Bill Henske, Sharks and Minnows, June 25, 2015

NOAA Teacher at Sea
Bill Henske
Aboard NOAA Ship Nancy Foster
June 14 – 29, 2015

Mission: Spawning Aggregation Survey
Geographical Area: Florida Keys and Dry Tortugas

Date: Wednesday, June 24, 2015

Weather Data from the Bridge: East to southwest winds 15-20 kts. Decreasing to 10 to 15 kts.  Seas 3 to 5 ft. Isolated showers and thunderstorms.

Science and Technology Log

Integrated Tracking of Aquatic Animals of the Gulf Coast

One of the best games you can play in the pool is Sharks and Minnows. The premise of this game is that you and your school are small fish that have to travel from one side of the pool to the other without getting caught by the shark. If you are caught you get turned into a shark for the next round.  Eventually the sharks are well distributed, preventing any minnows from getting through.

Acoustic Monitoring Arrays in the Florida Keys National Marine Sanctuary

Acoustic Monitoring Arrays in the Florida Keys National Marine Sanctuary

I am reminded of this as the fin fish team from FWC sets up a grand game of sharks and minnows for fisheries science.  Over the past week we have been setting up several arrays of acoustic receivers that catch tagged fishes’ signals as they swim through the Florida Keys reef system.  The plan is designed to capture fish moving within and between different parts of the ecosystem.  Any tagged fish coming into Florida Keys National Marine Sanctuary should come into contact with one of the receivers, as will any fish traveling out.  The placement of the receivers on the west and east of the sanctuary create and “entrance” and “exit” for tagged fish.

Within the sanctuary there are now several concentrated grids of receivers in places that make for good fish habitat (aka good fishing spots).  The VR2 receivers can record the identification number of the tagged fish as well as the time and date they connected to the receiver and their distance from the receiver.  When the receivers are collected, that data can be downloaded and a picture of fish movement created.  The data from the FWC’s arrays and tagged fish will be incorporated into a more extensive project called ITAG (Integrated Tracking of Aquatic Animals of the Gulf Coast).   In this project, collaborators share their acoustic tag data and receiver logs with each other, extending the reach of all project.   In the vastness of our marine environments, any one project will produce only a small snapshot of what is happening.  By collaborating between projects, the complexity of fisheries and ecosystems might be more easily untangled.

Sonar profile of one of our sites for an acoustic release receiver.

Sonar profile of one of our sites for an acoustic release receiver.

Today we set up individual stations of a new device which uses an acoustic release.  These are for much deeper sites containing “humps” which are relief features rising 100 to 200  feet about the surrounding sea floor.  Because of the relief, humps offer a large variety of habitats in a small amount of space, creating a highly diverse area for aquatic life.  Since these deeper areas are inaccessible to most divers, the receivers we set out can be triggered to return to the surface.  When data is ready to be collected in a few months, a device will be lowered into the water that communicates with the receiver using sound.  This device, called a VR100, can trigger the receivers to jettison themselves to the surface with the help of two small floats.  At that time the receivers can be collected from a small boat.

Joel from FWC checks the connection to an acoustic receiver that has just been dropped to the sea floor.

Joel from FWC checks the connection to an acoustic receiver that has just been dropped to the sea floor.

This video below shows our deployment of the acoustic release receiver from the side of the Nancy Foster.

 

Personal Log

City in the Sea

The Nancy Foster has been at sea since February of this year.  While it resupplies every few weeks, most of the vital functions for human habitation are performed on board.  The ship is, for its officers, crew, and science passengers, a small floating city.

View of the engine room control panels.

View of the engine room control panels.

Electricity requirements for a large ship are quite high.  If you factor in air conditioning, navigation systems, lighting, motors and pumps, kitchen, and scientific tools, the energy consumption equals a small hamlet.  Amazingly, this electricity is all created on board with the ship’s generator and a copious amount of marine diesel.

The Nancy Foster has a main engine for thrust but several others that act as generators for the thrusters, electricity, and backup power.

The Nancy Foster has a main engine and several others that act as generators for the thrusters, electricity, and backup power.

Food is loaded on at ports but that doesn’t mean it isn’t fresh and delicious.  Each day Bob and Lito prepare breakfast, lunch, and dinner for all of the scientists and crew.  These delicious multi-course meals keep all the members of this floating city very happy.  Just like the hungry generators, the humans energy levels are kept well stocked.

Water, water everywhere but not a drop to drink, except on the Nancy Foster you can just distill it using excess engine heat.

Water, water everywhere but not a drop to drink, except on the Nancy Foster you can just distill it using excess engine heat.

There is no sewage processing on board the ship.  Ship waste is carried in large tanks until it can be released into open ocean, far from land.  Once in the ocean, its nutrients are quickly consumed by hungry phytoplankton and converted into energy for the next level of the food chain.  Food waste is also separated from recycling and “garbage”.  Food waste, after being ground, is composted at sea.

With 40 people on board eating, showering, and using the head, the ship needs to produce water on a continual basis.  The ship keeps a reserve supply and when it goes down, The Nancy Foster has a device that uses excess heat from the engines and generators to distill water from the ocean.

Every day the Science Chief and project leaders determine a schedule and make staff assignments.

Every day the Science Chief and project leaders determine a schedule and make staff assignments.

Cities need organization and a specialized workforce to get all of these things done.  The NOAA Corps Officers make sure the ship stays on course and its mission objectives are met.  The ships crew ensures the small craft are launched safely, everyone is fed, and the ship keeps humming and running smoothly.  The science staff are visitors, enjoying all of the amenities of the ship while using its resources to complete their scientific missions.  Many of the science staff cruise with the Nancy Foster every year, while for some, it is their first time.

How did you get here?

I asked several of the scientists on board what they wanted to do when they were in middle school and how they became involved in marine science and research.  My middle school students are just starting to think about who they are and who they want to be.  I wanted to get some background information on how some of the scientists here got their start.

J. – A biologist had no clue what he wanted to do when he was in middle school and this trend continued until college! He loved fish and applied for an entry level fisheries job and has been at it ever since.

R. – Thinks she wanted to be a writer in middle school based on a paper she read from back then.  After pursuing her interest in ecology she is now writing about conservation issues for NOAA.

S. – She always loved science and math – After studying geology she had a chance to go to sea.  Loved it more than her geology work and now scans the sea floor of the Gulf of Mexico.  She won’t tell you where the treasure is!

P. – He took a test when he was in middle school that said he was not particularly interested in anything.  What he always liked was fish. After a couple related jobs he has worked in fisheries for many years.

S. – When he was in middle school he wanted to be rich and work in biology.  He now works in biology!

One of the major commonalities among the scientists is that they followed, or in some cases, rediscovered their interest.  As a teacher, I hope I can help my students find what they are passionate about.

By the numbers:

226 scuba dives
5 ROV dives
5 Reef Visual Census (RVC) surveys
20 Drop camera ‘dives’
40 New stands and receivers deployed
4 sea turtles
61 square miles of seafloor mapped
1 Teacher at Sea Hat not lost

Bill Henske, Turns Out You Might Need That Skill, June 22, 2015

NOAA Teacher at Sea
Bill Henske
Aboard NOAA Ship Nancy Foster
June 14 – 29, 2015

Mission: Spawning Aggregation Survey
Geographical Area: Florida Keys and Dry Tortugas

Date: Monday, June 22, 2015

Weather Data from the Bridge: East winds 10-15 kts.  Seas 2-4 ft (1 ft inside reef) Isolated showers and thunderstorms)

Science and Technology Log

Remotely Operated Vehicles (ROVs)

We were talking on board today about the olden days, you know, when Jaques Cousteau and Marlin Perkins could reliably be found on a majority of American televisions.  Remember Generation X?

Jeff from FWC at the controls of the ROV searching for signs of spawning aggregations.

Jeff from FWC at the controls of the ROV searching for signs of spawning aggregations.

Yes- we are in our 40s now.  Kids my age had the spirit of scientific adventure to look forward to on Sunday nights.  The same generation of kids grew up with monitors and joysticks, interacting with worlds that were somewhere beyond the “real world” on our Ataris and Commodore computers.  Our 1980s parents might be incredulous to learn that we are now doing these same things to investigate critical habitat, monitor fish populations, and gather geographic data.  I know many futurists predicted it would happen but the grownups I knew were skeptical, to say the least.

NF3 Dive Boat loaded for ROV Mission

NF3 Dive Boat loaded for ROV Miss

The remotely operated vehicle has been a staple of marine research for many years now.  Called an ROV for short, these devices are human operated machines that can do many of the same things humans divers can do but in much more difficult circumstances, for much longer periods of time, and at greater depths.  ROVs are “employed” by resource managers, marine scientists, construction crews, engineering companies, and just about anyone else who has work to do under water.

Loading ROV gear into dive boat.

Loading ROV gear into dive boat.

We have been using an ROV on our current mission on the Nancy Foster to  collect fisheries data.  With the ROV we can investigate different areas identified on hydrographic maps and from previous studies without labor intensive dive operations.  The ROV does not need to stick to a dive schedule and as long as it has power and a willing operator, it can do its job.  The ROV has several components that must all be brought onto our dive boat in order to operate.

The primary need of the ROV is electricity.  Rather than running on combustion or cellular respiration, which both require oxygen, the ROV needs a steady supply of electrical current.  Because many variables can affect the power demands of an ROV such as speed, depth, wind, and current, the FWC team has chosen to operate a small generator to power their ROV.

ROV being set up for deployment.  Note the spool of tether cable and control panel.

ROV being set up for deployment. Note the spool of tether cable and control panel.

The ROV has a specialized cable that carries the electricity from the boat to the motors. This cable, called a tether, also carries the signal from the controller to the motors to tell the ROV where to go.  The video input the ROV gathers is relayed through this cable in order to allow the operator to see through the “eyes” of the ROV, and, of course, record what it sees.

Operating the ROV requires a good deal of coordination.  The craft is controlled much like a slow, unresponsive airplane.  It can move forward, reverse, side to side, up and down, and operate at a tilt.  This dizzying array of motions are necessary to track and study the reef fish as they travel through the Florida Keys National Marine Sanctuary.

Jeff from FWC records the coordinates before beginning ROV survey

Jeff from FWC records the coordinates before beginning ROV survey

Jeff Renchen of the Florida Fish and Wildlife Conservation Commission (FWC) is, among many other things, our ROV operator on this cruise.  He is using the small ROV to collect data on spawning aggregations of several important fish species.  Jeff explained that the ROV allows researchers to explore deeper than divers are able to easily go.  ROV camera operations can follow aggregations of fish and provide insights into the behaviors and conditions of spawning fish, as well as structures and locations that are important for spawning behavior.

With the ROV in the water Jeff takes it for a swim away from the boat. Once the ROV’s line has 50 feet of slack, the tether is attached to a drop line. In strong currents, it is possible for smaller ROVs, like the one here, to get carried off.  The drop line allows us to raise or lower the ROV in the water column faster, increasing our ability to focus in on fish of interest or specific depths.

ROV swimming away.

ROV swimming away.

 


Personal Log

There are some things that seem special no matter how many times you have seem them before.  I remember a long time student of Appalachian ecology saying that he could not remember what he had for lunch but he could describe every time he had seen a bear.   There are some things in our world that have that the ability to mesmerize us, silencing the combating thoughts that often clutter our minds and setting a reset button somewhere in our brain stem.

One of those things that stands out for me, and kindly keep it to yourself if you disagree, is seeing dolphins interact.  We came in from some drop camera operations on Wednesday evening and found this pod of dolphins playing in the wash of the Z-Drive motors of the Nancy Foster.  There would more footage but if you are taking video rather than living in this moment, you are probably doing it wrong.

Watching dolphins play and interact appeals to so many of us.  I think it reminds us of the pleasure of physicality and the joy that can be had as social creatures.

Then there is the thrill of hearing “There’s a shark” from the scientist monitoring the camera you have been steadily lowering below a 17 foot dive boat bobbing in the small but steady waves.

.

The enormities of life at sea give us an awe inspiring sense of scale.  Every day at sea there is at least one endless horizon and yesterday they surrounded us on all sides.  Just past sunset I caught this small cumulonimbus that had previously drizzled on our afternoon drop camera trip.  I thought about the thermal energy required to make such a structure.  I wondered at the amount of fresh water it carried.  And then my brain quieted down and I just watched it.

Cumulonimbus with 2 layers of rain.

Cumulonimbus with 2 layers of rain.

Bill Henske, Mind if We Drop in? June 19, 2015

NOAA Teacher at Sea
Bill Henske
Aboard NOAA Ship Nancy Foster
June 14 – 29, 2015

Mission: Drop camera operations
Geographical Area: Florida Keys and Dry Tortugas

Date: Friday, June 19, 2015

Weather Data from the Bridge: East wind 10-15 kts.  Seas 3-4 ft (2 ft inside reef).  Isolated showers and thunderstorms

Science and Technology Log

Drop Camera Operations

We have so many ways to see our planet using scientific tools.  The Nancy Foster, for example, uses radar to see boats and weather in the direct vicinity.  The ship uses satellite images to prepare for missions and to support surface information. Onboard, the Nancy Foster uses sonar to measure ocean depths and detect the undersea activity of marine organisms, and map the physical characteristics of the seafloor.

The ship collects hydrographic information by making repeated passes over  an area of interest.  This is the product.

The ship collects hydrographic information by making repeated passes over an area of interest. This is the product.

This technology all relies on our acceptance that a pixel of light with a specific value equals some tangible unit of mass or energy in our ocean.  The equations and processes that help us determine the relationship between the data collected and what is meaningful to us must be worked out through careful analysis and study.  In our case, we are trying to work out the relationship between certain patterns of sonar feedback and what habitat is present on the seafloor.

Don Checking Drop Camera Setup before lowering down into Warsaw Hole.

Don Checking Drop Camera Setup before lowering down into Warsaw Hole.

Don Field of NOAA’s National Center for Coastal Ocean Science calls himself a pixel-pusher.  Deciphering the images and data that show up on a monitor means having an astute understanding of what each bit of data means.  Part of Don’s research involves squeezing more data from the bits collected by looking for associations between these bits of light and the real world.  Identifying the relationship between these sonar profiles and the habitat on the seafloor means matching up pixels from a screen with what exists in the actual environment.  If we can reliably identify seafloor type by sonar, for example, we could begin to quantify habitat for individual species rather than relying on approximations.

Me pushing pixels on one of the sonars. I can't get it to work though. (Scott Donohue, NOAA)

Me pushing pixels on one of the sonars. I can’t get it to work though. (Scott Donahue, NOAA)

Don calls this ground-truthing.  This means a researcher on the ground (or in the ocean in our case) must connect the features from satellite and sonar with images and data collected from onsite.  Our project on this mission involves deploying a drop camera from one of our small vessels and determining what is there.  Several coordinates are chosen from sonar and satellite pictures.  These coordinates are entered into the GPS of the small dive boats allowing us to pinpoint the exact location within just a few meters.

The drop camera is a fairly self descriptive term.  This is a specially designed black and white camera that is deployed from the side of the small vessel.  The camera is mounted within a protective cage with weights attached to facilitate its trip to the bottom.  While the turbidity of the water is very low, light is still limited at deeper depths.  The camera has lights that enable viewing in low light or during nocturnal missions.  The reason we use a black and white camera is that they can operate in much lower light levels than color cameras.  Think about your own color vision and how it diminishes as the sun goes down.

This is our drop camera.  The two brass devices attached to the left are for lasers which allow the operator to determine depth as well as relative size of objects in the field of view.

This is our drop camera. The two brass devices attached to the left are for lasers which allow the operator to determine depth as well as relative size of objects in the field of view.

The camera rig is tethered to the GPS and video recorder with a 300 foot long coaxial cable.   This cable is specially designed for this application with corrosion resistant terminals and kevlar sheathing along the entire length.  We also attached a downrigger to the camera apparatus to reduce the wear and tear on the cable and to speed retrieval of the unit.

On board, we monitor the camera as it is lowered almost to the sea floor at each chosen coordinate.  Our equipment records and geotags the video with the exact location so it can be aligned with mapping data back in the lab.

The controls of the drop camera.

The controls of the drop camera.

On the drop camera, we also utilize a fairly “off the shelf” GoPro camera.  This camera doesn’t feed information back up to the vessel and isn’t connected to GPS but it can provide other useful information about the species encountered along the trip down.  This biological information can be used for other projects and adds to the overall value of the mission.

One of the critical things for all field scientists is to check the functioning of gear before heading out. Don and I set everything up in the drylab and on deck.  There were several bugs to work out of the procedures before heading out to our first coordinates.  Once we addressed the issues we had with the equipment, our dropcam was ready to go.

Heading out to Warsaw Hole with our drop camera and equipment..

Heading out to Warsaw Hole with our drop camera and equipment.

We headed out to the locally famous Warsaw Hole.  This spot is known for spawning populations of several important fish.  We wanted to determine if the seafloor with in this structure held any clues to why it was so important to fish.  At over 300 feet deep, this area is not conducive to exploratory dives.  This inaccessibility made it a good candidate for our mission.

After heading out to the coordinates we unpacked the camera, GPS, and computers.  There was a sudden loss of power to the camera.  A little trouble-shooting and we determined it was the fuse.  Saltwater is tough on electronic components!   A blown fuse was not one of the things we prepared for the day before.  We radioed the ship with our fuse requirements and after a short shuttle back to the Nancy Foster, we were back in business.

What could be in the mysterious Warsaw Hole?  At 100 feet deeper than the surrounding seafloor, what was it about this place that encourages aggregations of the Warsaw grouper (Epinephelus nigritus)?  As the camera was lowered deeper, we were able to see everything in the water column as it swam to one side or the other.

We reached our destination depth and discovered that Warsaw Hole is a plain, ordinary sandy bottom.  In the world of science this unexceptional discovery is called “zero data”, but it is valuable information nonetheless, as we try to characterize all of the habitats in the area.

Personal Log

The Dry Tortugas is one of the most out-of-the-way National Parks in the US.  This former Civil War era fort and the surrounding small keys are a paradise of colorful fish and raucous colonies of seabirds.  While the camp site was busy, it was definitely not crowded after the Key West ferry had gone home for the day.  If you decide to spend the day or camp over night, bring water.  It is named for the fact that there is no fresh water!

We were able to snorkel almost entirely around the fort.  The submerged walls of the old fort are encrusted with corals, sea fans, annelids, and sponges of every shape and color.  The remnants of former building materials are almost unrecognizable as human detritus, instead housing a great diversity of interesting reef organisms.

Unfortunately, we did not see the infamous crocodile.  Tick Tock.

Here it is official as I stand in front of the Dry Tortugas National Park Sign.

Here it is official as I stand in front of the Fort Jefferson – Dry Tortugas National Park Sign.

By the Numbers

  • Sea Turtles – 1
  • Square miles of seafloor surveyed – 21.02
  • Treadmill Miles – 6.25
  • Drop cam dives – 6
  • Teacher at Sea Hat Recoveries – 2

 

Bill Henske, Tag, You’re It! June 16, 2015

NOAA Teacher at Sea
Bill Henske
Aboard NOAA Ship Nancy Foster
June 14 – 29, 2015

Mission: Acoustic Monitoring
Geographical Area: Florida Keys and Dry Tortugas

Date: Tuesday, June 16, 2015

Weather Data from the Bridge: East winds near 15 knots, Seas 3 to 5 feet (2-3 inside reef), Scattered showers and isolated thunderstorms

Science and Technology Log

Acoustic Tracking Project
The Nancy Foster is a NOAA research vessel that frequently collaborates with multiple parties – universities, state agencies, and federal managers. By working together and pooling resources, a ship like the Nancy Foster, can synergize the work of a number of connected scientists. On the current cruise we have several scientists from the Florida Fish and Wildlife Conservation Commission, Florida Keys National Marine Sanctuary (FKNMS), National Center for Coastal Ocean Sciences (NCCOS), and the Office of Marine and Aviation Operations (OMAO). Their fascinating and important work will help us better understand the way marine populations work.

You may have heard the saying there’s more than one fish in the sea. While certainly this is true, the aphorism does little to describe the condition of the sea. The assumption might be that because there are a large number of fish, the sea is a healthy one. But are the individual types of fish occurring in significant populations? Are the populations equally distributed or are they more likely in certain parts of the ocean? How do they change over time?

Receiver Stands and surgical apparatus awaiting deployment(Photo by Kelsey Jeffers, NOAA)

Receiver Stands and surgical apparatus awaiting deployment (Photo by Kelsey Jeffers, NOAA)

There are many things we don’t yet know about the territory, movement, and reproduction of even our most important fish. With the acoustic tracking project, we hope to find out how species of fish use the diverse habitats in the Florida Keys.

It would be hard to follow a black grouper around 24/7. The logistics would be very difficult to work out, to say the least. Rather than following one fish, the acoustic tracking project tags fishes in the study area with what is called an acoustic tag.

Acoustic tag which will be activated and implanted in study subject.

Acoustic tag which will be activated and implanted in study subject.

Once fish are captured, they receive a small “surgery” during which one of the tags is implanted. This, in and of itself, does nothing. The tags can be customized for the characteristics of different species or needs of the study. For a habitat study, the tag might ping several times a minute while a longer project looking at movement between areas might be set to ping once every few minutes. The longer frequency extends the life of the tag.

If a tag pings in the ocean, does it make a sound? The second part to the acoustic tracking is setting up and maintaining the listening probes called VR2s. Throughout the Keys and the Dry Tortugas, VR2 probes quietly wait for these pings and nonchalantly record the fish’s visit for later analysis. Think about the smartphone app Foursquare (is that a thing anymore?). Each time a fish swims near a VR2 its presence and visit duration is recorded and time stamped.

Every 6 months to a year, the VR2 recorders have to be collected and analyzed. Each VR2 is a record of every tagged fish that came within a certain distance of the probe over the period of time it was collecting data. This is where our mission comes in. On our cruise, we are servicing a number of these probes; picking up the old ones, replacing batteries, downloading data sets, and placing new or rejuvenated VR2s.

The VR2 receiver gather data from tagged individuals within the study area.  The VR2 records the identification number, time, and date of each visit by a tagged specimen.

The VR2 receiver gather data from tagged individuals within the study area. The VR2 records the identification number, time, and date of each visit by a tagged specimen.

Dive teams go out from the Nancy Foster, using only the GPS coordinates, to recover the sensors from the unmarked expanses of ocean. This process can be tricky due to variables such as currents, weather, and the inevitable equipment glitches. A clouded over satellite, a misread latitude, or a tipped over stand make this otherwise fun diving job challenging at times.

On day 2 of our cruise we serviced several of these probes. We took a small dive boat out to sets of coordinates where a VR2 had been placed on previous missions. From there our dive teams went down with the new VR2s and came back with the old. Once the used probes are brought to the lab, the data is moved to a computer for analysis. From here we can map the fishes’ activities by tying the location of the VR2s to a geocoded map created by the bathymetric maps generated by the hydrography crew (I’ll write about that later). One additional point of interest is that the unique tag ID that each fish gets is searchable by other marine researchers in similar projects around the world. We can identify fish tagged from other projects that happen to travel, migrate or wander this way and our fish from the Keys can be located by others.

Member of the dive team servicing a VR2 receiver stand (Photo by Kelsey Jeffers, NOAA)

Member of the dive team servicing a VR2 receiver stand (Photo by Kelsey Jeffers, NOAA)

Today we also set out traps in promising

Member of the dive team checking trap and selecting fish for acoustic tagging and release. (Photo by Kelsey Jeffers, NOAA)

Member of the dive team checking trap and selecting fish for acoustic tagging and release. (Photo by Kelsey Jeffers, NOAA)

locations. These are specially designed devices that have been approved by the Florida Keys National Marine Sanctuary specifically for this research project. Commercial or recreational trapping of fish has been banned for over 20 years. Remember the tagged fish? With these traps we hope to catch some grouper and snapper, key fish species in the Keys ecosystem. Once caught in these baited traps the fish may receive a transmitter to begin their role in the study. While it is easier for humans to do surgery on the surface, it is easier for the fish if it is done in the water. Amazingly, most of the implantations are done at the trap site, sometimes up to 100 feet deep!


Personal Log

These is the emergency gear affectionately referred to as a Gumby Suit.

This is the emergency gear affectionately referred to as a Gumby Suit.

I have to admit, for someone like me, it is hard to be the green horn. Most of the folks I know can piece together a picture of what working and living at sea would be like. I thought I had a pretty good mental collage going from my bits and pieces and random trivia knowledge. My maritime fantasy world was made of concepts and ideas from many experiences, books, friends and the like. Most of these are small snippets of truths that are sprinkled through all our memories. Drawers opening and closing with the rolling of the waves, portholes, the bustling mess at supper, escape hatches, smoke stacks, life rings. When I heard the “All aboard that’s coming aboard” as we prepared to leave port, the primeval neurons of my childhood sparked. I realized most of my snippets were from Popeye. Ak ak ak ak ak. Passing note, tonight’s wonderful dinner included spinach.

Did You Know?
The NOAA Commissioned Officer Corps is the smallest of the 7 uniformed services of the United States with just over 300 service members. It is eclipsed by the second smallest service, the United States Public Health Service, which has over 6000 officers.

The Nancy Foster has a Facebook page!  Like it and follow her amazing adventures.

Bill Henske, Introduction, June 8, 2015

NOAA Teacher at Sea
Bill Henske
Onboard NOAA Ship Nancy Foster
June 14 – June 26, 2015

Mission: Coral Reef Condition Assessment, Coral Reef Mapping, and Fisheries Acoustics Characterizations
Geographical area of cruise: Florida Keys National Marine Sanctuary
Date: June 8, 2015

Personal Log

This is a picture of me in the St. Francis Mountains of southeast Missouri doing planning for a student backpacking trip.

This is a picture of me in the St. Francis Mountains of southeast Missouri doing planning for our middle school summer field study class.

As a middle school teacher, I often think about the experiences I had through my education that brought me to where I am now – what led to my passion for science and exploration.  Giving students experiences, experts, and opportunities are essential to promoting a lifelong love of learning.  When I learned about the Teacher at Sea  program with the National Oceanic and Atmospheric Administration (NOAA) I eagerly applied.  This is a tremendous opportunity to grow in my capacity as a science teacher, role model, and colleague.  Best of all, it would be an adventure where I would learn lots of new things!

Teacher at Sea bling will come in handy on this June's cruise through the Florida Keys National Marine Sanctuary

Teacher at Sea bling will come in handy on this June’s cruise through the Florida Keys National Marine Sanctuary

I am very lucky to teach and learn at Maplewood Richmond Heights Middle School in a small, but diverse school district just outside of St. Louis, Missouri.  We have a wonderful program of expeditionary learning at our public school.  Our classrooms go from the watershed of our neighborhood, to the Mississippi valley, to the Appalachian Mountains,  to the Gulf of Mexico.  Through expeditionary learning, we can give students many similar experiences that led us teachers to enter STEM fields.  Through field experiences and connections to scientists, students have opportunities to explore their interests and ignite passions.

This is a photo from 1993 when a friend and I canoed from college in Wisconsin to my home in St. Louis.

This is a photo from 1993 when a friend and I canoed from college in Wisconsin to my home in St. Louis.

One of the important lessons we learn at our school from our study of watersheds during our 7th and 8th grade years is that we are really one giant watershed.  The motto that “We all live downstream” is not just a metaphor for the way that our actions have consequences.  “We all live downstream” is also very literal.  My school community exists in the largest drainage area of North America, the Mississippi River.  Our collective actions, whether they are positive or negative, have quantifiable effects downstream.

The interconnected systems of the hydrosphere, geosphere, and atmosphere also connect all of us humans.  Because these resources are “free”, they have gone a long time through Western history without the respect of economic value.  Students across our country are confronted with the sad statistics of environmental decline.  They are bombarded with figures and facts about the negative trend in marine ecosystems.  What truly drives my and many other teacher’s passion is the opportunity to provide the next generation with the hope of science and research.  These tools will help us define problems and propose solutions that can stop or even reverse the situation.

This June I will be joining the crew of NOAA Ship Nancy Foster.  We will be cruising the Florida Keys National Marine Sanctuary and the Dry Tortugas region where NOAA scientists will conduct  fish sampling and acoustic tagging in order to determine the connectivity of fish populations between the various geographic entities.  This essential work will help determine the fragmentation or cohesiveness of different populations of marine organisms as habitat is protected but in fragments.  It would be interesting to incorporate this information and the techniques used as we set up our yearly pond study back in Missouri.  Do fish move from one side of the pond to the other?

On this cruise we will also be deploying and installing the Integrated Tracking of Aquatic Animals in the Gulf of Mexico (iTag) array network.  This system will help monitor the movement of marine organisms to determine larger scale movement of different populations and species.  I can see this project leading to classroom lessons on population biology, genetics, and even speciation.  The complexity of interactions between hundreds of species and dozens of distinct populations is truly astounding.  Our scientists policy makers are often asked to distill this complexity down to a harvest number or population level. I want to bring back to my students the important role science has in, not only explaining the world around us but, shaping our future and helping develop or maintain the world we want.

Area of June NOAA cruise on the Nancy Foster

Area of June 2015 NOAA cruise on the Nancy Foster

I am so excited to be a part of the Teacher at Sea program and cannot wait to share my work and experiences with my students and school community.  Every year we take our 8th grade class to the Dauphin Island Sea Lab where we study the marine science that others have discovered.  This August, when I go back to the regular classroom, I will be one of the folks who helped make those discoveries!

As I finish this entry, I am thinking about how the coral, sponges, and mollusks of the Gulf will soon be filtering through the water that we floated through last week on the 11 Point River, here in Missouri.  The water flows so easily and generously from the ground that an unfortunate majority here take its presence for granted.  The water carried little bits of all of us, a connection, as it traveled its thousand plus miles to the ocean.  On Saturday, June 14, I cycle myself through the atmosphere and hydrosphere to begin my adventure as a Teacher at Sea.  Check back regularly for updates on our mission aboard the Nancy Foster and a taste of life on a research vessel.

My students and I became part of the watershed this past week, floating towards the sea along Greer Spring Branch in southern Missouri.

My students and I found a great way to cool off last week in Missouri.  How long can you stand the 55º F spring water?