Sherie Gee: Male or Female? June 29, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard the R/V Hugh R. Sharp
June 27 — July 7, 2013

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 29, 2013 

Science and Technology Log:

Most of the shifts consisted of sorting out the animals from the dredges and carrying out the process of weighing, measuring and counting.  One other component to the process is that on every dredge, five of the scallops are scrubbed, weighed and dissected.  Once this is done, gender can be determined since this species of sea scallops have separate sexes.  Then each scallop is numbered, labeled, tagged, and bagged.  These five sea scallops will be brought back to the lab on land to be analyzed and aged.  This is done by counting growth rings on the shell.   The part of the scallop that is used as food is not the actual animal but the adductor muscle that is located in the middle of the shell.  This is the muscle that can open and close the scallop’s shell.  This is the only bivalve to be motile.  Often times other organisms find a nice little resting spot inside of the shells of the scallops.  This is a form of commensalism where the organism benefits while not harming the host.  We saw a small red hake living inside the shell of a dissected sea scallop.

The Atlantic Sea Scallop

The Atlantic Sea Scallop

After every other dredge, the crew brings out the CTD which is an apparatus that collects conductivity, temperature, and depth.  This data enters the database and is used in the labs on shore.  We could always tell when they were lowering the CTD because the ship had to come to a complete stop while collecting data.  Then they would bring the CTD back in and the ship would resume forward.

The CTD - Conductivity, Temperature and Depth

The CTD – Conductivity, Temperature and Depth

Did you Know:

The male sea scallop’s gonad is white and the female’s gonad is red.  Gonads are reproductive organs.

Personal Log:

I learned the secret to gearing up efficiently with the boots and foul weather overalls from Larry.  When you are ready to take them off, pull the overall part down toward the boots and leave about an inch of the boots exposed. Then just step out of the boots into regular shoes.  I’m glad I brought some slip-on shoes which made things a lot easier.  Then when it is time to gear up again, all I had to do was slip back into the boots and pull up the pants and suspenders.  We also had to wear rubber work gloves that kept us from cutting ourselves during the dredges.

Boots and Foul Weather Gear

Boots and Foul Weather Gear

I interviewed our steward, Lee, for one of my requirements by NOAA. I found her to be a very interesting and social person.  She is also the cook so she takes on two responsibilities at one time. She has to plan the meals, cook the meals and clean up after the meals. In addition to taking care of all kitchen duties, she also has to clean the heads (bathrooms), vacuum the carpets, clean the staterooms and do the laundry. She had to take some extensive courses on basic safety training for commercial vessels. Her satisfaction to the job is making food that people like and keeping up morale on the ship.  She has a designated drawer which serves as a treasure chest of gold only the gold is actually tons of candy. All kinds of candy.  She also keeps one big freezer full of ice cream and a refrigerator full of most types of can sodas.

Lee's Shrimp Jambalaya

Lee’s Shrimp Jambalaya

The Ship's Treasure

The Ship’s Treasure

Lee- The Ship's Cook and Steward

Lee- The Ship’s Cook and Steward

Sherie Gee: Scalloping Across the Seafloor, June 28, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 – July 7

Mission:  Sea Scallop Survey
Geographical area of Cruise:  Northwest Atlantic Ocean
Date:  June 28, 2013 

Science and Technology Log:

Dredging is the other method of collecting the data needed for this research.  First, I would like to mention that there are predetermined stations that are collected from. Chief Scientist Nicole explained that a computer selects the stations by random and then she basically connects the dots and sets the course.  This way there is no bias in the selection process of the stations and they won’t be used more than once.

Map Showing the Course of Stations

Map Showing the Course of Stations

The Dredge and Platform

The Dredge and Platform

Spare Dredge on Deck

Spare Dredge on Deck

The crew is in charge of bringing the dredge up after towing for 15 minutes at each station.  As soon as the dredge is up on the platform and all of the organisms are lying on the platform, the scientists head out with their rubber work boots, foul weather pants, and life jackets.  They grab two orange baskets, some white buckets and a smaller plastic container.  Everyone stands at the edge of the platform and starts sorting out the organisms.  The pace of sorting is fast and furious as the scientists are quickly placing the organisms in these baskets and buckets.  The organisms are sorted out into sea scallops, small skates, fish, and all other organisms.  The most abundant organisms on most of the dredges were a species of sea stars called the armored sea star, Astropecten americanus.  Some of the other dredges had mostly sand dollars in it.  The combination of these animals varied from station to station.

Once all of the organisms are placed into the baskets and buckets, they are then lined up by the wet lab.  Here is where everything is counted, weighed, and measured. Larry, our watch chief, is in charge of that process making sure everything is done correctly.  The groups of organisms are weighed on scales and entered into the computer with a very remarkable program  called FSCS (Fisheries Scientific Computing System). It is an application used by four science centers (NEFSC, NWFSC, AFSC, AND SEFSC) to collect at-sea information on the research vessels that go out. Each sea scallop is measured by placing one side next to a backboard and using a magnetic tool to touch the end of the scallop to the fish board which records the length automatically and entered into the computer. You can tell when the length has been recorded because a ringing sound will go off. Then the next scallop is processed. It usually takes two people during this process; one to measure and one to feed the person measuring more scallops from the baskets.

Fish Board In the Wet Lab

Fish Board In the Wet Lab

While this is being done with the sea scallops, the fish are measured in the same way.  It is a very quick way to get this quantitative data.  A sub sample is also taken on each dredge by taking a portion of each basket and compiling it into a smaller container and counted.  In these sub-samples I counted Astropecten americanus, crabs, and whelks.  The reason for counting these species is to look at the populations of the sea scallop’s predators.  This is a very important factor in analyzing the population of a species.

Basket of Goosefish

Basket of Skates

Basket of Sea Scallops

Basket of Sea Scallops

Once the entire process has been completed, all specimens are returned to the ocean to resume their niche in their habitat.

Organisms Seen:

Atlantic Sea Scallop, rock crabs, sand dollars, armored sea star, Asterias sea star, four spot flounder, monkfish (goosefish), ocean pout, gulf stream flounder, red hake, yellow-tailed flounder, little skate, waved wake, mermaid purses (skate egg cases), sea mouse, whelks, clams, hermit crabs, American lobster

Did you know:

The sea mouse is actually a polychaete which is a type of marine segmented worm.

Ventral View of a Sea Mouse

Ventral View of a Sea Mouse

Personal Log:

Being a part of this science team has had a tremendous impact on me.  The scientists prove to be very dedicated to their work, all working for a common goal.  I am amazed at the plethora of animals being dredged up in the Atlantic Ocean.  Of course I am very partial to the fish brought up on board.  I wish I had more time with them to observe them closer and in more detail.  The goosefish also called the monkfish is a type of angler fish with an adaptation that looks like a fishing pole and bait.  It reminds me of my little frogfish that is also a type of angler fish.  I was also excited to find so many skate egg cases also called mermaid purses.  They were empty which meant that the skates had already hatched.

Empty Mermaid Purses AKA Skate egg cases

Empty Mermaid Purses
AKA Skate egg cases

Sherie Gee: The Flying HabCam, June 27, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 — July 7 

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 27, 2013 

Weather Data from the Bridge:
Latitude:  40  23:09 N
Longitude:  072:34.42 W
Relative Wind Speed:  11.4 Knots
Air Temperature:  23:50 degrees C
Humidity:  84%
Surface Seawater Temperature:  21.8354 degrees C
Surface-Sea water salinity:  31.1071 PSU

Science and Technology Log:

Two methods were used by these scientists to determine population numbers and trends.  They can use the HabCam which stands for Habitat Mapping Camera System  which takes pictures of the organisms on the bottom of the seafloor and they can use the dredge to collect specimens off the bottom of the seafloor to physically count.  We started out using the Habcam which is a towed vehicle that has to be carefully lowered into the ocean by the skilled crew members.  Since it is a towed vehicle, it must use a fiberoptic, winch-controlled wire to tow HabCam, and it is this wire that we pay in and out via the remote control winch box at the pilot station.  It is very similar to the video games that I have seen the students play.  The HabCam takes six pictures per second of the organisms on the ocean floor. The scientists can see these organisms being photographed on the computers.   One computer is used to monitor the organisms and tabulate the number of several species.  In the beginning, we counted scallops, fish, and convict worms.  Then later we counted fish, skates and convict worms.  On another computer, a scientist  controls the HabCam with a remote control joy stick.  The screen shows the bottom contours which is actually a side-scan sonar which pings out 50 meters to the left and right of the vehicle.    The joy stick controlled the wire cable that the HabCam was hooked to.  That is what raised and lowered the HabCam.  Both shifts monitored and controlled the HabCam for about twenty hours and a total of 126 miles.  I will describe and discuss the dredging process on the next blog.

The HabCam on Deck

The HabCam on Deck

Chad Flying the HabCam

Chad Flying the HabCam

Sara identifying and tabulating sea scallops, skates and convict worms

Sara identifying and tabulating sea scallops, skates and convict worms

Brittle stars and a blenny on the seafloor

Brittle stars and a blenny on the seafloor

Organisms Seen:
sea scallops
sand dollars
skates
various fish
stingrays

Did You Know:

  • One nautical mile (nm) is equal to 1.2 miles.
  • The amount of data that the HabCam collected was about one terra bite.

Personal Log:

I really enjoyed maneuvering the HabCam; I can’t believe they actually trusted me to drive it.  I am so impressed at all the technology that is involved in this type of research.   I also enjoyed tabulating and identifying the various organisms on the floor.  It goes by very quickly so you have to keep your eyes on the screen at all times or you will miss collecting the data.

Well, twelve hours has a new meaning for me.  The time working actually went by fairly quickly but the sleeping twelve hours went by double time.  There really is no down time because a person is either working the twelve hours or sleeping the twelve hours. The only time for some interaction amongst us is when we are in the dry lab waiting to rotate on the computers.  I have enjoyed working with these other scientists and our chief scientist Nicole.  They are all so knowledgeable, helpful and wonderful.  They answered all the questions that I had for them.

Nicole - Chief Scientist

Nicole – Chief Scientist

Sherie Gee: Eco-Friendly Ships, June 26, 2013

NOAA Teacher At Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 — July 7 

Mission:  Sea Scallop Survey
Geographical Area of Cruise:  Northwest Atlantic Ocean
Date:  June 26, 2013 

Science and Technology Log:

I was very pleased to learn that the R/V Hugh R. Sharp is environmentally friendly.  I was lucky enough to run into some of the crew members that were getting the ship ready to leave the dock.  One of the crew members named Tim, showed me around the ship and pointed out various features that keep the ship running.  I noticed many piles of crystal salt bags and asked what they were for.  That conversation led to the discovery of how this ship and many other research vessels recycle their water while out at sea.  Water is categorized into three types:  clean water, gray water, and black water.  Clean water is used for drinking, showering and washing clothes and dishes.  Gray water is the water that has been used after washing the dishes, clothes and other uses.  This water is not potable but can be reused in other areas that do not need purified water.  Then there is the black water that is basically “toilet water.”  The toilet water is run through a reverse osmosis process which is where the salt crystals are used.  Once the water has been through the process, then it can be discharged back into the environment; in this case, the ocean.  It is now clean and safe enough for all organisms in the ocean.  Of course they try to get some volunteers to test this water before discharging it into the ocean but haven’t gotten any so far.

Bags of salt crystals used in reverse osmosis

Bags of salt crystals used in reverse osmosis

Along with the recycling of the water, the ship also recycles plastic bottles and aluminum cans.  All trash such as paper, table scraps and other is bagged up and disposed of once they return to port.  So nothing is thrown overboard.

He also explained that there are very stiff penalties for ocean pollution and not being in compliance.  One accidental spill of any sort of substance that goes into the ocean is equal to a $10,000 fine right off the bat.  This applies to all commercial fishermen.

Tim also discussed the portable laboratory vans which in this case is used as the wet lab.  These vans can be relocated and used on any of the ships that need them.

Portable Science Laboratory

Portable Science Laboratory

Personal Log:

I have learned so much just in the first hour on board.  I felt like a sponge absorbing all the new knowledge that I was receiving. There are so many people who make up the crew.  Thanks to them for making the ship run smoothly.  Then there are the research scientists that come on board.  I would say about fifteen scientists.  Many come from the University of Delaware, NOAA and Woods Hole.  We were put into two teams:  the day shift from 12:00 P.M. to 12:00 midnight and the midnight shift from 12:00 midnight to 12:00 P.M. in the afternoon.  We had to pack our backpacks with everything that we thought we would need for that day because we were not allowed to go back to the stateroom because the other shift was sleeping.  I was on the day shift and actually slept a good eleven hours between shifts.

I have the bottom bunk

I have the bottom bunk

Sherie Gee: Preparing for Life at Sea, May 30, 2013

NOAA Teacher at Sea
Sherie Gee
Aboard R/V Hugh R. Sharp
June 26 – July 7, 2013

Mission:  Sea Scallop Survey
Geographical area of cruise:  Northwest Atlantic Ocean
Date:  May 30, 2013

Personal Log:

Hello, my name is Sherie Gee and I live in the big Lone Star State of Texas. I teach AP Environmental Science and Aquatic Science at John Paul Stevens High School in San Antonio, home of the Alamo and the Spurs. I have been teaching for 31 years and I am still thirsty for new knowledge and experiences to share with the students which is one of the reasons I am so excited to be a NOAA Teacher at Sea. I will get to be a “scientist” for two weeks collecting specimens, data, and using scientific equipment and technology that I plan to incorporate into the classroom.

I am also excited to be on this spectacular voyage because I feel very passionate about the ocean and all of its inhabitants. The ocean is a free-access resource which means it belongs to everyone on Earth so it needs to be taken care of. Overfishing, overharvesting and ocean pollution are global issues that I feel strongly about and feel that there has to be new ocean ethics. Teachers are in the best position to bring about ocean awareness to the students and the public. I feel very fortunate to be given this opportunity by NOAA to be part of an ocean conservation program. One of my favorite quotes is from Rachel Carson: “The more clearly we can focus our attention on the wonders and realities of the universe, the less taste we shall have for destruction.” I truly believe this because in order for people to care for our Earth and environment and not destroy it, they have to understand it and appreciate it first.

For two weeks I will be collecting the Atlantic sea scallop to determine the distribution and abundance of these animals. This survey is conducted in order to assess these scallop populations in certain areas of the Atlantic Ocean and determine if they have been overharvested and need to be closed to commercial fishermen for a period of time. I am very relieved to know that there are such programs around the world that focus on ocean fisheries and sustainability. I will be describing this survey of the Atlantic sea scallop in greater detail in my blogs.

This will definitely be an exciting ocean experience for me. I live three hours away from the nearest ocean (The Gulf of Mexico) and have always managed to venture to an ocean each year. Every year I take my students to the Gulf of Mexico on the University of Texas research vessel (The Katy) to conduct plankton tows, water chemistry, mud grabs and bottom trawls.  I love to see the students get so excited every time they bring up the otter trawl and watch the various fish and invertebrates spill out of the nets.

UT Marine Science Research Vessel, The Katy

UT Marine Science Research Vessel, The Katy

Student sorting through the otter trawl on the Katy

Student sorting through the otter trawl on the Katy

I know I will be just like the kids when they bring up the trawls from dredging. People who know me say I am a “fish freak”. Fish are my favorite animals because of their high biodiversity and unique adaptations that they possess. I am a scuba diver and so I get to see all kinds of fish and other marine life in their natural habitat. I am always looking for new fish that I haven’t seen before. The top two items on my “Bucket List” are to cage dive with the great white shark (my favorite fish) and to swim with the whale shark. I recently swam with whale sharks in the Sea of Cortez and would like to do that again in the Caribbean with adult whale sharks.

Juvenile 15 foot whale shark in the Sea of Cortez Photo by Britt Coleman

Juvenile 15 foot whale shark in the Sea of Cortez

Needless to say, I can’t wait to start sorting through all of the various ocean dwellers and discover all the many species of fish and invertebrates that I have never seen before. I hope you will share my enthusiasm and follow me through this magnificent journey through the North Atlantic Ocean and witness the menagerie of marine life while aboard the Research Vessel Hugh /R. Sharp.

R/V Hugh R. Sharp

R/V Hugh R. Sharp

http://www.ceoe.udel.edu/marine/rvSharp.shtml

Sherie Gee holding an Olive Ridley hatchling at the Tortugueros Las Playitas A.C. in Todos Santos, Mexico Photo by Britt Coleman

Sherie Gee holding an Olive Ridley hatchling at the Tortugueros Las Playitas A.C. in Todos Santos, Mexico
Photo by Britt Coleman