the scientists use short cut keyboards pre-coded with species and habitat descriptors.   Meanwhile another scientist is narrating the entire dive as everything is being recorded and yet another is controlling DVD video recording and centering and zooming the digital camera capturing hundreds of pictures during a dive.  You would be surprised by the number of computers running for this operation!  What is amazing is that everything will be linked together through a georeferrenced database using latitude and longitude coordinates.

Science Part III.  What have we seen and discovered?

On June 19th & 20th we completed 8 dives.  Some of the first species we saw included the shortbigeye, triggerfish, reef butterflyfish, and hogfish (Here is a good link of fish species on the reefs located here.)   We also observed a few stingrays and speckled hind.  For invertebrates, we saw a lot of Stichopathes (tagged as dominate during the dives) and fields of Pennatulacea (long white feathers).  We also saw echinoderms and solitary cap coral (a singular, white tube coral) and discovered a Demospongiae that Stephanie, one of the Research Biologists (see below) hadn’t seen yet; we called it a bubble-wrap sponge in my hand-written notes.

Dive053089 15 52 18

Dive053061 15 28 29 Cubya Dive052019 12 23 13 ???????????????????????????????


Things that we saw today that we wished we hadn’t seen: 

Pollution  So with much of my teaching centered around clean water and pollution prevention and mitigation, I was saddened to discover the following items on the ocean floor during the first five dives: Plastic bags, cans, a barrel, a clearly visible rubber surgical glove, and an artillery shell. Interesting – from the ROV you can easily spot what the scientists call ‘human debris’ as it often has straight lines and corners, distinctly human crafted shapes – not like mother nature engineers.

Plastic balloon found during dive #2 at about 60 meters.

Plastic balloon found during dive #2 at about 60 meters. Photo credit: NOAA UNCW. Mohawk ROV June 2014.

Black plastic garbage bag found at about 60 meters.  NOAA UNCW. Mowak ROV June 2014.

Black plastic garbage bag found at about 60 meters. NOAA UNCW. Mohawk ROV June 2014.

 Invasive species – Lionfish are everywhere!  Why are Lionfish undesirable 

Lionfish - multiple sitings today.  Photo credit:  NOAA UNCW

Lionfish – multiple sitings today. Photo credit: NOAA UNCW Mohawk ROV. June 2014.


Career highlight:  Stephanie Farrington, Biological Research Specialist

Harbor Branch Oceanographic Institution at Florida Atlantic University

Masters of Science in Marine Biology.  Bachelors of Science in Marine Science and Biology.

Stephanie’s expertise is in collecting, classifying, and mapping marine biology with emphasis in habitats and invertebrates.  She is also proficient in ArcGIS for mapping and maintaining a database of everything she sees, discovers, and observes.  During this research trip, she is the scientist charged with identifying the habitat with an emphasis on the invertebrate species that speckle the sea floor.  For the past two days I have shadowed her side – watching the video feed from the ROV and logging.  She is a wealth of information and I really appreciate sitting next to her the past two days.  She is a master in biology and a master in buttons – and a fun spirit too.


Personal Log

Day 2 was spent almost entirely in transit – getting north from Mayport to Georgia, almost 9 hours.  Part of that time was spent getting to know the research team and participating in safety drills.  Sorry everyone; I did not get a picture of me in my red gumby suit (aka the life saving immersion suit).  Upon recommendation from a colleague (you know who you are) I also spent two hours on a bench on the bow reading The Big Thirst by Charles Fishman

“If Earth were the size of a Honda Odyssey minivan, the amount of water on the planet would be in a single half-liter bottle of Poland Spring in one of the van’s thirteen cup holders.” 

Although I have been out on the ocean before as well as the Great Lakes, on this day I simply felt tiny in a vast sea of blue.

For those who know me during my off-work hours, I also hit the ship’s gym -yes, that’s right, I am keeping up my routine with one exception.  My Paleo diet is now nearly broken – too much great food here from the ship’s chef’s, including ice cream.

Last night, at the end of Day 3 (Thursday) I spent the evening on the beach!  Well actually, what they call steal beach – a platform aft (behind) the ship’s bridge equipped with lounge recliners to watch the sunsets.  I sat up for seemingly hours trying to write all my excitements and discoveries in a log I am keeping.  Don’t worry though, I won’t make you read it all; my blog readers will only see a small snapshot of all I have been seeing and discovering!


Glossary to Enhance Your Mind

Each of my logs is going to have a list of new vocabulary to enhance your knowledge.  I am not going to post the definitions; that might be a future student assignment.  NOAA’s Coral Reef Watch has a great site of definitions HERE.  

  • Immersion suit
  • Transect
  • MPA
  • Invertebrates
  • Rugosity
  • Multibeam mapping
  • Bathymetry
  • Dominate species
  • Habitat
  • Echinoderms
  • CTD probe

Beverly Owens: Vacation Cruise – June 13, 2013

NOAA Teacher at Sea
Beverly Owens
Aboard NOAA Ship Henry B. Bigelow
June 10 – 24, 2013

Mission:  Deep-Sea Corals and Benthic Habitat: Ground-Truthing and Exploration in Deepwater Canyons off the Northeastern Coast of the U.S.
Geographical Area: Western North Atlantic
Date: June 13, 2013

Weather Data from the Bridge:
Air temperature: 16.70 oC (62.06 oF)
Wind Speed: 25.17 knots (28.96mph)

Science and Technology Log

Waypoints for TowCam expedition

Waypoints for TowCam expedition

“You get to go on a two-week cruise for vacation!”

This is the misconception that some people had, when I told them initially that I would be participating as a NOAA Teacher at Sea.  On a vacation cruise and a research cruise, participants stay an extended period of time on the ocean, and they receive three meals a day.  That is pretty much the end of the similarities between these types of cruises.  During a scientific research expedition, there is a mission to accomplish. For example, this trip is examining sites that are known or predicted to be deep-sea coral and sponge habitats.

Many multibeam bathymetric maps are consulted to find the most suitable sites to investigate. Bathymetric maps are similar to topographic maps with the exception that bathymetry applies to the topography of the ocean floor. Most of the major structure-forming deep-sea corals are found on hard substrate. Thus, areas of soft sediment are not the most likely places to find the majority of coral species, however many other organisms like brittle stars and anemones, may be found there.

There is a lot of preparation that goes into planning and coordinating a research “cruise.” The Chief Scientist must put in a request for a research vessel, and must assemble a science crew that has the skills and research interests that align with the research mission. In the months leading up to the research trip, the science party will discuss specific science objectives, protocols and potential study sites. Every participant must receive medical clearance, which includes having a TB (tuberculosis) test, and a recent tetanus vaccination.

The Chief Scientist, with input from the science team, determines which areas of the ocean to examine, and what type of technology to use to explore the ocean. Weather and waves may prevent some of the “dives” from taking place. Safety first – the conditions must be safe enough for the TowCam operators and deck crew to be outside during deployment as they lower TowCam safely into the ocean.

This bathymetric map displays the topography of the ocean floor.

This bathymetric map displays the topography of the ocean floor.

During TowCam deployments, many things must be done to make the dive successful. The Chief Scientist selects several points (waypoints) along a survey line within a canyon. These points help guide the ship during the TowCam deployment.  To get TowCam into the water requires a lot of communication and coordination of efforts. The winch operator and deck crew are responsible for getting TowCam into the water. The winch operator is in constant contact with the TowCam pilot and  controls the wire that lowers TowCam into the water. At a certain depth, the control is passed to the TowCam pilot in the lab who uses a joystick to lower the camera to the ocean floor.  The pilot and the Bridge are in constant communication during the dive. The Bridge controls the ship and follows the track for the survey. The TowCam pilot analyzes data displayed on several computer monitors in order to make the most informed decisions as they guide the camera through the water column by moving TowCam and up and down in the water column.  In addition, a variety of data are collected during the deployment.  I have been logging data during the night shift deployments. I help keep track of variables  such as depth, winch wire tension, latitude, longitude, and altimeter readings along the survey track.  All this information will be invaluable to scientists examining the data collected during this research cruise.

 Personal Log

At Crest Middle School, we try to teach our students critical thinking skills: think for themselves, make informed decisions, gather data, predict, and draw conclusions. This research trip is a prime example of how skills that students acquire in school will be beneficial for them in the future. When completing a task such as logging data, I have to decide what the important events are that have occurred in the TowCam dive, and to phrase those items in a way that others will understand.

TAS Beverly Owens logging data

TAS Beverly Owens logging data

 Did You Know?

TowCam is about the size of a refrigerator. It has one large high-resolution camera that takes pictures every 10 seconds. It also has a CTD, which records conductivity (salinity), temperature, and depth. TowCam also carries several Niskin bottles, used for water collection at depth and a slurp pump that pulls sediment from the ocean floor into a container for later analyses.


Marsha Skoczek: Plotting Our Course, July 15, 2012

NOAA Teacher at Sea
Marsha Skoczek
Aboard NOAA Ship Pisces
July 6-19, 2012

Mission: Marine Protected Areas Survey
Geographic area of cruise:  Subtropical North Atlantic, off the east coast of Georgia.
Date:  July 15, 2012

Latitude:  32.47618N
Longitude: 78.19054 W

Weather Data from the Bridge
Air Temperature:  27.6C (81.7 F)
Wind Speed:  6 knots (6.9 mph)
Wind Direction:  From the SE
Relative Humidity: 75 %
Barometric Pressure:  1018.3
Surface Water Temperature:  28.4C (83.12 F)

Science and Technology Log

In order for the scientists to find the fish they are studying on this cruise, they need to know where the areas of favorable habitat are located.  Old nautical charts are not one hundred percent accurate–sometimes they can be hundreds of kilometers off. Early ocean floor mapping used long lines with a lead weight which was hung off the side of the ship.  As the ship moved forward through the water, the long lines would get behind the ship making it very difficult to get an exact reading.  It wasn’t until sonar came into general use during World War II, that it was discovered to be useful for bathymetric mapping.

Sonar works by sending a single sound wave to the ocean floor.  As it reflects back toward the ship, a hydrophone listens for the return sound.  The length of time it takes for that sound wave to return to the ship can be used to calculate the depth of the ocean in that location. The speed of sound in water travels at approximately 1,500 meters per sec (m/s) which is about five times faster than sound travels in air.  The problem with single beam sonar is that the data only plots the one single line beneath the ship.  It does not give the complete picture and gaps in data were often filled in using the readings taken around the area as an estimate.

Planned acoustic survey lines

So how is multibeam sonar different from single beam sonar?  With multibeam sonar, it is just as the name implies–multiple sound beams are sent toward the ocean bottom.  For the depths we are working on, the multibeam sonar on the Pisces sends out 70 beams of sound every .67 seconds.  Within a fraction of a second, these “pings” are reflected off of the ocean bottom and back to the transducer.  The time it takes for all 70 of those pings to return to the transducer determines the depth at each point.  The echogram screen illustrates the bottom features in real time and will even pick up large schools of fish in the water column.  As the ship continues to move up and down the survey lines, the raw data is collected.  The distance between the survey lines is determined by the depth of the area to be mapped.  To set the survey lines, we are using 1.5 times depth so, if the water depth averages 100 meters at the mapping location, the survey lines are set at 150 meters, (.08 nautical miles) apart.  Tonight, the ocean depth at our mapping location is about 60 m so the survey lines are set at 90 meters (.05 nm) apart.  The goal when laying out the survey lines is to overlap the previous lines by about 25%.  This will insure a more complete picture.

Echogram of ridge

It is not simple enough to just take the raw data from the return pings.  The temperature, salinity and depth of the ocean in the mapping area can create slight variations in the return speed.   Temperature, salinity and depth can influence the speed of the return signal, so we use the CTD to gather readings each morning as they are wrapping up the mapping for the night.  This information along with the information on the ship’s roll, pitch, and yawl from the Position and Orientation System for Marine Vessels (POSMV)  are plugged into software that helps process and clean up the data.  From there, the data is converted into a “geo tif” file where it can be  plugged into GIS mapping . The final product is a full color 3-dimensional image of the mapping area.

Completed multibeam image

Ideally the scientists would have multibeam information for each of the sites they want to study that day.  To make this happen, the night before the ROV dive the ship will make its way to the next day’s study area so the geographers can map all night.  The survey lines are selected using bathymetry maps as well as looking at the existing multibeam maps of the area to see if there are any gaps that need to be filled in.  The idea is to give the scientists as much information as possible so they can make informed decisions about where to study.  Time on the ship is extremely expensive and they want to make sure they take full advantage of that time by finding the best habitats to study.  Without the multibeam images, the scientists have to make a best guess as to where to map using old and possibly out of date information.

Personal Log

This is the engine monitoring station.

Today I took a tour of the  Pisces’ engine roomEngineer Steven Clement was nice enough to show me around and explain everything for me.  It is amazing to me how this ship is like its own little city.  The ship creates its own electricity using diesel-powered generators.  It takes four generators to power the ship at full speed which is about 15 knots.  The engines are so loud that I had on double ear protection and it was still extremely loud to walk past them. Using all four engines all day would burn up 3,000 gallons of diesel fuel.  The Pisces is capable of holding 100,000 gallons of fuel which should last the ship several months at sea.  The electricity that is left over from powering the engines is used as the power supply for all of the electronics on board.

Other ways that the Pisces reminds me of a small city is the water.  The ship creates its own drinking water with a reverse osmosis system complete with UV filter and is capable of producing 2.8 gallons per minute.  It also has two hot water heaters attached to a compressor to keep the hot water pumped up into the pipes of the ship.  I do have to say that the hot water on this ship is extremely hot!!  There is no need to wait for hot water, it comes out instantly when I turn on the faucet.  When I shower, I have the cold on full blast and just a smidge of hot water to get a normal temperature shower.  Even our waste water is cleaned up in the Pisces’ own waste water treatment facility which uses microbes to break down the waste products before it is released back out to sea.

Other than pulling into port occasionally for fuel and supplies, the Pisces is really a self-contained vessel capable of cruising at sea for long periods of time.

Ocean Careers Interview

In this section, I will be interviewing scientists and crew members to give my students ideas for careers they may find interesting and might want to pursue someday.  Today I interviewed Dr. Laura Kracker.

Dr. Laura Kracker

What is your job title?  I am a Geographer with NOAA National Ocean Service in Charleston, South Carolina.

What type of responsibilities do you have with this job? Usually I work on projects using acoustics to map fish in the water column.  Using fisheries acoustics, we can map the distribution of fish in an area and detect large schools as well. On this mission, I am using multibeam to map seafloor habitats.

What type of education did you need to get this job?  I earned my Associate’s Degree in agriculture from Alfred College in New York.  When my children were little, I stayed home with them.  While I was home with them I earned my Bachelors in Painting.  Then I went to work in a fisheries office for a couple of years before deciding to go back to college to get my Master’s Degree in Interdisciplinary Science from the University of Buffalo.  I then continued on to my PhD in Geography and GIS, also from the University of Buffalo.  My dissertation was on Using GIS to Apply Landscape Ecology to Fish Habitats.  So I have combined all of my experiences to get me to where I am today.

What are some of your best experiences have you had with this job?  I love being on a ship.  I spend as many as 55 days a year on ships, often at the request of other scientists that need help with multibeam sonar.  I love geography, it gives us  a framework to put everything together, you can layer more and more information onto a map to find a complete picture.

What advice do you have for students wanting a career in marine biology?  Get a broad foundation before you specialize.  You don’t have to take a direct route to where you want to go.  

Karen Rasmussen, July 9, 2011

NOAA Teacher at Sea: Karen Rasmussen
Ship: R/V Tatoosh
Geographical area of the cruise: Olympic Coast National Marine Sanctuary
Date: July 9, 2011
Cruise to: Olympic Coast National Marine Sanctuary
Crew: Rick Fletcher, Nancy Wright, Michael Barbero, and Karen Rasmussen
Time: Start 9:12 a.m.


Here I am with Rick Fletcher as we get ready to start surveying

Here I am with Rick Fletcher as we get ready to start surveying

The first part of mission is to conduct Multibeam mapping and to collect ground-truthings at the LaPush/Teahwhit areas of the Olympic Coast National Marine Sanctuary. We will also service the OCNM buoy, Cape Alava 42 (CA42). The second week of this mission is to explore the Teahwhit Head moorings, ChaBa and sunken ships, and North and South moorings.
Weather Data from the Bridge
3’ swells and light breeze.
Risk factor 18

Science and Technology Log

Today we gassed up the generator in Forks, WA. Once at the boat we completed a safety drill, and then left port at 09:12. We completed a patch test at TH015, one of the OCNMS oceanographic moorings near Teahwhit Head. The patch test was completed to calculate roll, pitch, and yaw as part of a greater suite of error measurement used in multibeam data processing. We conducted a full multibeam survey and CTD cast at TH042. We also moved approximately 5 miles offshore to survey the area around the Milky Way wreck, a purse seiner that sank in the Sanctuary in 1995 hauling a catch of sardines. Although we searched around the last known site of the vessel, we did not find any indication of its existence. We hypothesized that the vessel had been buried by sand.

We docked at 3:30 because we had several hours of data to interpret.


Helping to prepare the multibeam

Helping to prepare the multibeam

Personal Log

We had calm seas today–absolutely the best I have seen. We saw dozens of sea lions, one otter, many pelicans and several bald eagles. I drove the boat during part of the multibeam testing and I conducted data acquisition using Hypack software. I am getting the hang of controlling the boat. It is quite a skill. I can understand how long it takes to become a true skipper/captain of a vessel.
It is so wonderful that all equipment was working and we were actually able to collect “real” data. It has been a frustration for me and all of the scientists involved when the equipment was working properly.

Michael Barbero and me on the Tatoosh Helping to prepare the multibeam

Michael Barbero and me on the Tatoosh Helping to prepare the multibeam

Caroline Singler, August 7-9, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean 41 miles north of Alaska
Date: 9 August 2010

Seeing the Bottom — 7 August 2010

It’s taken me several days to write and post this entry. I wanted to learn more about the sonar technology that we are using for the bathymetric mapping, then we lost internet early on the morning of 8 August 2010 while heading north in the Beaufort Sea. This happened at about the same time as we started encountering heavy ice, but I do not believe that the two events were related. I am including location and weather data for several days to give you a sense of where we were and where we are heading as well as the physical changes in our environment.Thankfully, email works even when internet does not – it took my non-IT oriented mind a while to wrap itself around that concept. While I am out of range, my dear sister Rosemary has agreed to post for me as long as I can get emails to her. (Thanks, Ro!) You already have her to thank for the polar bear post. Please keep emailing and/or posting comments. I look forward to reading comments when I come home.
Location and Weather Data from the Bridge
Date: 7 August 2010 Time of Day: 1400 (2:00 p.m.) local time; 22:00 UTC
Latitude: 70º47.6’N Longitude: 142º42.3’W
Ship Speed: 15.1 knots Heading: 111º (southeast)
Air Temperature: 5.1ºC /41.6ºF
Barometric Pressure: 1005.3 millibars
Humidity: 87 .9%
Winds: 27.7 Knots NE
Sea Temperature: 2.3ºC
Salinity: 20.22 PSU (practical salinity units)
Water Depth:1270 .8 mDate: 8 August 2010
Time of Day: 1245 (12:45 local time); 20:45 UTC
Latitude: 72º12.72’N
Longitude: 138º28.7’W
Ship Speed: 7.7 knots
Heading: 36.2º (NE)
Air Temperature: 0.5ºC /32.9ºF
Barometric Pressure: 1012.7 millibars Humidity: 86.3%
Winds: 19.3 Knots NE
Wind Chill: -7.48ºC/18.53ºF
Sea Temperature: -1.2ºC Salinity: 25.5 PSU
Water Depth:2547.8 mDate: 9 August 2010
Time of Day: 1530 (3:30 local time); 22:30 UTC
Latitude: 72º 29.8’N
Longitude: 139º 40.9’W
Ship Speed: 6.3 knots
Heading: 183.5º (SSW)
Air Temperature: -0.03ºC /31.94ºF
Barometric Pressure: 1009.7 millibars Humidity: 92.2%
Winds: 17.7 Knots NE
Wind Chill: -6.02ºC /21.17ºF
Sea Temperature: -1.2ºC Salinity: 25.08 PSU
Water Depth:2969.0 mScience and Technology Log
The primary objectives of the science mission are to map the seafloor and image the underlying sediments. Bathymetry is the measurement of depth of water bodies, derived from the Greek bathos meaning deep and metria meaning measure. Early bathymetric surveys used the “lead-lining” method, in which depths are manually recorded using a weighted line. This method is slow and labor intensive, and it is not practical for depths greater than about 100 feet. (Ironically, I spent the summer of 2009 doing just such a survey of a small lake on Long Island, NY working with two other teachers as DOE-ACTSinterns at Brookhaven National Laboratory.) Modern bathymetric surveys use echo sounding, or SONAR (Sound Navigation and Ranging) to determine depth and shape of the seafloor. These systems make it possible to map large areas in extreme detail, leading NOAA to name the 20th Century advancements in hydrographic surveying techniques to its list of Top Ten Breakthroughs during the agency’s first 200 years.SONAR uses sound signals to locate objects beneath the sea surface. Passive systems use receivers such as hydrophones to detect signals transmitted by other sources, such as animals or submarines. Active systems transmit and receive signals. A transmitter mounted on the ship’s hull emits a signal. The signal travels through the water column and bounces off an object in its path. It returns as an echo to a transmitter on the ship that measures the strength of the return signal. The time between transmission and reception is used to determine range, where range equals (speed of sound in seawater) times (travel time divided by 2). When the object that reflects the signal is the seafloor, the range is the water depth.

There are single beam and multibeam sonar systems. Single beam systems measure along a single line beneath the ship and produce a line of depths. Multibeam systems send signals out along a line perpendicular to the ship and generate a “swath” of data for the area beneath the ship. The advantage of this system is that it creates a map that shows depth and shape of the seafloor. The diagram below shows a schematic comparison of three bottom survey methods.

Chart of three survey methods

Chart of three survey methods

Me on watch

Me on watch

Healy is equipped with a hull-mounted multibeam sonar system. It runs continuously whenever Healy is at sea, collecting bathymetric data to add to our knowledge of the seafloor at high latitudes. I serve as one of the watch standers in the geophysics lab each night from 8 p.m. to 12 a.m. We keep an eye on several computer monitors that display the data from the different geophysics tools and others that display water quality and geographic position data. The photo on the right shows me with my watch partner, USGS scientist Peter Triezenberg sitting at the watch station.
There are many variables that can influence the quality of the multibeam data. The speed of sound in water is influenced by many different variables, including temperature and salinity. Therefore, seawater samples are collected from the ship’s seawater intake system to generate a thermosalinograph (TSG) profile to keep the speed of sound accurately calibrated. Additionally, expendable probes (XBTs) are launched twice a day to update the sound speed profiles. Other instruments monitor the attitude (pitch, roll and heave) of the ship and feed that data to the multibeam system. Finally, the ship keeps extremely precise track of time of day and geographical position so that the data can be used for accurate bathymetric mapping of the seafloor. My job as a watch stander is basically to be sure that everything is running properly, and to notify one of the specialists if something is not right.
Multibeam monitors:
Multibeam Monitors

Multibeam Monitors

TSG display:

The end result is a detailed map of the seafloor in which different colors represent different depths. The picture below shows an image of the raw multibeam data superimposed on a seafloor map which we can see on the ship’s Map Server display. The red line shows the ship’s track, and the new multibeam data extends perpendicular to that line. Other data on the map are from transects mapped on earlier Healy cruises and other sources.

Map Server Display

Map Server Display

Personal Log

Breaking ice

Breaking ice

We experienced a range of sea and ice conditions over the last several days as we traveled east of Barrow Alaska and headed north into the Beaufort Sea. Our earliest ice encounters were a gentle preview of what was to come – mostly bumps and scrapes with small pieces as we headed eastward parallel to the Alaska coastline. By midday on Saturday, we began to cross larger floes, and at times the ship was really rocking. One science team member said it feels like riding the subway, that’s a pretty good analogy. Sitting in the Mess on the main deck of the ship – which is about one floor above water line – I hear the grinding of ice on steel and it feels like I’m sitting in a big tin can that’s being crushed in a trash compactor. Fortunately, the ship is tougher than the ice. At times we move so much that everything in the room shakes. Because we are on a ship, everything is bolted down, but I still look up to be sure there is no danger of anything falling on my head. Some team members from California say the sensation reminds them of an earthquake.

Late Saturday morning, we crossed out of ice and back into open water. As we approached the last pieces of ice before open water, I saw waves hitting the distant edges of the ice; it looked like waves breaking on the shore. At first, I did not grasp the significance of this observation – I thought it was pretty and snapped some pictures and marveled at how we could be in thick ice and then suddenly in open water.

Waves on ice

Waves on ice

In the next hour, I realized that these were the largest waves we had encountered so far on the trip, and while they looked pretty, they also made the ship roll considerably more than it had before. Over the next few hours, I began to sense the movement more than I had in a few days. By dinner time, I had difficulty walking straight across the mess deck, and I was becoming a little apprehensive. I took a motion sickness pill as a preventative measure, and I took a nap because it was far more pleasant to lie in my rack and be rocked by the ship’s motion than to try to remain vertical. We eventually moved into calmer waters, and soon after that, we were back in heavy ice, which I somehow do not find as unpleasant as the waves. Since then, our movement has been slow and steady along our transects through the ice, with an emphasis on slow.

We don’t get much darkness up here in the Arctic, but we do occasionally get treated to some great sunrises and sunsets, if one is awake to catch them. Here are some photos of the sunset on Saturday 7 August 2010. The first was taken about an hour before sunset from the port side of the ship. I was as captivated by the horsetail clouds as I was by the color of the sky. The second was taken just at sunset, right before my camera battery died!



Sunset from the port side

Sunset from the port side

Michele Brustolon, July 1, 2010

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Teacher at Sea: Michele
NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)
Date: July 1, 2010

Weather Data from the Bridge

Time: 1400
Latitude: 58.19 N
Longitude: 170.01 W
Cloud Cover: 100%, dense fog
Wind: 11.49 knots
Air Temperature: 3.800 C/ 38.840 F
Water Temperature: 3.960 C/ 39.1280 F
Barometric Pressure: 1003.10 mb

Science and Technology Log

Here fishy fishy!
July 1st began by spending time in the Acoustics Lab learning about the equipment used to analyze the data. The Oscar Dyson has 5 transducers on its center board and 1 temporary transducer on the side of the center board that looks horizontally. The transducers allow us to see where the fish are. Because of where the transducers are placed, we can only see the pollock from 16m to the bottom. This means that if there are any fish between the surface and 16m they will not be detected. This is the near surface “dead zone”. Why this happens? The transducers are mounted on the bottom of the centerboard about 9 m below the water line, and near the transducer face (first 7 m), no good data are collected. Why it’s okay? Pollock tend to hang out in mid-water. Although a few baby pollock might be in the near surface “dead zone,” the majority of pollock will be in the area we are watching. There is also a bit of a “dead zone” at the other end near the ocean floor. Yesterday the bottom was around 69.35m.

Transducer data

Why acoustics?
Ideally, the acoustic data collection would allow us to track aggregations of pollock without actually having to fish them out of the water. All parties involved (scientists, fish, bank accounts) would benefit from this change but scientists are still in the process of perfecting this process. The Oscar Dyson is part of a fleet of five boats that was specifically designed for acoustics. Specifically, it is considered a “quiet boat” where the engine noise is decreased to prevent scaring the fish. Other Acoustic projects include: Pacific hake off the coast from California to Vancouver Island (run as a joint project with Canada), herring in the northwest Atlantic, and krill in the Antarctic. Acoustics are used throughout the globe and many countries depend on acoustics for their fish surveys.

A little help from UNH!
Along with the transducers, there is also a multibeam SONAR that produces the same information as the transducers but with a wider angle range. The multibeam ME70 sends its signal out after the transducers information is sent and returned. They alternate about 1.5 seconds apart. The University of New Hampshire (UNH) is helping to use the tool and also to analyze the data. To analyze the transducer data collected, a program is in place from Tasmania to help determine what the boat is seeing. The scientists use the program to help separate species in the water column. Scientists utilize the multibeam ME 70 along with the transducers and fish trawling to ensure they are capturing an accurate picture of the mid-waters.

Multibeam ME70 data

How the survey data we collect are used. The data we collect on the Oscar Dyson during the summer pollock surveys are used by scientists and policy makers to determine the fishing quota (the “take”) of pollock for the next season. Quotas are important for maintaining the population of pollock (and other species) for this generation and generations to come. The data we collect on the Oscar Dyson help ensure that maximum stock can be taken without negatively impacting the Eastern Bering Sea pollock population.

Here I am deploying the XBT (eXpendable bathymetric thermograph)

Personal Log

Although there was no fishing yesterday, I certainly was able to be involved. I launched the XBT off the Hero Deck just as we began our fire drill. Once that was completed I returned to the Acoustics Lab until we were cleared from the drill. We then had our abandon ship drill where we get our survival suits and head to our assigned position. My meeting location is at life raft 3 and 4. Once we learned how to deploy our life raft, we headed inside to the conference/lounge to practice donning our suits. While this is very serious, it is also worth a laugh or two watching people struggle and become orange gumbies! The goal is to be able to don your suit in under 60 seconds!

Zodiac ride into the cove of St. Paul’s Island

Yesterday I had the opportunity to head into St. Paul’s Island; the largest of the Pribilof Islands. St. Paul’s is also called the Galápagos of the north. The Zodiac was driven by Joel Kellogg and Amber Payne, and our CO (Commanding Officer Mike Hoshlyk) allowed Katie, Rebecca, and I the opportunity to take the trip inland. Our mission while on land was to bring science equipment (ice-flow detector) to the airport that needed to be sent to Anchorage. Stepping foot onto St. Paul’s Island seemed eerie and mysterious. There was the lurking fog along with a very industrial feel to the island. Because most of the island consists of coalescing small volcanoes, the sediment’s dark color is due to lava flow which didn’t brighten the land at all. We did not see many people other than those working on dredging the new causeway or the people in the airport. Our taxi driver said that they hadn’t gotten mail since Monday and it was Thursday which explained why the people waiting for flights at the airport seemed a bit anxious. On our way back to the boat, we were able to see sea lions and some puffins hanging out in the water and around the break wall. As we approached the boat, it was like an apparition appearing before us. Just another once in a lifetime chance that I have had this cruise!

Want more information about the Pribilofs? Check out

Oscar Dyson coming back from Pribilofs

Animals Seen

Murre (2 different types differentiated by bill type)
Sea lions

(but no fur seals…everyone told me I would see them but they were missing. It seems to be a question everyone is asking.)

Word of the day

Desmadre: troublemaker

New Vocabulary

Transducer: instrument used to send out signals that return and show where fish are located
Ground fishing: trawling on the ocean floor