Christina Peters: Update on Our Plankton Survey, July 16, 2013

NOAA Teacher at Sea
Chris Peters
Onboard NOAA Ship Oregon II
July 10 – 19, 2013

Weather and Location:
Time: 21:24 Greenwich Mean Time (5:24 p.m. in Rockville, MD)
Latitude:  29.1970
Longitude:  -85.9904
Speed (knots):  3.00
Water temperature:  28.10 degrees Celsius
Salinity (PSU = Practical Salinity Units): 34.07
Air temperature:  29.00 degrees Celsius
Relative Humidity:  68%
Wind Speed (knots):  17.15
Barometric Pressure (mb): 1018.96
Depth (m) = 187.2

As you can see if you have been following the Ship Tracker website, we have been making our way back towards Pascagoula.  We still have some stations to work, and won’t be reaching the dock until Friday morning, but we will continue to head in that direction.  The weather has gotten a bit windier, with much larger swells over the last couple of days.  This has made collecting the plankton even more interesting.  With the wind frequently above twenty knots, handling the equipment becomes much more dangerous.  Some procedures need to be changed a bit for the sake of safety.  Luckily, the deck crew, Tim, James, and Chuck, are on top of things.  They are pretty funny to work with, too!

Our deck crew

Our deck crew – James, Tim (chief boatswain), and Chuck

Science and Technology Log

Water Titrations to Check Cissolved Oxygen Levels

The plankton stations have continued, with the biggest changes being how much sargassum (seaweed) we have needed to rinse out and go through, and the different kinds of tiny animal life we have observed.  I mentioned in an earlier blog that the scientists must periodically do water titrations to verify that the readings taken from the CTD are correct and nothing is malfunctioning.  I had an opportunity to perform some real chemistry as Kim Johnson, the chief scientist, walked me through the water titration steps.

First we had to collect the water samples from the CTD.  Remember, we are testing the oxygen levels, so it is important to collect the water samples without allowing bubbles to form, which might add oxygen to the sample.  You would be surprised at how hard this is!  A flexible tube is attached to one of the three Niskin Bottles on the CTD tank, and before any water is put into the jars, all of the air bubbles in the tube must be squeezed out.  This is an art!  Then the water can be transferred to the jars through the tube, holding the end of the tube against the side of the beaker to avoid making bubbles.  The stoppers are then gently put into the glass jars, again to avoid the addition of oxygen to the samples.  It is important to keep the water samples from getting too hot if you are not going to do the titrations right away.  Can you think of why heat might create a problem when doing a titration?  Also, we test three samples.  Why do you think testing three beakers is important?

Now we are ready to start the mad chemist part!  The chemicals used, and their amounts, are very specific, and the directions are posted in the lab so that you can always check your memory.  First, two milliliters of manganous sulfate is added to each sample.  The stopper is replaced after adding each substance, and the jars are turned upside down and back several times to mix the solution. The second substance added is two milliliters of azide-iodide solution.  After the solution is gently mixed, the jars need to stand for ten to twenty minutes.  When you come back after twenty minutes, you will see that there is a cloudy substance in each jar.  This first part of the process causes the chemical bond between the hydrogen and the oxygen to break, and the oxygen forms new bonds with the added chemicals.

Adding chemicals

Using the pipettes to add the chemicals to the water

After initial chemicals are added

A cloudy substance forms after the manganous sulfate and azide-iodide are added and mixed.

At this point, the oxygen is fixed and we don’t need to worry about introducing more oxygen to the samples.  Next, we added two milliliters of sulfuric acid to each jar.  This must be done very carefully because sulfuric acid is very harmful.  However, once it is added, the sulfuric acid is neutralized and the solution in the sample jars is not harmful.  (Remember the acid/neutral/base tests we did in class with lemon juice, vinegar, and Alka Seltzer, using a pH scale?)

Sulfuric acid

The sulfuric acid changes the color, and after mixing, causes the cloudiness to disappear.

Now we have a yellowish liquid and I will be adding phenylarsine oxide, drop by drop. This is the titration part. When the color turns clear, we can look at how much phenylarsine oxide was needed and that will tell us how much dissolved oxygen was present in the sample. This new chemical will bond with the oxygen molecules and cause a color change. However, because the change from yellow is hard to see, I added one milliliter of a starch solution for the only purpose of turning the sample blue.  This way the color change back to clear is easier to see.

Starch is added

Notice the color change after the starch is added (the blue beaker).

The sample is poured into a wide-mouthed beaker and a magnetic stirrer is added to the beaker.  This is a small, magnetic bar that spins when it is on the metal stand.  Drops of the phenylarsine oxide are allowed to slowly drip from a burette into the sample.  A burette is a very tall, thin, glass pipe-like container that allows easy adjustment of the flow of liquid, and allows for easy reading of very small amounts.

Titration 1

The burette is allowing the phenylarsine oxide to mix with the water solution, one drop at a time.

Once the sample starts to lose its color, you know you are close. One or two more drops and you will shut the valve on the burette and read the amount that was mixed into the sample.

Titration 2

Notice the color change towards the end of the titration.

Titration complete

Once the color change is complete, the titration is finished, and the burette is read for the dissolved oxygen content.

My samples showed dissolved oxygen amounts of 6.4, 6.5, and 6.5 milligrams per liter.  The CTD showed dissolved oxygen of 6.4 mg/l.  Since our results were very close, we are confident that the CTD is working well.

Remember, levels below 2% are considered hypoxic.  6.4% is a very healthy dissolved oxygen reading. This is what we expect as we move further from developed land, but it is still reassuring to see the healthy levels.

Later I tried another titration without supervision and found consistent readings of 4.9 mg/ mg/l oxygen.  However the CTD reading was 4.35 mg/l.  I guess I need more practice! 

Buoy Rescue Mission

 Yesterday we had the opportunity to participate in a buoy rescue mission.  Another organization had deployed a wave buoy, or a wave runner, in the middle of the Gulf of Mexico that had been damaged, and was no longer able to give correct readings on things like current and wave height.  We were in the area, and agreed to retrieve the buoy.  As we got closer to the GPS signal, we spotted a large orange ball with an eight foot (about) antenna sticking out of it.  Oregon II’s small motor boat was launched and we set about collecting the buoy.

As we reached it, the deck crew and the CO noticed some things about the buoy that were inconsistent with the description.

Wrong buoy

Wrong buoy!

After making a telephone call, the CO told the crew to come back to the ship.  We had come across the wrong buoy!  Off we went in search of the correct one, which we found about half a mile away.  This one looked more like a surfboard and was fairly easy to get aboard the ship, using the crane.  That mission was accomplished, but we all marveled at the odds of finding two wave buoys within half a mile of each other in the middle of the Gulf of Mexico!

Weather buoy rescue

Using the crane to lift the wave runner onto the deck.

Chuck Godwin and Officer Matt , who helped rescue the wave runner

Chuck Godwin and LTJG Matthew Griffin, who helped rescue the wave runner

Both parts of the wave runner

The part of the wave runner that looks like a surfboard sits on top of the water and has solar panels. It is attached to the slatted part that acts as a glider, and uses wave energy as it rises and falls to propel the board through the water.

Personal Log

 A Week at Sea

While I am still enjoying the cruise and the work, I have had a few days of queasiness.  Taking the seasick medicine helps a lot, so I am sticking with that for a few days.  Nights have been fine, and the rocking of the ship really is like being rocked in a cradle.  I hope I’ll be able to sleep when I am in a stationary bed back home!

Being on a cruise on a small ship brings me back to my days of living in a college dormitory.  You are living in very close quarters, eating every meal together, spending large amounts of time together, and really getting to know the people who are on your watch.  I have had a great group to work with – people with a lot of knowledge, and great senses of humor!  Victoria, a college intern, has been a newbie with me.  We have learned a lot from the other scientists, Andre and Joey, on our watch, as well as from our chief scientist, Kimberley Johnson.  Tim, James, and Chuck are the deckhands on our watch, and they do most of the heavy work, like lifting the equipment and running the J frame, winches and cranes.  Sometimes we are working with the equipment for forty-five minutes at a time.  The deckhands, while very serious about safety, keep us laughing the entire time.  As I am finishing this entry, we are heading towards home.  It will be nice to be on land again, but I will also miss the many different personalities I was lucky enough to get to know. 

Did You Know?

The Gulf of Mexico covers an area that is about 615,000 square miles.

An area named “Sigsbee Deep” is located in the southwestern part of the Gulf.  It is more than 300 miles long and more than 14,383 feet deep at its deepest point.  It is often referred to as the “Grand Canyon under the sea”.

Sigsbee Deep

The Sigsbee Deep is the darker blue area in the Gulf of Mexico.
Photo credit to http://www.worldatlas.com/aatlas/infopage/gulfofmexico.htm

The Gulf’s coastal wetlands cover over five million acres, which is an area equal to about one-half of the area of the U.S.  It is the home to twenty-four endangered and threatened species and critical habitats.

It is estimated that 50% of the Gulf’s inland and coastal wetlands have been lost and that up to 80% of the Gulf’s sea grasses have been lost in some areas.  The continual loss of wetlands (about a football field a year) around the Mississippi Delta, a large land area near where the Mississippi River flows into the Gulf of Mexico, changes how hurricanes impact the coast of the Gulf.  With fewer wetlands to absorb the impact of the hurricane, the hurricanes hit the populated areas with much greater force.

For more facts about the Gulf of Mexico, visit http://www.noaanews.noaa.gov/stories2012/20120516_okeanusexplorer.html or

www.habitat.noaa.gov/media/news/pdf/gulf-of-mexico-review_final.pdf‎

Thank you for visiting my blog.  I hope you will check back in a few days for an update!

Christina Peters: Finding Plankton on Oregon II, July 13, 2013

NOAA Teacher at Sea
Chris Peters
Onboard NOAA Ship Oregon II
July 10 – 19, 2013

Mission: SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico, leaving from Pascagoula, MS
Date: July 13, 2013 

Weather and Location:
Time: 23:24 Greenwich Mean Time (7:24 p.m. in Rockville, MD)
Latitude:  25.5340
Longitude:  -82.0215
Speed (knots):  9.30
Water temperature:  28.90 degrees Celsius
Salinity (PSU = Practical Salinity Units): 35.38
Air temperature:  31.20 degrees Celsius
Relative Humidity:  65%
Wind Speed (knots):  8.92
Barometric Pressure (mb): 1013.34
Depth (m) = 19.20

Science and Technology Log

Our Mission

In my introduction I explained that SEAMAP is a state, federal, and university program.  In fact, there is a managing unit called the SEAMAP– Gulf Subcommittee of the Gulf States Marine Fisheries Commission’s Technical Coordinating Committee who manages the activities and operations, including collecting samples and interpreting data, of the Gulf participants, including the Mississippi Laboratory of NOAA and the states of Louisiana, Mississippi,Texas, Alabama, and Florida, as well as certain universities.  Parts of the program include bottom trawls, CTD deployment, and Bongo and Neuston tows.  The bottom trawls involve towing nets at randomly selected spots for ten to thirty minutes. The sea life caught in the nets, normally shrimp and other animals that live at the bottom of the Gulf, are sorted, identified and measured.  All of the data is recorded and helps to determine where the fish and shrimp are, and how much exists in the Gulf.  Because the NOAA Laboratory and the states have worked so well together on this project, most of the trawls were completed on earlier legs of the trip and on the state boats.  We have had opportunities, though, to observe and identify some of the fish from an earlier leg that had been put on ice.  We’ll come back to that process a bit later.

The first twenty-four hours underway were spent heading to our first station, off the southwest coast of Florida.  We have spent much of our time on this leg of the trip completing plankton collections.  My students should remember that plankton includes small and microscopic (too small to see with only your eyes) organisms. The organisms may be animals, plants and plant-like organisms, or bacteria.  The plankton found in the water can tell what the animal population looks like, or will look like if the conditions of the water do not change too much.  Plankton is also a source of food for certain animals, so looking at plankton can give us information about whether enough of a food source is present for those animals.  The purpose of the Bongo and Neuston tows is to collect plankton.  Before we do those tows at each station, however, we deploy the CTD to collect some important information.

Bringing in the CTD

A scientist and deckhand help bring in the CTD

Taking water samples from the CTD

The chief scientist, Kim Johnson, takes water samples from the CTD to verify it’s dissolved oxygen readings.

CTD stands for Conductivity, Temperature, and Depth.  The machine collects data in those areas, as well as other data.  The conductivity data tells how much salt (salinity) is in the water because the amount of salt affects how well the water will conduct (allow to pass through) electricity.  The CTD also measures the oxygen content of the water.  Remember learning about algae bloom in the Chesapeake Bay, and how the algae sucks up all of the oxygen, leaving the plants and animals in the area to die?  When a body of water has an unhealthy level of oxygen, it is called hypoxic.  Scientists are worried about the same kind of thing happening in the Gulf of Mexico, so determining the oxygen content in the water provides important information.  In the stations we have tested so far, the oxygen content has been healthy.  However, we have been far from land and much closer to where the Atlantic Ocean meets the Gulf.  To learn more about hypoxia in the Gulf of Mexico, visit NOAA’s hypoxia page.  Don’t forget to click on the links at the bottom that will take you to descriptions of the problems and causes of hypoxia in the Gulf.

After bringing the CTD back onto the deck, it is time to start a Neuston tow.  The Neuston net is very fine, and attaches to a one meter by two meter frame at the top.  The net gets narrower, and attaches to a “cod end”, a plastic cylinder with screened openings, at the bottom.  This is hoisted out of the boat and into the water by a crane.  It takes several people to launch the Neuston, as the frame is heavy, and it can be hard to manage in the wind.

Neuston net before deployment

The Neuston net is tied down to the boat until it is ready to be deployed.

The Neuston is pulled through the water, with about a foot above the surface, and the rest below.  The purpose is to collect plankton on or near the surface of the water.  Since sargassum, or seaweed, often floats on the surface of the water, sometimes the Neuston collects a lot of that.  We continue to tow the net for ten minutes, and then retrieve it into the boat, again using the crane.  While we did not do trawls and pull in large fish, we did see different kinds of baby fish at almost every station.

Neuston net

The Neuston net is dragged at the top of the water for five to ten minutes

The Bongo contains two 61 centimeter, circular, sturdy plastic frames, to which fine nets are attached.  These nets also narrow to a small area, to which cod ends are attached.  The Bongos are lowered off the port side by using the J frame. The bongos are towed from the surface to the bottom, but no deeper than 200 meters.  The bongo also has the flowmeters on it to calculate how much water passes through the net. The sample is used to estimate the populations, number, and location of animals in parts of the Gulf.  The Bongo also has instruments attached to it that measure temperature, salinity (salt), and depth.  In addition, the bongos have flowmeters attached to calculate how much water passes through the nets.

Bongo nets

The Bongo nets must be rinsed down before being brought into to boat to make sure no plankton is stuck at the top of the nets.

These are complicated tools, and some of the instruments are electronic.  If the instruments are not working correctly, the scientists and engineers must have a back-up plan.  In fact, at one station, the Bongo instruments were not giving accurate readings when the head of the watch (the scientist in charge) looked at the readings from inside.  The back-up plan was for the deckhands to use less accurate depth finding instruments when lowering the Bongo.  This can sometimes present a problem because if the instruments are off, and the Bongo drags on the bottom, a lot of mud can end up in the sample.  Fortunately, a little troubleshooting, in the form of tightening some connections, solved the problem.  Sometimes it’s easy to forget to check the obvious!

Once the Neuston and Bongo are up, we can detach the cod ends, and get to work preserving the plankton samples.  The plankton from the Neuston, and from each of the Bongo cod ends, are preserved and stored separately.  The Neuston and right Bongo plankton are rinsed through a very fine sieve with a chemical solution that is mostly ethanol, and then poured through a funnel into a jar, which is finally filled with the ethanol solution.  The left Bongo plankton is handled similarly, but instead of being stored in ethanol, it is stored in salt water from the Gulf, and a small amount of formalin.  Formalin contains a small amount of formaldehyde, and is used to preserve tissues.  It is a toxic chemical that is harmful to humans, and must be handled very carefully, always using gloves.  The samples are later sent to various laboratories to be sorted and counted.  In addition to providing information about amount and location of different species, scientists can also use the preserved plankton to determine the age, as specific as the number of days old, and genetics of the baby sea animal. The formalin helps preserve the otoliths a LOT better, where the ethanol helps preserve the tissue and/or DNA better.  The otolith is part of the inner ear of the animal and is the part that is used to determine age.

Work station at the stern of the boat

The work station at the stern of Oregon II is where we rinse the plankton and add the chemicals for preservation.

Rinsing the plankton

Sometimes we have to remove jellyfish from our samples. The plankton must be rinsed off the jellyfish before counting and discarding them.

With stations normally being about three hours apart, it would seem like we should have a lot of down time.  However, when there is a lot of sargassum in the Neuston, it must be rinsed to try to get the plankton out of it.  This can take quite a long time.  In addition, sometimes we do get small fish or other animals that need to be sorted, counted, measured and weighed.

Sargassum

There were over 300 of these file fish in one plankton sample. The color made them difficult to find in the sargassum.

A pipe fish from one of the Neuston samples.  What does it remind you of?

A pipe fish from one of the Neuston samples. What does it remind you of?

Plankton sample

This is a plankton sample from a Neuston tow after it has been preserved in ethanol.

Don’t forget to track our progress by visiting http://shiptracker.noaa.gov/shiptracker.html and choosing Oregon II.  While you are there, don’t forget to check out the different types of maps available for tracking Oregon II.  Look in the upper left-hand corner (Streets, Topo, Imagery, NOAA Nautical Charts, and Weather).

Personal Log

Settling in and enjoying the ride

The first three days of the trip had us motoring through incredibly calm waters and sunny days.  Some of the veteran crew members commented that they had never seen the Gulf so calm.  As we traveled further from Pascagoula, the water started getting bluer and bluer.  It is hard to describe the deep blue that we sailed through and the camera just doesn’t seem to capture it.  As we left the waters around Pascagoula, we saw many large ships, possible oil tankers, and quite a few oil rigs.  However, once we passed them, we’ve barely seen another boat.  It is something to look out from the bow of the boat and see nothing but water in every direction.

A calm day in the Gulf of Mexico

A calm day in the Gulf of Mexico

As promised, the food on board is delicious. The cooks take great pride in the food they serve, and there are always choices at every meal.  We’ve had beef tenderloin, veal parmesan, omelets, fresh fruit, fresh vegetables, pasta, Mexican, chocolate custard pie, cookies, pecan pie – all homemade!  The galley is also well-stocked with snacks.  Meals are served on a strict schedule – about an hour and a half for each meal.  However, if you know you will miss a meal, the cooks are happy to set some food aside for you, nicely wrapped in the refrigerator.  Luckily for me, I have the day shift, and if I miss a meal, it is normally breakfast.

Everyone on the ship has been very encouraging and helpful.  Some of the guys did a dive and brought me back some interesting shells to share with my students.  The other scientists have been incredibly patient and helpful.  Kim, the chief scientist, is a great teacher and is always looking for opportunities for me to learn something new, or practice something I just learned!

Did you know?

The starboard side of the ship is the right side, and the port side is the left side.  Starboard comes from the old Anglo-Saxon word, “steorbord” because the steering oar was on the right side of the boat.  Because of this, the ship would pull up to the dock, or port, on the left side. This would avoid damaging the steering oar.

Questions for my students:

What unit of measurement do you think we use to measure the small fish found in the Neuston and Bongo tows?

Can you think of any sea animals that use plankton as their main source of food?  It is okay to research this before you answer!

Thank you for visiting my blog.  I hope you will check back in a few days for an update!

Christina Peters: Introduction, July 3, 2013

NOAA Teacher at Sea
Chris Peters
Onboard NOAA Ship Oregon II
July 10 – 19, 2013

Mission: SEAMAP Summer Groundfish Survey
Geographic Area of Cruise: Gulf of Mexico, leaving from Pascagoula, MS
Date: July 3, 2013

Welcome to my NOAA blog!

A little about my background…

Christine Peters

Christine Peters

I am Christina (Chris) Peters, from Farmland Elementary School in Rockville, Maryland. I have been a fourth grade teacher at Farmland for the past eight years, after trying out some other careers. While my past teaching has included all subjects, I am excited to get to focus more on science this coming year as my team will be departmentalizing and I will be teaching two classes of science. We spend half the school year learning about life sciences and the environment.

I grew up only a few miles from where I teach today, and was the third of ten children in my family. My father loved to fish and used to take us fishing, in turns of course, in his seventeen foot motor boat. Most often we fished in the Atlantic Ocean, off the coast of New Jersey, where my family frequently visited. We also fished in the Chesapeake Bay on occasion. One of my favorite summer meals was fresh bluefish. These experiences taught me to love the water, and to care about protecting that environment.

My father and I after a fishing trip. I was about ten, the same age as many of my students.

My father and I after a fishing trip. I was about ten, the same age as many of my students.

In addition to learning about and participating in the SEAMAP Summer Groundfish Survey, I will be learning something else completely new to me – how to blog! While I consider myself pretty technologically informed, I am new to blogging and am very excited, and a little nervous, about writing my own blog describing my Teacher at Sea experience.

Our mission on Oregon II

I will be flying to Mississippi next week and will be joining the crew of Oregon II on July 10 to participate in the SEAMAP Summer Groundfish Survey. To see pictures of the Oregon II, and to learn more about the ship, you can visit the website that describes details of the ship, as well as the different past and present projects for which Oregon II has been used. We will be departing from Pascagoula, Mississippi and measuring data on groundfish in the Gulf of Mexico. The Southeast Area Monitoring and Assessment Program (SEAMAP) is a state/federal program designed to collect, manage and disseminate fishery-independent data in the southeastern U.S. I am excited to learn more about how the scientists and crew actually complete the surveys and record data. One of my goals is to pass along what I learn to everyone who reads my blog.

Furthermore, while the Groundfish Survey is the mission of the scientists and crew onboard Oregon II, I will have an additional goal of learning all about the jobs of the crew, and sharing much of that information with the readers of my blog. Hopefully, when you read about these exciting and important careers, many of you will consider the possibility of pursuing one similar to those described.

To all my upcoming fourth grade students, I am looking forward to adapting the data collection tools I learn about to our science activities in the coming year. I hope my past students will visit my blog and think about connections they can make to our fourth grade science units where we created and observed our own model ecosystems.

See you at sea!