Robert Lovely, April 2, 2008

NOAA Teacher at Sea
Robert Lovely
Onboard NOAA Ship Gordon Gunter
March 31 – April 12, 2008

Mission: Reef Fish Ecological Survey
Geographical area of cruise: Pulley Ridge and the West Florida Shelf, Gulf of Mexico
Date: April 2, 2008

NOAA ship GORDON GUNTER at the dock in its home port of Pascagoula, MS.

NOAA ship GORDON GUNTER at the dock in its home port of Pascagoula, MS.

Weather Data from the Bridge 
Visibility:  10-12 miles
Wind Direction:  East (080)
Wind Speed:  10 knots
Sea Wave Height:  1-2 foot
Swell Wave Height:  1-2 foot
Seawater Temperature: 23.93 C.
Present Weather Conditions:  Partly cloudy

Science and Technology Log 

After spinning around in circles in the harbor area so that a specialist could synchronize all the compasses onboard the ship, we left the Port of Pascagoula at about 10 a.m. on Monday, March 31. We would have two full days and nights of transit to our first station at Pulley Ridge, which lies about 54 nautical miles west of the Dry Tortugas (see map above).  The weather was cold, cloudy, and windy on the first day, and the waves ranged from four to six feet high.  This set the stage for a very rocky first day at sea. On day two, however, the seas flattened out, and the weather was beautiful, with a clear blue sky and only light winds. I could see for miles in every direction, but there was no land in sight. 

Southern Florida

Southern Florida

One of the main objectives of our mission is to identify the extent of live stony corals (order: scleractinia) on Pulley Ridge.  This approximately 20-mile long three-mile wide undersea ridge has been designated as a habitat area of particular concern, and consequently carries certain fishing restrictions.  Trawling gear, in particular, may not be used.  Moreover, fishers are not allowed to drop anchor, use long lines, bottom traps and other equipment that is apt to kill or damage the coral. Because the corals serve as prime breeding habitat for many commercially-important species of fish, it is in the long-term interest of the commercial fisheries to protect areas such as Pulley Ridge. Apart from its importance as fish habitat, though, Pulley Ridge also is unique because it contains the deepest known photosynthetic coral reefs on the U.S. continental shelf.  Scleractinian corals, such as Agaricia spp., thrive along with sponges and common species of reef algae in water some 250-feet deep.

Pulley Ridge dive sites.  The red dots indicate start and stop points for individual dive transects. Map by Marta Ribera.

Pulley Ridge dive sites. The red dots indicate start and stop points for individual dive transects.

Because the Pulley Ridge reefs lie well below the safe-diving limit of 130 feet, the most practical and efficient way to explore these unique habitats is by means of a remotely-operated vehicle (ROV) equipped with digital still and video cameras.  When deployed, the ROV is tethered to the ship by means of a long umbilical and driven by an operator in the control room.  The umbilical delivers electric power and control signals to the ROV. From the control room the ROV pilot watches a video monitor and steers the unit much like one would play a video game.  Video of the sea bottom is recorded continuously, while high resolution digital still frames are recorded at specific time intervals, such as every two minutes.  The scientific field party on this mission consists of six individuals, two of whom are dedicated to the operation and maintenance of the ROV.  The rest are biologists.  The ship itself carries a crew of 18. Long before we left port, Andrew David, the chief scientist, developed a cruise plan, which called for the ROV to make dives along specific transects. We reached our station for the first transect at about 7:30 this morning.

ROV team Lance Horn (left) and Glenn Taylor prepare the ROV for deployment.

ROV team Lance Horn and Glenn Taylor prepare the ROV for deployment.

After considerable setup, the ROV was deployed and lowered down to the bottom, about 300 feet below the surface.  ROV pilot Lance Horn drove the unit about a meter or two above the bottom, recording video continuously and taking digital still images at two-minute intervals.  Biologist Stacey Harter added narration to the video by identifying the different fishes and bottom conditions she saw on the monitors. Everything ran quite smoothly for the first half of the transect. But then the video light flooded and popped a breaker, causing the ROV to lose power. The unit had to be brought back onboard the ship for repairs.  That was it for the day. “The deep sea bottom is such an extreme environment,” said Andrew David, “that equipment break-downs like today’s are practically a routine part of doing science at sea.”

Personal Log 

While watching today’s operations, I couldn’t help but think how easy I have it when I take a class of students out onto Wisconsin lakes to do basic limnology.  We work from a small, easyto-maneuver pontoon boat.  None of our equipment is too heavy for a student to lift over the side and drop in. Our depths rarely exceed 20 meters.  Finally, we collect a considerable amount of data in just a three-hour lab period.

Chief scientist Andrew David feeds out the ROV’s umbilical during deployment.

Chief scientist Andrew David feeds out the ROV’s umbilical during deployment.

The ROV is lowered into the water.

The ROV is lowered into the water.

The ship’s dry lab serves as a control room for the ROV. From left to right: Marta Ribera (GIS specialist), ROV pilot Lance Horn, and Stacey Harter (fish biologist).

The ship’s dry lab serves as a control room for the ROV. From left to right: Marta Ribera (GIS specialist), ROV pilot Lance Horn, and Stacey Harter (fish biologist).

 

Melissa Fye, April 19, 2005

NOAA Teacher at Sea
Melissa Fye
Onboard NOAA Ship Hi’ialakai
April 4 – 25, 2005

Mission: Coral Reef Ecosystem Survey
Geographical Area: Northwest Hawaiian Islands
Date: April 19, 2005

Location: Latitude: 23*36.3’North, Longitude: 164*43.0’W

Weather Data from the Bridge
Visibility: 10
Wind Direction:90
Wind Speed: 14 knots
Sea Wave Height: 2-4 feet
Swell Wave Height: 5-7 feet
Sea Level Pressure: 1018.8
Cloud Cover: 2/8 Cu, As, Si
Temperature outside: 24.4

Ship safety drill

Ship safety drill

Science and Technology Log

The AHI was once again placed in the water with Joyce Miller and Jeremy Jones aboard to continue running benthic habitat lines around shallow areas in the area of French Frigate Shoals. A wire jumped out of a sheave (pulley) while trying to deploy the AHI. Boatswain O’Connor and other deckhands secured the line, deployed the boat, and went on to repair the sheave. The ship continued to run benthic habitat lines in the area while scientists edited swath data in the drylab.  In the wheelhouse, NOAA corps officers continued to plot the ship’s position, using charts and GPS systems. GPS (Global Positioning System) are satellites positioned up in space which provides a map of any place on earth. The system sends out a signal that a receiver (like on top of the ship) captures. At least 3 satellites are used to obtain a map because of time delay and other extraneous factors needed to determine one’s position. The Nobel Tec software, used on the bridge, combines GPS systems with charting to provide a location. GPS alone cannot provide location coordinates, so additional technology is combined with it to provide exact positions on a chart. Fire and Abandon Ship drills were also performed prior lunchtime today. Everyone on board has certain positions to be at and jobs to do in case of emergency.  Members of the fire team completely suit up, get out hoses and equipment, etc. The AHI was brought back on board in the late afternoon and TOAD operations continued into the evening.

Personal Log

Today consisted mostly of answering emails from students and interviewing more members of the HI’IALAKAI.  The drills broke up the usual routines and the seas picked up towards the evening hours, making it more difficult to travel down the passageways and do simple tasks.

I interviewed some members of the ship on watch in the wheelhouse. They included Executive Officer John Caskey, GVA Jason Kehn, and deckhand/survey technician Jeremy Taylor.  XO John Caskey has lived many places including Georgia, North Carolina, and California. He has many duties onboard including administrative tasks like hiring, firing, and paying people on the ship. He has been employed by NOAA for twelve years and after graduating from college with a degree in Marine Biology, traveled to Alaska, to be a Fisheries Observer on a NOAA ship. As a Fisheries Observer, people perform sampling techniques (tallying, tagging, counting) to measure the reproductive and population rates of fish. XO Caskey comments that he has known since he was seven years old that he wanted to have a job centered around marine life because his father was a diver and took him on expeditions under the water. NOAA provides the same pay, benefits, and sights to see as the Navy but caters more to scientific research; which attracted Mr. Caskey to the NOAA corp. The travel is a perk in the job but he says the drawbacks include sea sickness and time away from his growing family. Independence, patience, and good interpersonal skills are attributes a qualified applicant should possess for this type of job because XO Caskey comments that it isn’t an easy lifestyle. The Executive Officer will spend approximately 190 days at sea this year.

GVA Jason Kehn was also interviewed in the wheelhouse.  He is originally from Santa Rosa, California but has spent most of his life moving from place to place. He has worked for NOAA for over 3 years on and off, and his title GVA, stands for General Vessel Assistant. His duties include anything associated with working the ship, to include steering the vessel, being a coxswain of the small boats, as well as operating cranes and machinery while aboard. He enjoys the travel associated with the job and has hobbies like recreational diving and photography (which are very compatible to this profession). He would like to learn more about the biological aspects of the work onboard the HI’IALAKAI and he comments that rope is the tool he uses most in his job.  Compatibility is a character trait he believes a person needs to possess in order to function in close quarters. GVA Kehn will spend an average of 190 days at sea this year also.

Deckhand Jeremy Taylor is a wage mariner employed by NOAA.  His duties include operating machinery on the ship, conducting CTD casts, but he additionally helps out as a survey tech in the drylab of the ship. Taylor has degrees in computer science as well as marine biology. His job is tied to the HI’IALAKAI and he enjoys the views, troubleshooting, and computer work he does out at sea.  Mr. Taylor believes a person should be inquisitive and enjoy problem solving to do a job such as this one. The myriad of responsibilities he has everyday makes this job interesting in his opinion and the computer is his most used tool on this research trip.

QUESTION OF THE DAY for my fourth grade students: Using a reference source:  1) List the 3 types of coral reefs. 2) What type of reef is common in Hawaii (and parts of the Caribbean)? 3) What was your reference source?

ANSWER TO YESTERDAY’s Question: Find out more about the giant green sea turtle. List the answers to the sea turtle’s niche: Answers to yesterday’s question are provided by Sai, one of my 4th grade students at Ashburn Elementary. 1) Where does it live? They live mostly in warm and temperate water, also among sea grass. 2) How does it eat (what body parts does it have to aid in eating?) 4 flipper- like appendages with 2 tiny claws on each leg. They also have a hawk like beak. 3) What does it eat?  Jellyfish, crabs, shrimp, snail, seaweed, small fish, mollusks, and algae. 4) How does it reproduce?  They lay ping-pong sized eggs on land and bury the eggs in the sand. They return to the same beach where they hatched to reproduce again. 5) What resource did you use to find these answers? Enchanted Learning.com and Kids Planet.com