Jason Moeller: June 21-22, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 21-22, 2011

Ship Data
Latitude: 55.03N
Longitude: -163.08W
Wind: 17.81 knots
Surface Water Temperature: 6.7 degrees celsius
Air Temperature: 10.10 degrees celsius
Humidity: 85%
Depth: 82.03 meters

Personal Log
Welcome back, explorers!

June 21
Today has been the calmest evening since I boarded the Oscar Dyson. The night shift did not fish at all, which meant that I basically had an evening off! Even the evenings we have fished have been relatively calm. It takes us about an hour to an hour and a half to process a haul of fish, and up to this point we average about one haul per night. That gives me quite a bit of down time! When I am on shift, that down time is usually spent in one of two places.

computer lab

The first spot is the computer lab in the acoustics room. This is the room where we wait for the haul to be brought in. I write the logs, lesson plan, check emails, and surf the web during quiet times.

lounge

This is the lounge. The cabinet under the TV has over 500 movies, and a movie is usually playing when I walk in. Behind the couch is a large bookshelf with several hundred books, so I have done a fair amount of pleasure reading as well.

When I am not sitting in one of these two places, I am usually running around the ship with my camera taking nature photos. Below are the best nature photos of the past three days.

Volcano

One of the coolest things about the Aleutian islands has to be the number of volcanoes that can be seen. This is the one on Unimak Island.

volcano2

A second picture of the same volcano.

coast

This is just a cool rock formation off of the coast. The Oscar Dyson has been hugging the coast the entire trip, which has been great for scenery.

gull

A gull skims the water by the Oscar Dyson.

gull2

A gull wings toward the Oscar Dyson

June 22
We resumed fishing today! These trawls brought in quite a few species that I had not seen before, along with the ever plentiful pollock.

Net

The net, filled with fish!

Jason by belt

Jason waits for the net to load the fish onto the conveyor belt.

Jason with flounder

Here, I am separating the arrowtooth flounder from the pollock.

skate

We managed to catch a skate in the net! Skates are very close relatives to sharks. We quickly measured it and then released it into the ocean.

skate 2

A second photograph of the skate.

lumpsucker

Do you remember the little lumpsucker from a few posts back? This is what an adult looks like!

lumpsucker2

The lumpsucker was slimy! I tried to pick it up with my bare hands, and the slime gummed up my hands so that I couldn't pick it up! Even with gloves designed for gripping fish I had trouble holding on.

lumpsucker3

A closeup of the lumpsucker

sculpin

This fish is called a sculpin.

crab

I finally saw a crab! None of us know what was attached to it, but the scientists believe that it was an anemone.

starfish

This is a starfish the net pulled up.

Science and Technology Log
There is no Science and Technology Log with this post.

Species Seen
Humpback Whales
Northern Fulmar
Gulls
Rockfish
Walleye Pollock
Lumpsucker
Arrowtooth Flounder
Atka Makerel
Salmon
Sculpin
Copepods
Isopods
Skate
Crab!!!

Reader Question(s) of the Day!

Today’s question comes from James and David Segrest, who are two of my homeschool students!

Q. What do you eat while you are on your adventures? Do you get to catch and eat fish?

The food is great! Our chef has a degree in culinary arts, and has made some amazing meals!

I wake up at 2:30 pm for my 4 pm to 4 am night shift, and usually start my day with a small bowl of oatmeal and a toasted bagel. At 5 pm, about two hours after breakfast, dinner is served, and I will eat a huge meal then too. Every meal has two main courses, a vegetable, a bread, and dessert. We have had a wide variety of main courses which have included bratwurst, steak, gumbo with king crab, fish, chicken parmesan, spaghetti with meatballs, and others!

We will often eat some of the fish we catch, usually salmon and rockfish since those provide the  best eating. The salmon disappears to the kitchen so quickly that I have not actually been able to get a photo of one! We have not caught a halibut in the trawl net yet, otherwise we would likely have eaten that as well. Yum! We have not yet eaten pollock, as it is viewed as being a much lower quality fish compared with the rockfish and salmon.

I’m out of questions, so please email me at jmoeller@knoxville-zoo.org with those questions please!

Jason Moeller: June 19-20, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 19-20, 2011

Ship Data
Latitude: 54.29 N
Longitude: -165.13 W
Wind: 12.31 knots
Surface Water Temperature: 5.5 degrees Celsius
Air Temperature: 6.1 degrees Celsius
Humidity: 97%
Depth: 140.99 meters

Personal Log

Welcome aboard, explorers!

To be honest, there is not a great deal to write about for the personal log. My daily schedule has settled in quite nicely! I get off work at 4 in the morning, shower, sleep until 2:30 in the afternoon, and then head down to the acoustics room where we track the fish. When we are processing a catch (see the science and technology section of this blog), I am in the fish lab wearing bright orange waterproof clothes that make me resemble a traffic cone.

fishing gear

Jason in fishing gear.

The rest of the time is down time, which is spent reading, working on the blog, learning about the ship, and dreaming up lesson plans that I can use to torment my students. I hope they are interested in a summer fishing trip, as that is the one I am currently planning.

Most of the blog work involves running around and taking photographs. My wife’s camera was soaked beyond repair during the prank that was pulled (see the previous post) as Sarah was holding the camera when the wave came over the railing. Fortunately, there was another camera on board.

Our survey is keeping us very close to the coast and islands of Alaska. As a result, I’ve gotten some gorgeous photos. This place is just beautiful.

An island shrouded by clouds.

An island shrouded by clouds.

waterfall

A waterfall falls off into the ocean.

Wind

Jason in front of an island. It was a bit windy, but at least it was sunny!

view

Mountaintops visible just above the island coast. Jake took this photo while I was in the fish lab.

sunset

Sunset over Alaskan waters.

Science and Technology Log

Pollock

Walleye Pollock waiting to be processed

We finally started fishing! As I mentioned in my very first blog, the Oscar Dyson is surveying walleye pollock, which is an important fish species here in Alaska. Walleye pollock make up 56.3% of the groundfish catch in Alaska, and is eaten in fast food restaurants around the world such as Wendy’s, McDonalds, and Burger King. It is also used to make imitation crabmeat.

Our first catch had a little over 300 walleye pollock, and we processed all of them. Three hundred is an ideal sample size for this species. If, for example, we had caught 2,000 pollock, we would only have processed 300 of the fish, and we would have released the rest of them back into the ocean.

The photo captions below will provide a tour of the fish lab as well as introduce blog readers to the data we wish to collect and how scientists aboard the Oscar Dyson collect it.

Conveyer belt

This is the conveyor belt. After the catch is pulled on board, it is loaded onto this conveyor belt and moved down the belt and into the lab. At this point, the scientists separate the pollock from the rest of the sea life that was accidentally in the net. Today, the majority of the "extra" sea life were brittle stars, sponges, and a few squid.

Gender Box

Once the pollock and other sea life are separated, they are moved to this box to be sexed. In order to do this, we would have to cut the fish open and look at the internal organs of the fish. Once this was done, females would go over the yellow sign on the right and into the box that was hidden behind it. The males went into the box on the left.

Length Station

Once we had determined the pollock's gender, we moved to the measuring station, which was on the other side of the last station. We laid each individual fish on the table on top of the ruler, and then measured the fish from the head to the fork of its tail. We recorded the length by tapping the table at the fork of the fish's tail with a sensor that we carried in our hand. A sensor in the table recorded the data and sent it to the computer monitor seen above the table.

measuring pollock

Jason measures a pollock on the board!

From this catch (we will do this for any following catch as well) we also took and preserved twenty stomachs from random fish. This was done in order to later analyze what the pollock had eaten before they died. We also took forty otoliths from random pollock as well. An otolith is the ear bone of the pollock, and it is incredibly important to researchers as they will tell the pollock’s age in a similar manner to the way a tree’s rings will.

This is a pollock otolith!

This is a pollock otolith!

Stored Otoliths

After removing the otolith from the fish, they were put into these vials. Each pair of otoliths received their own vial.

While looking at pollock is the main focus of the survey, we did run into some other neat critters in this haul as well!

Atka Makerel

This is an Atka Mackerel. We also caught a salmon, but I didn't get a good look at it. Our kitchen grabbed it!

Basket Star

This is a basket starfish. We were trawling close to the bottom and pulled it up in the nets.

Lumpsucker

This is a lumpsucker! They spend their lives on the bottom where they eat slow-moving animals such as worms and mollusks.

Arrowtooth Flounder

This is an arrowtooth flounder. These are not very good eating fish, and are not the flounder found in the supermarket. Check out the nasty teeth in the photo below this one!

Flounder teeth

I wouldn't want to be bitten by this fish!

Rockfish

Finally, this is a rockfish! The red snapper that we see in the marketplace is often this fish instead.

Species Seen

Albatross
Northern Fulmar
Gulls
Rockfish
Walleye Pollock
Lumpsucker
Arrowtooth Flounder
Atka Mackerel
Salmon
Pacific Grenadier
Squid
Shrimp
Basket Starfish

Reader Question(s) of the Day!

Today’s question is actually a request. It comes from Tish Neilson, one of our homeschool parents.

Hey Jason –
I had a super favor to ask of you. There is a little girl from Jackson’s school that is a 5th grader and she was recently diagnosed with leukemia. There have been some bracelets created for her that say “Going Bananas for Anna” to show support and several moms and I have gotten together and are putting together a scrapbook for her and trying to get as many people as possible wearing her bracelets in really cool places. Then we are having them take pictures to send to us to put in her scrapbook so she can she how far her bracelets have traveled and how many people are pulling for her. If it’s possible to do so and you would be willing to do it I would LOVE to try and get you a bracelet to take some pictures and send to me from Alaska. Her nickname is Anna Banana and she is always asking for pictures and such so that is why we came up with this idea.
Tish Neilson

Unfortunately, I had left for Alaska before I received the email, and as a result I do not have a bracelet. Hopefully, a sign will work just as well.

For Anna

Hi Anna! This is Unimak Island! It is one of the Aleutian Islands off the coast of Alaska! Hang in there, we are rooting for you!

Jason Moeller: June 17-18, 2011

NOAA TEACHER AT SEA
JASON MOELLER
ONBOARD NOAA SHIP OSCAR DYSON
JUNE 11 – JUNE 30, 2011

NOAA Teacher at Sea: Jason Moeller
Ship: Oscar Dyson
Mission: Walleye Pollock Survey
Geographic Location: Gulf of Alaska
Dates: June 17-18, 2011

Ship Data
Latitude: 52.34 N
Longitude: -167.51 W
Wind Speed: 7.25 knots
Surface Water Temperature: 6.6 Degrees C
Air Temperature: 7.1 Degrees C
Relative Humidity: 101%
Depth:  63.53 meters

All of the above information was found on http://shiptracker.noaa.gov. Readers can use this site to track exactly where I am at all times!

Personal Log

Welcome back, explorers!

It has been a very eventful 24 hours! We have started fishing, but have done so little that I will wait to talk about that in the next log. Tammy, the other Teacher at Sea, has not begun fishing yet, and as we will be writing the science and technology log together, I will save the fishing stories until she has had a chance to fish.

After turning in last night’s log, we managed to spot eight or nine humpback whales on our starboard side that appeared to be feeding at the surface. They were too far away to get any decent photos, but it was a lot of fun to watch the spouts from their blowholes tower up into the air.

Whale Spouts

Ten whale spouts rise in the distance.

This afternoon started off by dropping an expendable bathythermograph (from here on out this will be referred to as an XBT). The XBT measures the temperature and depth of the water column where it is dropped (there will be more on this in the Science and Technology section). I was told that I would be dropping the XBT this time, and was led off by Sarah and Abby (two of the scientists on board) to get ready.

Ready to launch!

The first thing I had to do was to get dressed. I was told the XBT would feel and sound like firing a shotgun, so I had to put on eye, ear and head protection. I was also put in a fireman suit to protect my body from the kickback, since I am so small. The XBT launcher is the tube in my hands.

Pranked!

This is me launching the XBT. Why no smoke? All we actually needed to do was drop the device over the side. The whole shotgun experience was a prank pulled off by the scientists on all of the new guys. Their acting was great! When I turned towards Sarah at one point with the launcher, she ducked out of the way as if afraid I would accidentally fire it. I fell for it hook, line, and sinker.

However, the prank backfired somewhat. As the scientists were all laughing, a huge wave came up over the side of the ship and drenched us. I got nailed, but since I was in all of the gear, I stayed dry with the hem of my jeans being the only casualty. Sarah didn’t get so lucky. Fun times!

Sarah

Sarah looking a bit wet.

Science and Technology Log
Today, we will be looking at the XBT (the expendable bathythermograph). Bathy refers to the depth, and thermo refers to the temperature. This probe measures the depth and temperature of the water column when it is dropped over the starboard side of the ship.
“Dropping” isn’t exactly the right phrase to use. We use a launcher that resembles a gun. See the photo below to get an idea of what the launcher looks like.
XBT Launcher

This is the XBT Launcher.

Pin

The silver loop is the pin for the launcher. To launch the probe, we pulled the pin and flung out our arm. The momentum pushed the probe out of the tube and into the water below.

The probe

The probe.

The probe is connected to a length of copper wire, which runs continuously as the probe sinks through the water column. It is important to launch the probe as far away from the ship as possible, as the copper wire should never touch the ship. If the wire were to touch the ship, the data feed back to the ship would be disrupted and we would have to launch another probe, which is a waste of money and equipment. The survey technician decides to cut the wire when he/she has determined that sufficient data has been acquired. This normally occurs when the probe hits the ocean floor.

This is a quick and convenient way to collect data on the depth and temperature of the water column. While the ship has other methods of collecting this data (such as a Conductivity, Temperature, and Depth (CTD) probe), the XBT is a simpler system that does not need to be recovered (as opposed to the CTD).

CTD

A CTD

Data collected from the most recent XBT.
Latitude: 53.20 degrees N
Longitude: 167.46 degrees W
Temperature at surface: 6.7 degrees C
Temperature at bottom: 5.1 degrees C
Thermocline: 0 meters to 25 meters.
The thermocline is the area where the most rapid temperature change occurs. Beneath the thermocline, the temperature remains relatively constant.
Thermocline

This is a graph showing a thermocline in a body of water. Source: http://www.windows2universe.org

Species Seen

Humpback Whales

Northern Fulmar

Albatross

Northern Smoothtongue

Walleye Pollock

Mackerel

Lumpsucker

Squid

Pacific Sleeper Shark

Reader Question(s) of the Day!

Today’s reader questions come from James and David Segrest, who are two of my students in Knoxville Zoo’s homeschool Tuesday classes!

1. Did pirates ever travel the path you are on now? Are there any out there now?

A. As far as I know, there are no pirates currently operating in Alaska, and according to the scientists, there were not any on the specific route that we are now traveling. However, Alaska does have a history of piracy! In 1910, a man named James Robert Heckem invented a floating fish trap that was designed to catch salmon. The trap was able to divert migrating salmon away from their normal route and into a funnel, which dumped the fish off into a circular wire net. There, the fish would swim around until they were taken from the trap.

Salmon and trap

Workers remove salmon from a fish trap in 1938. Historic Photo Courtesy of the U.S. Fish & Wildlife - Fisheries Collection - Photographer: Archival photograph by Mr. Sean Linehan, NOS, NGS.

For people who liked eating fish, this was a great thing! The salmon could be caught quickly with less work, and it was fresh, as the salmon would still be alive when taken from the trap. For the traditional fisherman, however, this was terrible news. The fishermen could not compete with the traps and found that they could not make a living. The result was that the fishermen began raiding the floating traps, using any means possible.

Salmon barge

A barge of salmon going to a cannery. Fishermen could not compete with traps that could catch more fish. Historic Photo Courtesy of the U.S. Fish & Wildlife - Fisheries Collection -Photographer: Archival photograph by Mr. Sean Linehan, NOS, NGS

The most common method used was bribery. The canneries that operated the traps would hire individuals to watch the traps. Fishermen would bribe the watchers, steal the fish, and then leave the area. The practice became so common that the canneries began to hire people to watch the trap-watchers.

2. Have you seen any sharks? Are there any sharks that roam the waters where you are traveling?

shark

Hi James and David! Here is your shark! It's a Pacific Sleeper Shark.

shark in net

The shark in the net

Shark

Another image of the shark on the conveyor belt.

This is a Pacific Sleeper Shark. It is called a sleeper shark as it does not appear to move a great deal, choosing instead to glide with very little movement of its fins. As a result, it does not make any noise underwater, making it the owl of the shark world. It hunts much faster fish (pollock, flounders, rockfish) by being stealthy. They are also known to eat crabs, octopus, and even snails! It is one of two animals known to eat giant squid, with the other one being sperm whales, although it is believed that these sharks probably scavenge the bodies of the much larger squid.

The other shark commonly seen is the salmon shark. Hopefully, we will catch one of these and I will have photos later in the trip.

Story Miller, July 29, 2010

NOAA Teacher at Sea: Story Miller
NOAA Ship: Oscar Dyson

Mission: Summer Pollock III
Geographical Area: Bering Sea
Date: July 29, 2010
 
Time: 1922 ADT
Latitude: 59°47N
Longitude:178°14W
Wind: 5 knots (approx. 5.8 mph or 9.3 km/h)
Direction: 9.8° (N)
Sea Temperature: 10.1°C (approx. 50.2°F)
Air Temperature: 8.7°C (approx. 47.7°F)
Barometric Pressure (mb): 1015
Wave Height: 0 – 1 feet
Swell Height: 1 – 2 feet
Scientific Log:
I decided that it would be beneficial to provide some information regarding some of the animals I have seen over the past week.
Short-tailed Albatross (Phoebastria albatrus)
Yesterday morning during breakfast, one of the NOAA Corps Ensigns came down to tell me that there was a Short-tailed Albatross off the port side (left side) of the boat. This was a very special event, especially if you are an avid birder because currently there are about 2000-2500 in the world. The short-tailed albatross is one of three species of albatross living in the North Pacific Ocean and is the largest of all seabirds in this location. This bird has a wingspan of approximately two meters. One could conclude that the bird I saw was younger because young short-tailed albatross have “chocolate brown” feathers when young and as they grow larger they turn white. This bird likes to eat squid, small fishes like pollock, and zooplankton. The albatross population dwindled because the birds were very easy to access due to them only nesting on a couple islands in Japan and they were not afraid of humans. As a result they were really easy to kill and because there was a high market value for their feathers, hunters pursued them to near extinction. In fact it is said that in 1953 there were only about 10 pairs left in the world.
Northern Fulmar (Fulmarus glacialis)
Northern Fulmar

Northern Fulmar

This species of bird has been consistently following our ship since we left Dutch Harbor. They are primarily a pelagic bird which means that unless they are breeding, they are living out at sea throughout the year. The Northern Fulmar can be found in a range of different colors depending on where they were born. Generally, the darker birds are found in the southern parts of Alaska and the white are found farther north. However, if you are on the Atlantic side of the US the pattern is just the opposite with the darker birds originating in the high Arctic and the light are found farther south! These birds typically feed on squid and small fish.  One fact that I find fascinating about the Northern Fulmars is that they have the ability to launch their puke up to 6 feet as a defense mechanism! I shall now remember it as the projectile vomiting bird!
Black-legged Kittiwake (Rissa tridactyla)
Black-legged Kittiwake

Black-legged Kittiwake

One interesting fact about this bird is that it has only three functional toes, hence the tri prefix in its scientific name. These birds are white and their wings are gray. Because I grew up in the desert, my untrained eye mistakenly identified them as a seagull but thanks to USFWS scientists Marty Reedy and Liz Labunski, I am now informed of the differences! This bird is also pelagic and their breeding season is during this time. These birds feed on small fish and they are found around the coasts of Alaska, the Bering Sea, and in the northern Canadian Atlantic Coast. When the black-legged Kittiwake feeds, it usually catches its prey on the surface of the ocean but it has been known to plunge underwater. Typically they feed on zoopankton.
Red-legged Kittiwake (Rissa brevirostris)
As stated in its name this bird has bright coral red legs and is typically shorter than the Black-legged Kittiwake. These birds are most commonly found mostly in the Pribilof Islands and there are only about five or six places in the world where they breed, all of which are in the Bering Sea.
Short-tailed Shearwater (Puffinus tenuirostris)
These birds are known to breed off Australia. In the summer they migrate to Alaska, a trip of about 9000, and have been known to take as little as six weeks! In Australia they are important in the Aboriginal culture in Tasmania and are commercially harvested for food, feathers, and oil. These birds usually eat crustaceans but are also known to eat fish and squid. To catch their prey, they will plunge or dive into the water. One interesting adaptation is that they are able to convert their food to oil and the benefit is that oil does not have as much weight as an ingested animal which allows the birds to travel long distances.
Fork-tailed Storm-Petrel (Oceanodroma furcata)
When I first saw these birds I thought a bat was flying over the water due to a slightly more erratic flight pattern than the smooth flights of the other birds I have observed. These birds typically feed at the surface of the water. Fork-tailed Storm-Petrels are also pelagic, living approximately 8 months at sea and when they do return to their breeding grounds in late-spring, they will dig burrows in the soil or find ideal nest locations in rock crevices. The baby chicks are thought to have a unique adaptation for survival. Sometimes the parents leave the baby alone for many days to look for food. During this time the baby’s body head drops into a state of torpor until the parents return and raises its body temperature.
Pomarine Jaeger (Stercorarius pomarinus)
These birds are capable of backward somersaults in the air and take part in acts of piracy as they have been known to harass other birds until the lesser bird gives up its food. The Pomarin Jaegers primarily feed on lemmings and even have a reproductive period that is dependent on the brown lemming! According to the USFWS they are “the only avian predator that digs for lemmings.”
Smooth Lumpsucker (Aptocyclus ventricosus)

Smooth Lumpsucker

Lumpsuckers live in cold waters in the Northern Hemisphere. They have a disk underneath their body that allows them to cling to rocks. “All but a few lumpsuckers have spiny tubercles on the head and body” (2002).  There are 27 species of lumpsuckers and 10 are confirmed to occur in Alaska with 3 more species are known to be near Alaska. These fish can be found on the bottom of the sea, usually on the continental shelf.
Personal Log:

The suction disk of the Smooth Lumpsucker

After my shift ended yesterday, I hung out on the bridge and looked at seabirds and tried to find evidence of land (Russia) since we are so close. The day was clear and sure enough, right after supper, Russia was spotted! While I have not been out to sea that long, the idea of land coming into view was an exciting feeling. Perhaps the feeling was because the land belonged to Russia and I had never been there before or that the sighting of land broke up the monotony of the never-ending stretch of moving water. I feel that the feeling was derived from a little bit of both. While I was searching for Russia, I had the opportunity to observe a Fin Whale about one mile (~1.5km) ahead of the boat. A few times, it came out of the water enough so that you could see its total back and dorsal fin! For me, Fin Whales have been the most commonly spotted.
This morning, after repeatedly launching the experimental Cam-Trawl with no results, we finally snagged a picture of a fish early this morning! The picture was very dark and the fish, mostly a blur but it was obvious that the image was a fish! This is yet another example of how a scientist must be patient as it is common in real-life experiments, as opposed to structured labs in the classroom, to have tests fail multiple times before useful results occur!

The first fish photographed by the Cam-Trawl!

In the evening, I decided to spend time on the bridge again and watch for whales. I was in luck yet again as I was able to see two Humpback whales! They were swimming very close to the ship, but not close enough for the zoom on my camera! I was able to watch them for a good twenty minutes before they “fluked” (showed their tail) and dove deep underwater!
Overall it was a very interesting couple of days!
Citations:
Denlinger, L.M. 2006. Alaska Seabird Information Series. Unpubl. Rept., U.S. Fish and  Wildl. Serv., Migr. Bird Manage., Nongame Program, Anchorage, AK
Mecklenburg, C.W., Mecklenburg, T.A., & Thorsteinson, L.K. (2002). Fishes of alaska. Bethesda, MD: American Fisheries Society.
USFWS scientists Liz Labunski and Marty Reedy
Animals Viewed:
Walleye Pollock
Pacific Herring
Smooth Lumpsucker
Shrimp (unidentified) but they looked like what I have for dinner!
Jellyfish
Fin Whale
Humpback Whale
Short-tailed Albatross
Northern Fulmar
Something to Consider:
Many people, including myself, enjoy watching animals but never learn what their common names are! We take for granted the wonders of Mother Nature that we see everyday and sometimes disregard them as being “normal.” However, what you see may not be normal for other people, such as seeing high populations of bald eagles in Dutch Harbor and Unalaska! It is never too late to learn and if, for example, you move to a different location with different flora and fauna, you can share with your new friends the environment from which you came! I find when traveling to other countries or other locations in the “Lower 48” that they assume Alaska is always cold, snowy, and that penguins live there (which they don’t)! When I take my pictures with me, it is exciting to see other people’s reactions and the conversations afterward are always engaging!
Now would be a great time to photograph the animals and plants you see inhabiting the land surrounding your home. You never know when you may bump into an avid “birder” or other animal specialist that could tell you their names. Or, if you are feeling particularly enthusiastic on a foul weather day, there are many identification books available in your local library.

Michele Brustolon, July 4, 2010

NOAA Teacher at Sea
Michele Brustolon
Onboard NOAA Oscar Dyson
June 28 – July, 2010

NOAA Ship Oscar Dyson
Mission: Pollock Survey
Geographical area of cruise: Eastern Bering Sea (Dutch Harbor)
Date: July 4, 2010

Weather Data from the Bridge

Time: 1500
Latitude: 57.59N
Longitude: 171.10W
Cloud Cover: 100%
Wind: 11 knots
Air Temperature: 7.20 C/ 44.960 F
Water Temperature: 5.50 C/ 41.90 F
Barometric Pressure: 1010 mb

Science and Technology Log

Now that I have provided you with information about the importance of pollock and how the Oscar Dyson works to survey the stock in the Eastern Bering Sea, I wanted to answer a few related questions.

What about other species?

In the Bering Sea, pollock are so abundant that our mid-water trawls capture mostly pollock. However, there are a lot of other species in the Bering Sea that scientists are interested in. In addition to the Oscar Dyson, NOAA charters fishing boats (such as the Alaska Knight and the Aldebaron) to trawl on the ocean floor. This allows scientists to see more species in the Bering Sea. These ships trawl all day; sometimes up to 6 trawls a day. The GF boats cover the eastern Bering Sea shelf, extending up to the region around St. Lawrence Island (a wider area than the Oscar Dyson will cover). While the Oscar Dyson focuses on euphausiids and pollock, the ground fishing boats examine everything else found on the bottom.

Euphausiids from Methot trawl

Katie proudly holding a pollock from our first Aleutian wing Trawl

Who owns the water?
International laws provide countries with an Exclusive Economic Zone (EEZ) within 200 miles of their shoreline. The area we are studying in the Bering Sea can be fished solely by fishing boats operated in the United States. On the other side of the Sea, Russians fish in their own 200-mile zone. However, in the middle there is a “donut hole” which is considered “international waters”. This Donut Hole supported a large pollock fishery in the late 1980’s.

Transects for Leg II on Oscar Dyson

The “Donut Hole” or “Bubleek” in Russian, is shown here in the shaded circular area between U.S. and Russia.

How do American scientists collaborate with scientists from other countries?
The United States works with other Pacific countries to conduct research on the Pacific Ocean and the Bering Sea. For example, the Oscar Dyson, in addition to hosting two Teachers at Sea, is hosting two Russian scientists from the Pacific Research Institute of Fisheries and Oceanography (TINRO) in Vladivostok, Russia – Mikhail Stepanenko and Elena Gritsay.

I had the opportunity to sit down with Mikhail the other night and asked him about his experience and how he ended up on the Oscar Dyson. Born and raised in Primorye, Mikhail spent a great deal of time at the Ussuri River. He studied biology at The Far East State University in Vladivostok and began researching at sea soon after his graduation in 1968. After the first USA-USSR agreement regarding marine research, Mikhail visited the United States and worked out of La Jolla, CA starting in 1969. He has spent about 5-6 months at sea per year for the last 40 years, including the last 18 summers on the NOAA summer pollock survey (specifically on the Oscar Dyson and its sister ship the Miller Freeman)

This wealth of experience has made Mikhail an expert and he is a well-respected member of the Pacific marine science community. Throughout the years, there have been numerous conferences between stakeholder countries, and Mikhail has played an active role in recommending action for working together to maintain the populations of pollock and other fish. Mikhail has served on the Intergovernmental Consultative Committee – a six-nation committee that meets biannually to discuss fishing polices in the “donut hole.” In addition, Mikhail worked as a Russian delegate during meetings which led to the creation of PICES (North Pacific Marine Science Organization), an “intergovernmental scientific organization, was established in 1992 to promote and coordinate marine research in the northern North Pacific and adjacent seas.” (Visit their website for more information). Mikhail was elected Chairman of the Fisheries Science Committee (FIS), a branch of PICES, in 2008 and is currently preparing for their next meeting in October.

Each organization is trying to find the best policies to help understand the organisms through reproduction, population dynamics, stock assessments and fishery management. Mikhail’s wealth of knowledge, collaborative scientific research and commitment to the sustainable fishing benefits all members of the international community and we are lucky to have such a science superstar in our midst.

Catch of jellyfish and pollock coming in (Abby: left; Kathy: right)

This is a lumpsucker. Isn’t it cute?

PICES website: http://www.pices.int

Personal Log

The Fourth of July ending up being a packed day! First thing I was able to help with the CTD (remember from previous journals- conductivity, temperature, depth). You definitely wake up standing on the Hero Deck at 0400! My day of adventure continued when we got to fish after lunch. Why was this such a big deal? We hadn’t fished since June 30! We saw 100s of pounds of Chrysaora melanaster (jellies) that were so large we had to struggle to move them. We focused more on the pollock that were 1-3 years old this trawl, but the COOLEST animal by far was the lumpsucker! I was able to help sort the pollcok, sex them, and take the otoliths out for research. After we cleaned up the wet lab, we had a great ending to our day…

We had a cookout on the Boat Deck. Ray, the Chief Steward, with the help of Floyd Pounds, 2nd Cook, made everything you could possible imagine: a variety of kabobs, cheese burgers, salmon, different salads, cake, fruit, and the list goes on. To top the evening off (remember, it’s still light out!), Ensign (ENS) Amber Payne gathered and shot off expired flares for our “light show.” I enjoyed having the time to hang out with some people that I never see now that we are all working our shifts. It is a Fourth of July that I will remember always!

Fourth of July cookout on the Boat Deck

Animals Seen
brown jellies or northern sea nettle- Chrysaora melanaster
pollock- many 1-3 years
smooth lumpsucker
rock sole
fulmars

Word of the Day
Propiate: appease
New Vocabulary
GF boats: ground fishing boats
“Donut hole”: the area between Russia and the U.S. that was considered International waters” so it did not belong to a certain country