Jennifer Petro: Mapping the Unknown, July 12, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 12, 2013

Weather Data
Air temperature: 26.3°C (79.3°F)
Barometer: 1011.30 mb
Humidity: 78%
Wind direction: 194°
Wind speed: 17 knots
Water temp: 26.9° C (80.4°F)
Latitude: 32 32.84 N
Longitude: 78 34.76 W

Science and Technology Log

There is a team aboard the vessel whose job is to map the ocean floor.  On this cruise we are diving in known locations but we are also diving in new proposed areas where there is little or no mapping data.  This team is a critical component of this mission.  Without their hard work we would have no clue as to where we are sending the ROV to search for the target fish species or find very cool benthic invertebrates.  The type of mapping they are using is called multibeam mapping.  Multibeam mapping has been used for years but the technology and software is becoming very cutting edge.  All of the mapping was done at night so my hat comes off to the survey team for pulling a lot of all nighters!

Graphic of how a multibeam survey works.   ©Wessex Archaeology

Graphic of how a multibeam survey works. ©Wessex Archaeology

The mapping occurs in several stages.  First we have to get an idea of what the sea floor looks like.  Multibeam mapping uses many signals of beams that sweep the sea floor and bounce back up to the ship.  It is a very computer-heavy science.  First we need to test the water, literally.  The survey team, consisting of Laura Kracker from the National Ocean Service, NOAA Marine Research Lab, Charleston, SC, Friedrich Knuth from the College of Charleston and Marta Ribera from Boston University, use an expendable probe to test the density of the water.  This is important because water density changes due to water temperature and salinity.  One the probe is deployed, the survey team can calibrate the beam width to get the most accurate reading of the multibeam signal.

Survey team member Friedrich Knuth send an XBT expendable probe over the side.

Survey team member Friedrich Knuth sends an XBT expendable probe over the side.

As the beams travel through the water, sea floor depth is determined by the amount of time it take for the beams to leave the vessel and then come back.  The intensity of the sound tells you the probable type of sea floor bottom.

  • Low intensity equals a softer bottom
  • High intensity equals a harder bottom

The one piece of information that the beams cannot tell us is the geomorphology or the type of bottom features and rock that make up the sea floor. That we can only see through the lens of the ROV but the mutlibeam mapping gives up a good idea of the locations in the MPA that would have the most amount of fish.  We want to look in areas of high relief; i.e. rock ledges, rubble, etc., because that is where we will most likely see the target species of fish.

At the point that the beams get back to the Pisces, it is still “raw data”.  It needs to be processed so that it can be read in map form.  This is where the computer programs and the long nights came into play.  It is not a simple process.  The data is manipulated through 5 programs consisting of many steps to produce a map that can be used in a program called ArcGIS.  ArcGIS is a GIS, Geographical Information System, program that is relatively user-friendly, The maps produced during this cruise were amazing.  Stacey Harter, the Chief Scientist, used these maps to determine features that the ROV would dive on.  The ROV drivers used them to “see” where the ROV was in relationship to those features in real-time.  The research teams are able to embed the maps into their cruise notes and cross-reference the maps with still photos.  I was truly amazed.

Evidence of ancient iceburg scours off of North Carolina as detected by multibeam mapping.

Evidence of ancient iceburg scours off of North Carolina as detected by multibeam mapping Courtesy of NOAA.

Laura shows me the raw data from the multi-beam mapping.

Laura shows me the raw data from the multi-beam mapping.

Friedrich points to a monitor that keeps track of the Pisces as it follows grid lines for mutlibeam mapping.

Computer monitor that shows the intensity of the multibeams as they are leaving the ship.

Computer monitor that shows the intensity of the multibeams as they are leaving the ship.

Personal Log

I am sad that this incredible experience is coming to an end.  I cannot gush enough about the scientist and the crew.  I was able to witness a few “firsts” and I enjoyed seeing these scientists, some who have been doing this for 30 years, get excited about seeing something new.  I loved how the lab had an open door policy and crew members, from the CO to engineers, would come in and check out what was happening during the dive.  If it was after their shift, they would stay for hours. Everyone shared stories and I was made to feel like I was part of the science team.  I have a distinct advantage over other Teachers at Sea because I was able to cruise with a team that is located right here at home.  I look forward to the possibility of creating a true partnership and bringing NOAA right into my classroom.  I have so many ideas for lessons and activities from this experience and have found a massive amount of NOAA resources to use from pictures to data.

This has been so eye opening that I am now a big proponent of NOAAs MPA program as I have seen first hand how the closing of these areas has benefited the recovery of fish populations.

Thank you so much for stopping by and sharing in my adventure.

Fair weather and calm seas.

We are all dreamers creating the next world, the next beautiful world for ourselves and for our children. ~Yoko Ono

Jennifer Petro: Diving into the Deep, July 10, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 10, 2013

Weather Data
Air temperature: 28.4°C (81.5°F)
Barometer: 1010.20 mb
Humidity: 76%
Wind direction: 103°
Wind speed: 1.5 knots
Water temp: 27.5° C (81.5°F)
Latitude: 32 81.67 N
Longitude: 78 12.95 W

Science and Technology Log

The most integral piece of equipment on board is the ROV.  A Super Phantom S2 to be precise.  The ROV is operated by the team of Lance Horn and Glenn Taylor from the University of North Carolina, Wilmington (UNCW).  Dubbed by me as the “ROV Guys”, Lance and Glenn have almost 50 years of combined experience working on and operating ROVs. The Super Phantom S2 is part of UNCW’s Undersea Vehicle Program which currently consists of 2 ROVs and 1 Autonomous Underwater Vehicle or (AUV).  In the fall they will be adding a third ROV to their fleet.  The ROV set-up is quite impressive and centers around one key component….communication.  The ROV is tethered to the ship by an umbilical.  During each and every dive the ROV operator is in constant contact with the ROV deck.  The umbilical is either payed out over the side or brought back in according to the dive depth and that needs to also be communicated to the wench operator.  The ROV deck is constantly watching the direction and tautness of the umbilical so that it does not get overstretched or goes into the boat’s prop.  All the time the ROV driver is in contact with the bridge.  So, there is a lot of communication and it is integral in every aspect of ROV operations.

Not only are all of the people involved in ROV ops communicating but the ROV and boat are communicating

as well.  The ROV uses an integrated navigation system to provide real-time tracking of the ROV and ship to the ROV operator and the Pisces bridge for navigation.  Ship and ROV positions with ROV depth, heading and altimeter reading are logged for each dive and provided to the scientist in an Excel file. Geo-referenced .tif files can be used as background files to aid in ROV and support vessel navigation.

The vessel has a machine shop which allowed the ROV guys to fox the transducer early in the cruise.

The vessel has a machine shop which allowed the ROV guys to fix the transducer early in the cruise.

The front of the ROV showing spot lights and camera arrays.

The front of the ROV showing spotlights and camera arrays.

The ROV can go to a depth of approximately 305 meters (1000 ft).  Our deepest dive on this cruise is 200 meters (650 ft) which is 20 atm of pressure! What does that mean? At sea level, the weight of all the air above you creates one “atmosphere” (atm) of pressure equivalent to 14.7 pounds pressing on each square inch.  In the ocean, the pressure increases very rapidly with depth because water is much denser than air. For every 33 feet  (10 meters) of depth, the pressure increases by 1 atmosphere.  So at 20 atmospheres there is a lot of pressure pushing down on all sides. It is the increase in pressure that makes it difficult to do manned deep water dives and one of the reasons why the use of ROVs is so important.

As an experiment we sent styrofoam cups that we had decorated in a bag along with the ROV down to a depth of 170 meters 550 ft.  The cups shrink due to the increased pressure of the water.  The deeper you go the more they will shrink.

Styrofoams cups.  Before and after being sent down with the ROV.

Styrofoams cups. Before and after being sent down with the ROV.

Data collection:  Data is collected during each dive by the means of video recording and still camera photos.  Each camera is in a special pressure rated, water proof housing.  There is special attention given to the 7 target species (5 of which we have recorded this cruise) as well as any new or interesting species that we have seen.  This data is analyzed back in the lab.  So far we have approximately 64 hours of video and 2400 still photos.  Needless to say reviewing the data is time-consuming but a very important aspect in confirming what we see during the actual cruise.

Still photos taken with the ROVs Nikon CoolPics camera.

Photos taken by the still camera of the UNCW Super Phatom ROV.

Photos taken by the still camera of the UNCW Super Phantom ROV.

Dive 2246 064 08 56 40

Hogfish

Dive 2246 046 08 41 58

Driving the ROV is much like playing a video game, only you have many more screens you have to monitor.  I did get an opportunity to drive it over sand!  According to Lance it takes about 20 hours of training to learn to drive effectively drive the ROV.  There are no simulations, all of the drive time is hands-on and in the water.

Lance Horn giving me pointers on how to keep the ROV level and on course.

Lance Horn giving me pointers on how to keep the ROV level and on course.

IMG_9043

Personal Log

While I was in the Acoustics Lab speaking with the folks that do the multibeam mapping, I looked down at the probes that they use and a single word jumped out at me: “Sippican”.  I know this word from my childhood.  We used to visit my Aunt Carol and Uncle Al in Marion, Massachusetts which sits on Sippican Harbor off of Buzzards Bay.  Sure enough the probes are made by Lockheed Martin Sippican, Inc. located in Marion, MA.  This struck me as so apropos.  My Uncle Al was a marine biologist and started a research lab in Falmouth, MA.  I would go to the lab with him and count flounder larvae for hours on end.  He was very instrumental in developing my love for marine science and I was overjoyed to have a connection, albeit small, to a man whose work I admired very much.

Jennifer Petro: Finding the Fish, July 7, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July 7, 2013

Weather Data
Air temperature: 27.°C (81.5°F)
Barometer: 1022.50 mb
Humidity: 73%
Wind direction: 195°
Wind speed: 6.1 knots
Water temp: 26.6° C (79.3°F)
Latitude: 34 44.62 N
Longitude: 75 91.98 W

Science and Technology Log

Today we find ourselves off of the coast of northern North Carolina where we will be for the next few days.  An exciting aspect about this cruise is that we will be multi-beam mapping (a blog about that very soon) and sending the ROV down for surveys in new areas off of North Carolina.  For the past few days I have been working with the team from the Panama City Southeast Fisheries Science Center identifying fish.  This can sometimes be a very difficult prospect when the ROV is flying over the fish at 2 knots.  The team from SEFSC consists of Andy David, Stacey Harter and Heather Moe.  David is a 23 year veteran of NOAA and has been working on the MPA project since 2004.  Stacey has been working on this project since its inception as well.  Heather is new to the team and is just coming off of a 1 year assignment with the NOAA Corps at the South Pole.
There are several major objectives of this survey cruise.

There are several major objectives of this survey cruise.

(1)  To survey established MPAs to collect data to compare to previous years’ surveys.

An important aspect of these cruises is to establish the effectiveness of an MPA.  In some MPAs there is usually no fishing allowed.  This includes trolling. bottom fishing (hook and line) as well as all commercial methods of fishing.  The MPAs we are studying are Type II MPAs where trolling is permitted.  They are looking for seven specific target species.

According to Andy, these species have been chosen due to their commercial value.  During each dive a record is taken as to the type of species seen.  We are specifically looking for the target species but we are keeping track of ALL the species that we see.  I think it is fantastic to see scientists get excited about seeing something new.  So far we have seen Oceanic Sunfish (2), Redband Parrotfish, Tautog (a more northerly found fish), Longsnout Butterflyfish and one fish species that we have not identified yet.  There is an emphasis on Lionfish counts to assist in gauging how the introduction of this invasive species is affecting the overall fish populations.  In some areas the Lionfish numbers have increased dramatically over the years.  Today we actually saw one try to eat a smaller fish!  They are very abundant in some locations and not in others but they have been present in 95% of our dives.

A Speckled Hind seen inside the North Florida MPA.

A Speckled Hind seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.

A Warsaw Grouper seen inside the North Florida MPA.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

Stacey Harter, LT JG Heather Moe and I watching the big monitor and calling out the fish that we are seeing to be recorded.

(2) Survey outside of the MPAs.

You may ask “Why survey outside the area?”  We want to know if the MPAs are indeed doing what they were designed to do: protect fish species.  That was very evident in Jacksonville where the numbers and size of Gag Grouper and Scamp far exceeded the numbers and size outside the MPA.

Andy David recording for the ROV video log species of fish we are seeing on the dive.

Andy David recording for the ROV video log species of fish we are seeing on the dive.

(3)  Survey new sites for possible MPA designation.

There is a process that is followed when determining if an area is a suitable MPA candidate.  What we are doing on this cruise is both mapping and surveying new areas that have been proposed as MPA sites.  This is the ground level stage.  The MPAs in the region that we are in are ultimately determined by the South Atlantic Fishery Management Council.

A Gray Triggerfish protecting a nest of eggs.  Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

A Gray Triggerfish protecting a nest of eggs. Seen in the Edisto MPA as well as in a proposed site off of North Carolina.

Data during the dives is collected in a few ways.  There are several video monitors that we watch and we call out species that we see.  A data keyboard, like the one Harbor Branch uses for invertebrates counts, is used to keep track of types and number of each species seen.  During every dive a video from the camera on the ROV is recorded and species are highlighted and recorded on to the DVD.  This data will be analyzed thoroughly back at the lab and then sent to the South Atlantic Fishery Management Council.

Personal Log

I am happy to announce that I have finally gotten my sea legs.  It wasn’t as bad as I had envisioned but I was definitely concerned that it would be a major issue.  We had some weather on Thursday, July 4 and that was the worst of it for me.  I now hardly feel the vessel move.  It has been fun over the past several days.  We are in the lab most of the days so we only get to really see the crew at mealtimes and after dinner.  The crew, from the CO to the engineers, are all great people.  They are happy to answer questions, point you in the right direction and are quick to say hi and ask you about your day.  Yesterday afternoon one of the engineers, Steve, gave us a tour of the engine room.  All of the ship’s infrastructure is supported by this room.  The engines run the generators for power, support the a/c, house the desalination filters (all the fresh water on board comes from salt water) as well as getting the boat from point A to point B.  I was impressed!

One of the 4 Caterpillar engines that keep Pisces running ship shape.

One of the 4 Caterpillar engines that keep Pisces running ship shape.

Today after our last ROV dive, a school of Mahi mahi followed it (the ROV) up to the surface.  The fishing was on!  The crew brought out rods, reels and bait and the fishing commenced.  Collectively we managed to land one bull or male and 2 smaller Mahi mahi.  It was a nice diversion for all of us, scientists and crew, as we were back to work all too quickly.  Fish tacos for dinner!

Hoping I can land this one!

Hoping I can land this one!

Fair weather and calm seas.

Jennifer

Did you know that…

Some grouper can grow to be so huge that when they open their mouths to feed, they create a suction that is powerful enough to inhale small prey.

Jennifer Petro: Oh the Places We Will Go… July 4, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA Ship Pisces
July 1 — 14, 2013 

Mission: Marine Protected Area Surveys
Geographic area of cruise: Southern Atlantic
Date: July, 4, 2013

Weather Data
Air temperature: 27.5°C (81.5°F)
Barometer: 1021.30 mb
Humidity: 83%
Wind direction: 141°
Wind speed: 17 knots
Water temp: 26.3° C (79.3°F)
Latitude: 32.38537 N
Longitude: 79.044 W

Science and Technology Log

Happy Independence Day!  In this log we find ourselves off the coast of South Carolina.  We have traveled quite a few miles since we left Mayport and have conducted 10 dives so far.  Several of these sites are return trips and data has been collected since 2004.  During this cruise we will also survey several proposed sites which will be voted on inclusion to the MPA program at a later date.  There is quite a lot of science going on here on the Pisces!  In this post I am going to focus on the benthic invertebrate study and I will highlight the other science in following posts.

I have had the pleasure to work along side John Reed and Stephanie Farrington from Harbor Branch Oceanograhic Institute at Florida Atlantic University in Fort Pierce, Florida.  During this cruise they are focusing on gathering data on benthic marine invertebrates.  They are particularly interested in deep water coral species.

“Our coral reefs are a barometer of the Earth’s health, and nowhere else on earth is biodiversity greater than in our coral reefs and rain forests. Coral reefs provide food, tourism revenue, coastal protection, and the potential for new medicines for increasingly resistant diseases. Both our shallow and deep water coral reefs face a time of crisis, not only in the Caribbean, Florida, and the Bahamas, but worldwide. Threats to shallow and deep coral reefs are many, including pollution, elevated temperatures resulting in coral bleaching and mortality, coral disease, and destructive fishing practices.”  HBOI

There are two words that you are going to see a lot during these blog posts:  (1) Communication and (2) Technology.  Fortunately due to the advancement in technology the only thing getting wet during the dives is the ROV.  When the ROV descends, we are transported to a world that few folks get to see.  The average depth of our dives has been 60 m (196 ft) so SCUBA diving would be difficult.  Additionally, in the Florida MPA and Proposed MPA sites, the current was very fast and without the ROV the survey would be almost impossible to conduct.  So we are surrounded by technology…computers, monitors, and programmed key pads.  While the ROV driver maneuvers the vehicle through the water (all the while communicating with the bridge and deck) we are all glued to one of several monitors identifying species.  It is very quick paced and often it feels like you are on a roller coaster ride.  After several dives I was able to better focus on what I was looking for and have become pretty good at my invertebrate identification.

Stephanie Farrington and I recording benthic marine invertebrates species inside the proposed Fernadina MPA.

Stephanie Farrington and I recording benthic marine invertebrates species inside the proposed Fernandina MPA.

The purpose of this research is to characterize the species diversity of the hard bottom both inside and outside the proposed Marine Protected Areas and to compare the health of the hard bottom communities as it relates to the number of fish species present.  Of particular interest are hard coral species, such as Oculina, soft coral gorgonians and sponges.  During there trips is when the data is collected and then it is quantified back at the lab.  These are wonderful people and they are great teachers as well!

John Reed, Stephanie Farrington and I in the dry lab aboard the NOAA vessel "Pisces".

John Reed, Stephanie Farrington and I in the dry lab aboard the NOAA Ship Pisces.

Bushy Black Coral seen in the St Augustine MPA

Bushy Black Coral seen in the St Augustine MPA

Vase sponge and black coral (the cork screw) seen in the St. Augustine MPA

Vase sponge and black coral (the cork screw) seen in the St. Augustine MPA

Deep water "Occulina" coral as seen in the proposed Fernandina MPA.

Deep water “Oculina” coral as seen in the proposed Fernandina MPA.

Personal Log

Well so far so good.  We have been at sea for 5 days and we have a pretty steady routine going.  Breakfast, lunch and dinner so I quite literally am at the mercy of my stomach.  The food is wonderful!  Eggs cooked to order, grilled cheese, salmon, scallops, steak and dessert twice a day.  I have been told that the food would be good and I have yet to be disappointed.  We are in the lab from about 08:00 to 17:00.  Afterwards I have been so tired I have climbed into my bunk and have read.  The ship has a very comfortable lounge where you can read, watch a movie or use the computer.  I managed to get through an entire movie last night!  I have been doing okay seasickness wise.  Last night was pretty rough but I managed okay.  I ventured up to the bridge yesterday and I am hoping that the calmer seas will allow me to spend some time with the captain today.

Fair weather and calm seas.

Jennifer

Did You Know?

A coral is a type of animal called a polyp.

Jennifer Petro: Getting Ready to Set Sail, July 1, 2013

NOAA Teacher at Sea
Jennifer Petro
Aboard NOAA ship Pisces
July 1 – July 14, 2013

Mission: Marine Protected Area Survey
Geographic Area of Cruise: South Atlantic United States
Date:  July 1, 2013

Weather Data:
Air temperature: 28 Degrees C (82 Degrees F)
Barometer: 1013.1 mb
Humidity: 74%
Wind direction: SW
Wind speed: 11.29 knots
Water temp: 29.6 C
Latitude: 30.39°N
Longitude: 81.43°W

Science and Technology Log

Hello from aboard NOAA ship  Pisces.  We are gearing up to set sail so I will take this opportunity to introduce myself before we get underway!  My name is Jennifer Petro and I am an 8th grade Science Teacher at Everitt Middle School in Panama City , Florida.  I am particularly excited about this mission as I am working alongside scientists from the NOAA Southeast Fisheries Science Lab located on Panama City Beach.  I will also be working with scientist from Harbor Branch Oceanographic Institute as well as Woods Hole Oceanographic Institute. The focus of this mission is to survey fish and invertebrate populations in Marine Protected Areas (MPAs) from Florida to North Carolina.  We will also be doing mapping of new areas to determine future MPAs.

The scientist have been busy setting up and calibrating their equipment.  We will be using an ROV, Remotely Operated (underwater) Vehicle, to view the MPAs.  There are several cameras attached to the ROV which the scientist will use to identify and count species.  There are many feet of wire and cables being set up in the dry lab.

DSCF1919

NOAA Scientists Stacey Harter and Stephanie Farrington setting up equipment for ROV dives during our Marine Protected Area surveys.

Personal Log

Currently we are still at port and are scheduled to set sail in a few hours.  The Pisces is a rather comfortable vessel.  We arrived yesterday afternoon so I already have one night’s sleep on board under my belt.  I imagine things will change when we are out at sea, but for the moment she is gently swaying in port.  I share a room with one of the scientists and we in turn share a bathroom.  Pretty great so far! The Pisces is currently moored at NAS in Mayport , FL and is dwarfed in size to all of the naval vessels that surround her!

DSCF1922

NOAA Ship Pisces

NOAA ship Pisces

NOAA ship Pisces

Today’s post is going to be rather short.  My excitement is definitely building.  we set sail in just about an hour so my next post will be from sea!

Fair weather and calm seas to all.