Caroline Singler, September 1-2, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean

Date of Post: 2 September 2010

Pizza Operations – Saturday 28 August 2010

Crew of Cutter Healy

Crew of Cutter Healy

Location and Weather Data from the Bridge
Date: 1 September 2010
Time of Day: 20:15 (8:15 p.m. local time); 03:15 UTC
Latitude: 75º 12.98’ N
Longitude: 131º 29.0’ W
Ship Speed: 8.2 knots Heading: 6.9º (NNE)
Air Temperature: 1.36ºC / 34.45ºF
Barometric Pressure: 1010.0 mb Humidity: 86.5 %
Winds: 9.6 knots NNW
Wind Chill: -4.93ºC / 23.16ºF
Sea Temperature: -1.3ºC Salinity: 27.55 PSU
Water Depth:2503.9 m

Date:2 September 2010

Time of Day: 22:15 (10:15 p.m. local time); 05:15 UTC
Latitude: 76º 36.2’ N
Longitude: 129º 42.1’ W
Ship Speed: 3.9 knots Heading: 270 (W)
Air Temperature: -1.08ºC / 30.05ºF
Barometric Pressure: 1017.3 mb Humidity: 99.1 %
Winds: 9.3 knots N
Wind Chill: -6.53ºC / 20.15ºF
Sea Temperature: -1.4ºC Salinity: 27.52 PSU
Water Depth: 2492.8 m

When you are at sea for as long as the Coast Guard crew of the Healy, it’s important to build some things into the schedule that break up the monotony. Days pass without much sense of what day of the week it is, often with little difference between day and night. TheHealy Morale Committee is responsible for planning activities for the crew, and I have enjoyed attending their meetings as a science team point of contact (POC) during this cruise. Saturday nights are big nights on Healy. They start with the Morale Dinner, where the regular galley staff gets the night off and a different group prepares the meal. Then there is bingo in the mess, followed by a movie shown on the big screen in the helicopter hangar.

Last Saturday was the science team’s turn to try our hands at preparing dinner for the crew. We chose to make pizza, figuring it is usually a crowd pleaser and a complete break from the normal menu. Under the watchful eye of FS3 Melissa Gomes, we spent Saturday afternoon chopping and cooking toppings, pre-cooking the crusts, and baking a chocolate cake with chocolate frosting for dessert – that was my idea; this late in the trip, it seemed like everyone could use a good dose of chocolate. Note that in the galley, everyone must where a cover (hat), but hats are not permitted elsewhere in the Mess.

Canadian Coast Guard Ice Analyst Erin Clark, USCG FS3 Melissa Gomes, USGS Scientists Helen Gibbons and Brian Edwards (in the scullery)

Canadian Coast Guard Ice Analyst Erin Clark, USCG FS3 Melissa Gomes, USGS Scientists Helen Gibbons and Brian Edwards (in the scullery)

Jerry Hyman (National Geo-Spatial Intelligence Agency) and Canadian Coast Guard Captain Michel Bourdeau – yes, we used premade pizza crusts; we are in the Arctic Ocean not a New York pizza parlor!

Jerry Hyman (National Geo-Spatial Intelligence Agency) and Canadian Coast Guard Captain Michel Bourdeau – yes, we used premade pizza crusts; we are in the Arctic Ocean not a New York pizza parlor!

Me making a cake

Me making a cake. Photo courtesy of Sherwood Liu

Here I am trying to figure out how to use the mixer – for this cake, the mix came in a can and the frosting mix was in a box. My watch stander partner Peter Triezenberg helped me frost the cakes, but no one was around to take our photo! Photo courtesy of Sherwood Liu.
USGS geologist Andy Stevenson shows that he can cut a cake with the same precision that he uses to cut core samples. Photo courtesy of Sherwood Liu

USGS geologist Andy Stevenson shows that he can cut a cake with the same precision that he uses to cut core samples. Photo courtesy of Sherwood Liu

Erin Clark, USGS engineering technicians Jenny White and Pete dalFerro, and USGS geochemist Chris Dufore (pictured from right to left) put their skills to the test with an efficient assembly line, combining toppings for a diverse array of pizza choices. Photo courtesy of Helen Gibbons.

Erin Clark, USGS engineering technicians Jenny White and Pete dalFerro, and USGS geochemist Chris Dufore (pictured from right to left) put their skills to the test with an efficient assembly line, combining toppings for a diverse array of pizza choices. Photo courtesy of Helen Gibbons.

Captain Michel Bourdeau and Jerry manned the pizza ovens with great style and flair, earning the self-proclaimed designation “SPT” or Ship’s Pizza Technicians.

Captain Michel Bourdeau and Jerry manned the pizza ovens with great style and flair, earning the self-proclaimed designation “SPT” or Ship’s Pizza Technicians.

Sherwood Liu of the University of South Florida showed that he can cut pizza with the same good cheer and dedication that he applies to analyzing water samples.

Sherwood Liu of the University of South Florida showed that he can cut pizza with the same good cheer and dedication that he applies to analyzing water samples.

 PolarTREC teacher Bill Schmoker, Marine Mammal Observer Sarah Ashworth, and Andy Stevenson (pictured from right to left) greeted the hungry Coasties and served up hot pizza, mozzarella sticks and jalapeno poppers. (Pete dalFerro and Jenny White work the deep fryer in back, with Erin Clark lending moral support.)

PolarTREC teacher Bill Schmoker, Marine Mammal Observer Sarah Ashworth, and Andy Stevenson (pictured from right to left) greeted the hungry Coasties and served up hot pizza, mozzarella sticks and jalapeno poppers. (Pete dalFerro and Jenny White work the deep fryer in back, with Erin Clark lending moral support.)

Our rewards for our efforts were the smiling, satisfied faces we saw leaving the Mess that evening, which made the job of washing dishes, cleaning tables and swabbing the decks that much easier. Somehow no one remembered to take pictures of the cleaning crew, which included many of those already named as well as Mark Patsavas (University of South Florida), Justin Pudenz (Marine Mammal Observer), and David Street (Canadian Hydrographic Service). It was a great night. We had a lot of fun and showed that we can work as a team in the kitchen as well as in the lab and on the decks.

Mission Status: We are in the home stretch now, leading Louis on what will probably be the last transect through ice. Sometime soon we will break away and start heading for Barrow to start the journey home. I am spending a good part of each day out on the decks, taking photos and enjoying my last look at Arctic ice. Yesterday’s snow added a new element to the scene.

Snow On Deck

Snow On Deck

Snow on bow

Snow on bow

Morning After Snow

Morning After Snow

Sarah Finds Her Polar Bear

Sarah Finds Her Polar Bear

We’ve also had a couple of polar bear sightings, though none were close enough to get good pictures with my camera, but here’s my roommate, Sarah, right after she spotted Wednesday’s bear.Caroline

Caroline Singler, August 31, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy
Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 31 August 2010

Back to School – Tuesday 31 August 2010

Midnight in the Arctic Ocean

Midnight in the Arctic Ocean

Location and Weather Data from the Bridge
Date: 31 August 2010 Time of Day: 00:00 (12:00 a.m. local time); 07: UTC
Latitude: 76 º 37.6 ‘ N Longitude: 138 º 31.2 ‘ W
Ship Speed: 8.7 knots Heading: 197 º (SSW)
Air Temperature: 0.19 ºC/ 32.3 ºF
Barometric Pressure: 1009.0 mb
Humidity: 98.8 %
Winds: 6.3 knots W Wind Chill: -5.3 ºC/ 22.4 ºF
Sea Temperature: -0.3 ºC Salinity: 25.32 PSU
Water Depth: 3666.9 m
This is a special message for my new Earth Science students, members of the class of 2014 who are participating in 9th Grade Orientation at Lincoln-Sudbury Regional High School today. I am sorry that I cannot be there with you. I am excited to be your teacher this year – you are important to me, and I look forward to getting to know you when I return. You are in the caring and capable hands of Mrs. Iskandar during my absence. Please be respectful of her and thank her for agreeing to cover my classes for the next week in addition to her normal responsibilities in the Science Department.
As you can see, I am a bit too far north to get there on time. I am currently in the Arctic Ocean on board the U.S. Coast Guard Cutter Healy. The ship icon on the map below shows where I was at midnight on 31 August, which was 3 a.m. in Massachusetts. The red lines on the map show different places that we have been during the last month.
Map of Locations

Map of Locations

We left Dutch Harbor, Alaska (pictured on the right) on Monday 2 August, cruised North through the Bering Sea, and have been in the region of the Arctic known as the Beaufort Sea and the Canada Basin for the last four weeks. I am here participating in an oceanography research expedition as a representative of the NOAA Teacher at Sea program. The research mission is called the Extended Continental Shelf Project. It is an international, multiyear effort between the United States and Canada to map the seafloor and the subsurface in the Arctic Ocean off the coasts of the two countries. Healy (pictured on right) and the Canadian Coast Guard Ship Louis S. St. Laurentare both icebreaker ships designed specifically for scientific expeditions in the polar regions. We made it as far north as 82.5º North and are now moving south again. There is still ice around us now, but not as much as we saw just a few days ago. I have been taking a lot of pictures, and I can’t wait to share them with you. Here are just a few from the last couple of days.

USCGS Cutter Healy

USCGS Cutter Healy

Arctic ocean at night

Arctic ocean at night

Louis at Sunset

Louis at Sunset

A week from now, on Monday, 6 September, we will leave the Healy by helicopter at Barrow, Alaska, the northernmost town in the United States. I expect to be back at school on Friday, 10 September.

Ice

Ice

Breaking Ice

Breaking Ice

Before then, I hope you will take some time to look through my blog and read about some of the things I have seen and done. Then, I would appreciate it if you would send me a short email at this address: caroline.singler@healy.polarscience.net Introduce yourself to me and then either make a comment or ask a question about the Arctic, either based on something you read in my blog or just something you wonder about and would like to know. I will do my best to answer all your questions, and I will give you an extra credit homework grade for your effort.

Enjoy your first week of high school. Don’t get too overwhelmed by the size of the building or the crazy way the class schedule works. You will get used to it in no time. Have fun.

I’m looking forward to hearing from you. I will see you soon.
Miss Singler

Caroline Singler, August 29-31, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 31 August 2010

Under the Seafloor

Location and Weather Data from the Bridge
Date: 29 August 2010
Time of Day: 23:15 (11:15 p.m. local time); 06:15 UTC
Latitude: 79º 40.2’ N Longitude: 130º 26.2’ W
Ship Speed: 9.4 knots Heading: 254º (SW)
Air Temperature: 0.6ºC / 33.0ºF
Barometric Pressure: 1008.2 mb Humidity: 92.8 %
Winds: 10.1 knots SSW Wind Chill: -6.3ºC/20.8ºF
Sea Temperature: -1.4ºC Salinity: 27.78 PSU
Water Depth: 3505.8 m
Date: 30 August 2010 Time of Day: 22:00 (10:00 p.m. local time); 05:00 UTC
Latitude: 76º 52.8’ N Longitude: 137º 35.8’ W
Ship Speed: 9.8 knots Heading: 200.9º (SW)
Air Temperature: -0.3ºC
Barometric Pressure: 1008.5 mb Humidity: 99%
Winds: 3.2 knots W
Sea Temperature: -0.5ºC Salinity: 25.8 PSU
Water Depth:3675 mDate: 31 August 2010 Time of Day: 22:25 (10:25 p.m. local time); 05:25 UTC
Latitude: 74º 43.9’ N Longitude: 137º 26.1’ W
Ship Speed: 8.5 knots Heading: 124.8º (SE)
Air Temperature: 1.35ºC / 34.42ºF
Barometric Pressure: 1009.2 mb Humidity: 91.7%
Winds: 10.8 knots NNW Wind Chill: -4.1ºC/25.1ºF
Sea Temperature: -0.5ºC Salinity: 24.33 PSU
Water Depth:3418.4 m
Me on the deck

Me on the deck

Science and Technology Log
Most of the geology on this cruise is geophysics – we employ remote sensing techniques to generate computer images of the seafloor without direct observation. Bathymetric tools like the multibeam sonar system are valuable for oceanographers because it removes the veneer of the ocean water and reveals the shape of the underlying seafloor. It also makes a seafloor map look like a game of Candy Land – except when we are mapping in ice and it looks more like Pick Up Sticks. (One night on watch, my partner and I talked about how after a while you start to think of the seafloor as if it were colored like a rainbow!) Subbottom seismic profiles go even deeper and provide clues about the sediment and rock below the seafloor, and a trained geophysicist can read the signature reflections of different materials and make strong inferences about the subsurface. But for geologists like me, the highlight is sampling — bringing pieces of the seafloor above sea level and directly observing what is there. One reason that I was excited to join this cruise was because I visited the core library at Woods Hole Oceanographic Institution (WHOI) with the Lincoln-Sudbury NOSB team two years ago. The realization of how important such samples are to our understanding of the geological and climatological history of the earth made me eager to be present when a core was taken from the seafloor.

On a bathymetric survey expedition like this, opportunities to stop the ship for an extended period of time are few and far between, but we have had a few windows of opportunity for seafloor sampling. USGS geologists Brian Edwards and Andy Stevenson, armed with bathymetric maps and subbottom profiles from previous surveys, came on the cruise with several potential sampling targets in mind. USGS engineering technicians Jenny White and Pete dal Ferro are ready at a moment’s notice to get to work assisted by Healy’s team of marine science technicians (MSTs).

Coring the seafloor is a lot different from coring on land. The work site is the fantail (stern) of ship in the Arctic Ocean. The target is a point on the seafloor thousands of meters below, guided only by bathymetry and the ship’s navigation system. It takes more than an hour on average to lower the coring equipment on cables to the seafloor, and the water around us is moving with the current, requiring great skill on the part of the Coast Guard crew to hold station – keep the ship in a steady position – for many hours during sampling operations. Add in some wind, cold temperatures, and sometimes ice floes moving around the ship, and it’s easy to see why everyone’s energy level is cranked up a notch when coring operations are the plan of the day.

Coring Equipment

Coring Equipment

So far, we have collected core samples at three locations. A core is a long cylindrical section of seafloor. A core provides a relatively undisturbed sample of a vertical section of seafloor, preserving sediments in their natural layers with internal structures more or less intact. This provides a vertical timeline of deposition on the seafloor – the sediment at the bottom of the core represents the oldest material and the sediment at the top is the youngest. Core samples provide “ground truth” that supports the findings of remote sensing techniques like subbottom profiling. They allow scientists to “read” the history of the area. Geologists analyze the size and composition of sediment and infer depositional processes and possible sediment sources. Oceanographers and climatologists use information from the sediment and the microfossils they may contain to learn how the ocean and atmosphere has changed over time with respect to physical parameters such as water temperature and salinity.

Gravity Core on the deck

Gravity Core on the deck

We have employed two coring techniques on this core – gravity coring and piston coring. A gravity core uses a 2,000 pound weight attached to a 10-foot section of pipe. The pipe is lowered by cables and winches to the seafloor and uses the force of gravity pulling on the weight to drive it into the subsurface. A piston core is a variation on the gravity core that allows for deeper sampling by stringing together multiple sections of pipe. The main core barrel is fitted with a retractable piston in the top of the tube and the same 2,000 pound weight attached. A separate smaller coring apparatus is connected to the top of the piston core barrel by cables and a trigger arm. It hangs beside the piston core barrel, and the entireapparatus is lowered together to the seafloor. The trigger core reaches the bottom first and penetrates the surface sediments. As it falls, it triggers the mechanism at the top of the piston core which freefalls into the sediment. As the piston retracts inside the core barrel, it creates suction inside the barrel that helps pull the sediment into the core barrel and allows for collection of a longer, deeper, and potentially less disturbed sample than a gravity core.

Piston Core Apparatus

Piston Core Apparatus

Attaching Trigger Core

Attaching Trigger Core

The steel pipes used for coring are lined with plastic liners. At the end of the core barrel is a core cutter and a core catcher with metal teeth that fits into the bottom of the core barrel and holds the core in the barrel. When the core is retrieved, grab samples are collected from the core cutter and core catcher. (In the photo on the right, USGS scientists Brian Edwards and Andy Stevenson collect samples from a gravity core.) The outside of the core barrel is scraped to provide a sample that can be examined for microfauna (remains of microscopic organisms) in the sediment. The plastic liner is removed from the core barrel, starting at the bottom of the core, and is cut into sections. In this case, the preferred section length is 150 centimeters because that is the size of the containers in which the core will be stored back in the laboratory. Each section is measured, capped, sealed, and carefully labeled to indicate the top of the section and the core location. (In the photo on the bottom right, USGS scientists Brian Edwards, Andy Stevenson, and Helen Gibbons measure and cut the core sleeve from a piston core.) All information is recorded on a log in the field. The core sections are then stored horizontally in a specially built box that is kept in a refrigerator on the ship. The cores will be transported back to the USGS laboratory in California after the cruise where they will be cut, examined and logged, and then carefully stored for future reference.

Gravity Core Sample

Core Catcher and Cutter

Core Catcher and Cutter

Measuring cutting core

Measuring cutting core

Sometimes a core contains a real surprise. When the piston core from our first locationcame up on deck, we saw a white crystalline substance in the core cutter and catcher. It was gas hydrate. (Photo courtesy of Helen Gibbons, USGS Scientist.) Water molecules under high pressure may start to solidify at temperatures above the normal freezing point of water, crystallizing into a solid form of water with an internal structure that contains larger open spaces than typical ice crystals. Normally, these crystals are very unstable and will continue to cool and form the more stable molecule we know as ice. However, gases present in the environment may become incorporated into the open spaces within the solid water molecules and form a gas hydrate. This is a physical combination – there is no chemical bonding between the two – but it allows the solid to remain stable as long as it remains in a high pressure and low temperature environment. Seafloor sediments on deep continental margins and buried continental sediments in polar regions (i.e. permafrost regions) are common places where these compounds form. They contain abundant organic matter. Over time, biogenic processes (bacterial action) or thermogenic processes (high pressure and temperature) act on the organic material and produce gases, most commonly methane. These may become trapped in the solid water and form gas hydrates.

Core in reefer

Core in reefer

Methane Hydrate

Methane Hydrate

There is a lot of scientific interest in gas hydrates. Some estimates suggest that methane hydrates in permafrost and marine sediments contain more organic carbon than all other known naturally occurring fossil fuel deposits combined. Thus, gas hydrates are considered to be a potential energy source. However, one concern is that hydrates are very unstable at conditions other than those under which they form – the solid water crystals dissociate (i.e. melt) and the gases escape. We saw this with the sample we brought up in the core which began fizzing and off-gassing as soon as it was exposed at the surface. Potential environmental changes that might destabilize naturally occurring hydrates could potentially result in the release of large quantities of methane, a greenhouse gas, to the atmosphere.

We have sampled at four locations to date, shown on the map below. One location was near the top of a small seamount that was first mapped during last year’s expedition. Another sample was from a submarine fan complex. All locations were selected based on some prior data followed by good inferences, a little luck and a lot of skill.

Coring Locations on map

Coring Locations on map

All coring attempts have been successful, with good core recovery each time. It is difficult to predict what we will get when aiming for a target that is so far beneath us. There is only so much that the monitors on the ship that track wire depth and tension can tell us. Given time constraints, there are no “do overs”, so we are happy whenever the core barrel comes up with something inside – it represents more information than we had before we sent it to the bottom. The moments before the barrel is back on deck are full of tense expectation, and one can tell from the look of satisfaction on a scientist’s face when there is a good sample inside. One person’s mud is another person’s treasure! Although I will not get to examine the cores myself, I look forward to hearing what they find when they cut and log the cores back in California. And I have a little bit of ocean floor mud of my own to take home as a souvenir.

Core Sample

Core Sample

Sources
National Energy Technology Laboratory: The National Methane Hydrates R&D Program – All about Hydrates
TDI-Brooks International: Piston Coring for Surface Geochemical Exploration.
USGS Fact Sheet: Gas (Methane) Hydrates – A New Frontier. 1992.
USGS Woods Hole Science Center
Woods Hole Ocean Instruments

Personal Log
This is the last week of the trip. After all the preparation that it took to get here, the time has passed rather quickly – even while I did not have a very clear perception of the passage of time. If I were home, I would have met my classes for the first time yesterday and today. I am sorry to miss school, but I am grateful to be among a relatively small group of people who have the opportunity to experience this part of the world. I am fortunate to have a strong support network of colleagues at Lincoln-Sudbury Regional High School who encouraged me to take advantage of this opportunity and did their best to assuage my feelings of guilt about not being at work. I am fortunate to have such caring friends and colleagues. Thank you, everyone who helped me prepare for the trip and to all those who are keeping things going for me while I am away. You gave me the peace of mind to do this.

The Arctic is a wilderness unlike any other. Whether in the icy desert at latitudes above 80ºN; in thin, patchy ice in the southern and western part of the basin; or in the open waters off the coast of Alaska, each day is something special. I look forward to my first trip out on deck each morning to enjoy the day’s views, and I have not been disappointed. And here in the last week of the trip, as the amount of darkness increases while the latitude decreases, it is actually snowing – enough to make a little snowman on the bow.

Snowman

Snowman

Midnight on the ship

Midnight on the ship

 

Caroline Singler, August 25, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy


Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean

Date of Post: 27 August 2010

Farthest North – 26 August 2010

Farthest North

Farthest North

Location and Weather Data from the Bridge
Date: 25 August 2010 Time of Day: 2300 (11:00 p.m. local time); 06:00 UTC
Latitude: 82º 29’ N Longitude: 138º 50.4’ W
Ship Speed: 4.5 knots Heading: 291º (NW)
Air Temperature: -0.5ºC / 31.1ºF
Barometric Pressure: 1010.7 mb Humidity: 97%
Winds: 9 knots SW
Sea Temperature: -1.2ºC Salinity: 28.2 PSU
Water Depth: 3400 mDate: 26 August 2010 Time of Day: 2230 (10:30 p.m. local time); 0530 UTC
Latitude: 82º 0.5’ N Longitude: 132º 5.5’ W
Ship Speed: 4.3 knots Heading: 163º (SE)
Air Temperature: -1.25ºC / 29.7ºF
Barometric Pressure: 1012.6 mb Humidity: 100%
Winds: 20.4 knots SW Wind Chill: -8.9ºC/15.9ºF
Sea Temperature: -1.35ºC Salinity: 28.47 PSU
Water Depth: 3643 m
We reached our farthest northern location in the early morning hours on Friday 26 August. We stopped a little before midnight local time on 8/25 (07:00 8/26 UTC) for a water sampling event and I captured this map that showed our location at latitude 80º31.85’.
Farthest Northern point on a map

Farthest Northern point on a map

 Here is what the Arctic looks like at 82º31.5’N 139º15’W from the bow of the Healy.

Here is what the Arctic looks like at 82º31.5’N 139º15’W from the bow of the Healy.

I took the picture at the beginning of this post myself, at about the same time as the map shows!
Morning Sky With Louis

Morning Sky With Louis

We ended up a little farther north in the early morning as we maneuvered to get back in line withLouis, who rejoined us after some downtime for repairs.

Our official FARTHEST NORTH point was at latitude 82º32’. The original plan called for 85ºN, but the ice is thick and progress is slow, and we have had several delays. Now we are eastward bound, on a line that heads towards but ends before the Queen Elizabeth Islands of Canada. Healyspends a lot of time backing and ramming. There are numerous ridges in the ice formed when ice floes drift with the wind and currents and collide with other flows, and these present big obstacles. First they drive the ship into the ridge, then back up, leaving the impression of the ship’s bow like a snow angel.

Healy Snow Angel

Healy Snow Angel

There is an eerie silence when the ship is backing, and I expected it to be followed by a burst of speed (hence the backing and “ramming”), but the ship just drives forward again over the same track. It can take two or three times to break through a large ridge. Even then, it can be difficult for Louis to proceed with her towed gear even – often the pressure causes ice to drift back into the track before Louis can pass through. On numerous occasions Healy has had to double back to relieve the pressure on Louis by coming around and passing to the side of the ship, trying to give the ice a different way to drift. Sections of Healy’s track line look as if we are doing figure eights around Louis.
Louis in ice

Louis in ice

Since Sunday, we have been at latitudes where the sun does not set. I get off watch at midnight local time, but true midnight is usually an hour or two after that. Here are some views of the sky that I see when I leave the computer lab at night.
Midnight

Midnight 8_23_10

Midnight- 23 August 2010
Midnight 8_24_10

Midnight 8_24_10

Midnight- 24 August 2010
Midnight_8_25_10

Midnight_8_25_10

Midnight- 25 August 2010
Midnight 8_27_10

Midnight 8_27_10

Midnight- 27 August 2010

I can’t always see the sun, but it’s still pretty and peaceful, even when we are banging through ice.

Caroline

Caroline Singler, August 22-23, 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Canada Basin in Arctic Ocean
Date of Post: 23 August 2010

A Great Day for Flying – 22 August 2010

View from the Helo

View from the Helo

Location and Weather Data from the Bridge
Date: 22 August 2010
Time of Day: 2200 (10:00 p.m.) local time; 05:00 UTC
Latitude: 78º31.9’N Longitude: 149º21.3’W
Ship Speed: 4.2 knots Heading: 63.8º (northeast)
Air Temperature: 3.98ºC/38.10ºF
Barometric Pressure: 1024.6 mb Humidity: 67.5%
Winds: 7.4 knots NE Wind Chill: -0.4ºC/31.2ºF
Sea Temperature: -1.3ºC Salinity: 27.64 PSU
Water Depth: 3829.9 m
Date: 23 August 2010
Time of Day: 2310 (11:10 p.m.) local time; 06:10 UTC
Latitude: 78º31.9’N Longitude: 149º21.3’W
Ship Speed: 4.9 knots Heading: 4.3º (NNE)
Air Temperature: -1.74ºC/28.87ºF
Barometric Pressure: 1026.8 mb Humidity: 93.7%
Winds: 8.4 knots NW Wind Chill: -8.05ºC/17.5ºF
Sea Temperature: -1.4ºC Salinity: 27.25 PSU
Water Depth: 3773.9 m
Personal Log
Sunday wasn’t an ordinary day right from the start. As always, I checked the Almanac data on the ship tracker map when I woke up in the morning, and I noticed that there were no sunrise and sunset times listed, only local noon – 8/22 22:06Z, which is 3:06 p.m. here – and local midnight – 8/23 10:05Z, or 3:05 a.m. here. Sometime on Saturday night, we ventured into latitudes that are far enough north to still receive 24 hours of daylight at this time of year. The weather was perfect – high pressure, clear skies, a few high wispy cirrus clouds, light wind, and temperature just above freezing. The sea ice coverage was between 6 and 8 tenths – more than we had seen recently. Where previously there was open water between ice floes, now there was grease ice – a thin icy surface that shimmered in the morning sun and formed intricate patterns when pushed aside by larger pieces broken by Healy.
Morning Sun over ice

Morning Sun over ice

Grease Ice Patterns

Grease Ice Patterns

Just when it seemed that a day couldn’t get much better, my pager went off, which always catches me by surprise. Chief Scientist Brian Edwards informed me that PolarTREC teacher Bill Schmoker and I would be visiting the Louis after lunch along with two Healycrew members. Suddenly the teachers at sea became “Teachers Aloft”, a catchy phrase courtesy of USGS scientist Helen Gibbons.

Helicopter operations (“flight ops”) on Healy are serious business. A lot of work goes on behind the scenes to ensure the safe transfer of personnel between the two ships. I thought I would be more nervous than I was, but there wasn’t much time to be nervous. I just did what I was told and before I knew it we were on our way. Here are some photos taken before the flight. (Photos taken by USGS scientist Helen Gibbons unless otherwise noted.)

Suiting up in a Mustang floatation suit:
Suiting Up

Suiting Up

Canadian Ice Services Specialist Erin Clark briefs us about safety issues before our flight on the Canadian Coast Guard helicopter.
From left: USCG ENS Holly McNair; USCG CDR John Reeves, Erin Clark, Bill Schmoker, and me.

From left: USCG ENS Holly McNair; USCG CDR John Reeves, Erin Clark, Bill Schmoker, and me.

Ready to fly

Ready to fly

Helo on deck

Helo on deck

Boarding Helo

Boarding Helo

Buckled In (photo by USCG IT1 Miguel Uribarri)

Buckled In
(photo by USCG IT1 Miguel Uribarri)

Lift Off

Lift Off

Helo in flight

Helo in flight

Walli Rainey of Natural Resources Canada gave us a tour of the living and working spaces on Louis, which are set up differently from Healy’s – Healy feels more like a working vessel with a distinct military style; Louis is designed a bit more for comfort, with drop ceilings covering the pipes, ducts and wires that are exposed on Healy and curtains on the windows, many of which are large square windows not portholes. While visiting the bridge, I noticed that we were surrounded by ice, which puzzled me because Healy was breaking ice for Louis, but pressure on the ice had caused it to move back into the track cleared by HealyHealycame around to starboard to try to help free Louis from the ice, giving us an opportunity for a good look at and photo opportunity of our “home” ship.
Photo of USCGS Healy from USCGS Lewis

Photo of USCGS Healy from USCGS Louis

Me on USCGS Louis

Me on USCGS Louis

Eventually, the captain determined that Louis could not get free without pulling the seismic gear. Less than an hour later, we were on our way back to Healy with a great new experience to share.

Caroline Singler, August 16-20 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 20 August 2010

Out in the Canada Basin — 16-20 August 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGC Healy
Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean
Date of Post: 20 August 2010Location and Weather Data from the Bridge
Date: 16 August 2010
Time of Day: 2240 (10:40 p.m. local time); 05:40 UTC
Latitude: 71º 34.5’ N
Longitude: 156º 42.2’ W
Ship Speed: 16.5 knots Heading: 19.2º (NE)
Air Temperature: 8.2ºC/46.7ºF
Barometric Pressure: 1006.3 mb Humidity: 92.6%
Winds: 16.6 knots NE
Wind Chill: 2.5ºC/36.7ºF
Sea Temperature: 6.3ºC Salinity: 30.96 PSU
Water Depth:124.7 m (on continental shelf near Barrow AK)Date: 17 August 2010 Time of Day: 2120 (9:20 p.m. local time); 04:20 UTC
Latitude: 74º 6.1’ N Longitude: 150º 26.4’ W
Ship Speed: 4.2 knots Heading: 14.8º (NNE)
Air Temperature: 1.5ºC/34.7ºF
Barometric Pressure: 1003.7 mb Humidity: 91.5%
Winds: 22.9 knots E
Wind Chill: -5.7ºC /21.7ºF
Sea Temperature: -0.7ºC Salinity: 25.00 PSU
Water Depth:3729.1 mDate: 18 August 2010
Time of Day: 2320 (11:20 p.m. local time); 06:20 UTC
Latitude: 75º 25.1’ N Longitude: 153º 16.9’ W
Ship Speed: 4.7 knots Heading: 311.1º (NW)
Air Temperature: 0.45ºC/32.8ºF
Barometric Pressure: 1010.1 mb Humidity: 95.3%
Winds: 20.7 knots SE
Wind Chill: -5.8ºC /21.5ºF
Sea Temperature: -1.0ºC Salinity: 24.87 PSU
Water Depth:3848.4 mDate: 19 August 2010
Time of Day: 2230 (10:30 p.m. local time); 05:30 UTC
Latitude: 76º 11.8’ N Longitude: 155º 14.3’ W
Ship Speed: 4.4 knots Heading: 83.1º (NE)
Air Temperature: -0.47ºC/31.1ºF
Barometric Pressure: 1013.9 mb Humidity: 100%
Winds: 7 knots SE
Sea Temperature: -0.76ºC
Salinity: 24.7 PSU
Water Depth:~2100 mDate: 20 August 2010
Time of Day: 2200 (10:00 p.m. local time); 05:00 UTC
Latitude: 76º 28.4’ N
Longitude: 149º 5.3’ W
Ship Speed: 4.9 knots Heading: 80.1º (NE)
Air Temperature: -0.23ºC/31.6ºF
Barometric Pressure: 1020.9 mb Humidity: 98.2%
Winds: 5.7 knots WNW Wind Chill: -0.23ºC /31.6ºF
Sea Temperature: -1.2ºC Salinity: 25.99 PSU
Water Depth:3824.4 mScience and Technology Log
I have fallen behind on my writing this week, and I am trying to get back on track. I have a couple of logs in progress, but none are finished yet. So I thought I would give a quick update on where we are and what we are doing.

Small Boat to Barrow

Small Boat to Barrow

We started the week with a quick trip to Barrow, Alaska to pick up a crew member and some equipment for Louis. It was a beautiful day. Healycannot dock in Barrow, so we waited a couple of miles offshore while a small boat went in to shore.
We had a great view of the coastline. The air smelled different that close to land; there were lots of birds flying around, and some people evenspotted whales. Late Monday we started our trip back into the Canada Basin and met up with Louisearly Tuesday morning.

Noon Sky Over Barrow

Noon Sky Over Barrow

We are now fully involved in the two-ship partnership with the Louis. We have been traveling together for four days. Most of the time, Healyleads Louis, though once yesterday the two ships switched positions, and Louis broke ice for Healywhile they made repairs to their seismic equipment. My personal theme for the mission is “If we’re moving, we’re mapping” which means that the multibeam and subbottom profiler are always collecting data. Sometimes in ice we don’t get perfect data, but all data are useful data, and each line we follow unveils a little more information about the Arctic seafloor. Sometimes we cross areas that were mapped on previous trips by Healy or other vessels, filling in gaps in the bathymetry and giving Louis the opportunity to collect deeper subsurface data. My favorite times are when we cross areas that have never been mapped before.Most of the time, we have been out on the abyssal plain of the Canada Basin. The abyssal plain is FLAT – flatter, I am told, than a pool table. Yesterday we crossed the eastern side of a feature called the Northwind Ridge which separates the Canada abyssal plain from the Chukchi plateau and abyssal plain. It was a nice change to see some different depths on the multibeam. Different depths show up as different colors on the screen display – yellows, greens and light blues instead of just the deep blue and purple that represent depths over 3000 meters. As a watch stander, there is more to watch when we are crossing an area changing depths, and we have to make frequent adjustments of the depth limits for the instruments. Sometimes in the lab at night, I look at the display screen and forget that what I see on the bathymetric map is the seafloor, not what is out my window. I look at the camera that shows the water in front of and behind the ship, and I see flat water or ice, but underneath, there are ridges, slopes, and plains. It is incredible that we can use sound to remove the cover of the water and see what lies beneath.

Personal Log
I still find it surprising when I go out on one of the aft decks and see another ship behind us. I wonder how it would look to someone flying over us – way out in the ocean, no other boats around, but there are two ships following the same course about a mile apart. It takes a lot of coordination for two ships to work together like this. The chief scientists and captains consult frequently about the planned course. When I am on watch, I enjoy listening to the chatter between the bridges of the two ships, sharing information about ice conditions, checking speeds, confirming how well the track cleared by Healy is staying clear for Louis. That is not as easy as it might sound. The ice is drifting, and Healy’s crew must take that into account and determine where the ice might be when Louis reaches it.

I am fascinated not only by the sea and ice but also by the constantly changing Arctic sky. Every day, the sky is a new canvas for interesting cloud formations, sun shining through fog, and the sometimes subtle and sometimes spectacular colors of Arctic sunsets, which for a while (when we were in the southern part of the basin) coincided with the end of my nightly watch stander shift. Now that we are north of 75º, the sun sets between 1 and 2 a.m. local time and rises again around 4 a.m., so it is usually still quite bright when I leave the computer lab. Perhaps one night before we head south, I will stay up all night and get a sense of how dark it really gets between sunset and sunrise – my impression is that it is not fully dark – there always seems to be at least some light coming through the porthole when I wake up during the night. Here are some of my favorite sky-shots from the last week.

Sky Past Midnight

Sky Past Midnight

Clouds over water near Barrow 8/16/10

Clouds over water near Barrow 8/16/10

High wispy clouds 8/16/2010

High wispy clouds 8/16/2010

Sky at Midnight 8/17/2010

Sky at Midnight 8/17/2010

Clouds over Ice 8/17/2010

Clouds over Ice 8/17/2010

Fog Bow 8/20/2010

Fog Bow 8/20/2010

Bottom of the Arctic on a map

Bottom Relief of the Arctic on a map

Sometimes when I’m in the Science conference room, I like to look at the map of “Bottom Relief of the Arctic Ocean”. The other night, I noticed a picture in the picture. What do you see?FYI…

I got an email from a colleague (thanks, Mark) who asked me how far from land we were when we saw the polar bear that I photographed on August 9th. The map below shows where we were relative to the coastline of Alaska. We were stopped at the station labeled “001” at the time, which is approximately 172 nautical miles (319 kilometers) north of the town of Gordon, Alaska. (The dotted red line connects the two points.) Gordon is just west of the U.S./Canada border. As of today, that is still the only polar bear that I have seen. There have been at least six sightings from Healy and several more from Louis.
Polar Bear Map

Polar Bear Map

Caroline

Caroline Singler, August 13-15 2010

NOAA Teacher at Sea: Caroline Singler
Ship: USCGS Healy 

Mission: Extended Continental Shelf Survey
Geographical area of cruise: Arctic Ocean north of Alaska in the Canada Basin
Date of Post: 16 August 2010

Follow the Leader – 13 – 15 August 2010

Location and Weather Data from the Bridge
Date: 13 August 2010 Time of Day: 2100 (9:00 p.m.) local time; 04:00 UTC
Latitude: 73º0’N

Longitude: 145º3’W
Ship Speed: 3.9 knots
Heading: 1.8º (north)
Air Temperature: 2.0ºC/35ºF
Barometric Pressure: 1018.9 millibars (mb) Humidity: 100%
Winds: 3-5 Knots SW
Sea Temperature: -0.4ºC Salinity: 25.37 PSU
Water Depth:~3600 m

Ice with Ridges

Ice with Ridges

Date: 14 August 2010

Time of Day: 2105 (9:05 p.m.)
local time; 04:05 UTC
Latitude: 73º36.4’N Longitude: 146º19.21’W
Ship Speed: 4.7 knots Heading: 223º (southwest)
Air Temperature: 2.15ºC/35.88ºF
Barometric Pressure: 1022.3 mb Humidity: 92.1%
Winds: 12.2 knots SE Wind Chill: -3.1ºC/26.5ºF
Sea Temperature: -0.7 ºC Salinity: 24.84 PSU
Water Depth: 3708.6 m
Open Water and Beautiful Sky

Open Water and Beautiful Sky

Date: 15 August 2010
Time of Day: 1500 (3:00 p.m.)
local time; 22:00 UTC
Latitude: 72º56.4’N
Longitude: 150º9.0’W
Ship speed: 11.8 knots
Heading: 220º (southwest)
Air Temperature: 5.6ºC/42.2ºF
Barometric Pressure: 1015.6 mb
Humidity: 98.1%
Winds: 17.7 knots E
Wind Chill: 1.7ºC/35.1ºF
Sea Temperature: 3.9ºC
Salinity: 24.5 PSU
Water Depth:3691.1 mScience and Technology Log

The Extended Continental Shelf Project is a multi-year effort between the United States and Canada. The two countries share knowledge, resources, and information to allow greater coverage of the region and more cost effective achievement of the mission objectives. For this mission, the USCGC Healy is working in tandem with the Canadian Coast Guard ice breaker Louis S. St. Laurent, called Louis(pronounced “Louie”) for short. Healy is responsible for collecting bathymetric data and shallow subsurface imaging while Louis performs deeper subsurface imaging with her air-gun array. The instrumentation on Louis is towed behind the ship and requires a clear path through the ice; therefore, Healy’s primary responsibility when the ships are in ice is to lead and break ice for Louis. Healy opens a path and Louis follows, typically about one to two miles behind depending on ice and visibility conditions. It was foggy for most of the day on Friday as we led the way north along the first track line. The only way I knew that Louis was behind us was by watching the ship tracking chart and listening to occasional radio chatter between the two boats as the crews communicated about ice conditions. Skies cleared as we moved farther north and deeper into the ice on Saturday. Near midday, the fog lifted and there was Louis, first emerging like a ghostly image out of the fog and then, as we made the turn onto a new transect line, she was in full view. By Sunday afternoon we were heading south in open water, so Healy moved away fromLouis to conduct other business while our ice breaking services were not needed.
USCGS Healy Leading USCGS Lewis

USCGC Healy Leading CCGS Louis

USCGS Louis on Ice

CCGS Louis on Ice

While multibeam sonar allows us to “see the bottom”, subbottom profiling uses a different sound-producing system to see what is under the bottom. Geologists use the subbottom data both from Healy andLouis to estimate sediment thickness and make inferences about sediment types and structures beneath the seafloor. It makes me think of Superman’s x-ray vision! Like multibeam sonar, subbottom profilers are echosounding devices. They are active sonar systems – sound signals are transmitted and received by the instrument.
Healy’s profiler is a “chirp” system mounted inside the bottom of the ship’s hull – so called because it sounds like a bird chirping, a sound that one hears in the background throughout the ship. It releases high frequency pulses of acoustic energy that travel through the water column and (in theory) hit the seafloor and penetrate into subsurface materials to depths of tens of meters. Signals are reflected at the seafloor and at interfaces between different subsurface layers within the seafloor. The reflection of acoustic energy depends on the “acoustic impedance” of the material encountered. Acoustic impedance is related to the density of the material and the velocity of sound in that medium. Different materials have different acoustic impedance and therefore different reflectivity. The concept is similar to that of albedo when one considers the reflection of solar energy from different surfaces. A smooth, light-colored surface like a field of snow reflects a high percentage of incoming solar rays and therefore has a high albedo– hence the glare that hurts your eyes on a sunny day. Dark-colored surfaces reflect much lower percentages of incident light and therefore have low albedo. (They also absorb more energy which is why they get hotter on a sunny day.)
With subbottom profiling, sands typically reflect sound differently than mud, and layers or other structures in the subsurface result in different signal strengths returning to the receivers on the ship. The picture on the right shows an image of the raw chirp data displayed on the computer screen at the watch stander station. It does not show a lot in this state, but after processing the data will provide important information about the subsurface in the Arctic Ocean.
Chirp Display

Chirp Display

Subbottom surveying on Louis is performed with a multi-channel air gun system that is towed behind the ship. Three air guns, powered by air compressors on the ship’s deck, provide the acoustic energy source. A streamer with an array of 16 hydrophones trails behind the air guns; the hydrophones receive the return signals reflected by the seafloor and subsurface sediments. In open water, the air guns are attached to a float and hang about three to five meters below the surface, at a distance of about 100 meters behind the ship. In ice, the air guns are attached to a metal sled (depressor) that hangs below the sea surface (and hence the ice) to a depth of about 10 meters and at a distance of about 10 meters behind the ship. When fired, the air guns simultaneously emit large air bubbles into the water column. As the bubbles collapse, an acoustic pulse is produced that moves through the water. It is similar to what happens in the atmosphere when air rapidly expands and contracts as a lightning bolt passes through, creating the sound we know as thunder. The air guns generate sound at a lower frequency than the chirp system; sound at these lower frequencies penetrates deeper into the subsurface but produces lower resolution than the higher frequency chirp system. Such air gun systems can provide images to depths of several kilometers below the seafloor.

WHOI Subbottom Profiling Diagram

WHOI Subbottom Profiling Diagram

Image source: USGS Woods Hole Science CenterReferences:
USGS Woods Hole Science Centerhttp://woodshole.er.usgs.gov/operations/sfmapping/seismic.htm
NOAA Coastal Services Centerhttp://www.csc.noaa.gov/benthic/mapping/techniques/sensors/subbottom.htm

Personal Log
Saturdays are “Field Days” on Healy. No, we did not all get into boats and take a trip away from the ship or get out onto the ice. Field Day is a fancy way of saying that it is time for cleanup and inspection of common areas and personal berthing areas. All personnel on board are responsible for trash removal and cleaning of staterooms, restrooms and common living and working spaces. Anyone who is not on duty pitches in to clean the Science lounge and labs – vacuuming, sweeping, washing floors and generally putting things in order. The “trash vans” are open twice a week; everyone brings trash and recycling to two large blue bins on the port side of the 02 deck (the same deck as the science staterooms). Coast Guard volunteers work the trash vans. Healy will be at sea for another long mission after this one, so efficient trash removal and storage is critical. Healy personnel are dedicated to recycling and have an award winning recycling program on board – no small feat when it is necessary to haul it all around for months at sea. Think about that when you are tempted to complain about separating recyclables from trash at home or at school.

Since everything was neat and tidy, I decided it was a good time to show you my living space on Healy. Science staterooms are set up for three occupants, but on this trip we have two people per room. I share a room with Sarah Ashworth, a marine mammal observer; she is currently on Louis, so for now I have my own room. The room is more spacious than I expected on a ship, similar in size to a lot of college dorm rooms.

My Rack

My Rack

Space is used very efficiently. There are bunk beds; Sarah has more experience at sea than I, so she has the top bunk or “rack”.

Bunks

Bunks

Each person has a good sized locker for clothes and since there are only two of us, we each have a desk and filing cabinet, so there is plenty of storage space – more than we need for our personal belongings.
Sink and Locker

Sink and Locker

Desk Area

Desk Area

There’s nothing like a room with a view, even if they left the tape on the window the last time they painted the ship.

Sun on Water Through Porthole

Sun on Water Through Porthole

Each room has its own sink, and shares a bathroom with the adjoining room. Okay, they call it a “head” on a ship; don’t ask me why! The bathroom is small, but one does not linger when taking a “sea shower”, and there is always plenty of hot water. In case you ever wondered what a marine toilet looked like, here it is.

Shower

Shower

Marine Toilet

Marine Toilet

We headed towards Barrow on Sunday to pick up a crew member and some supplies for the Louis. There was a steady wind from the east for most of the afternoon, and the boat was rolling a little, but I was more prepared for it this time than I was the first time it happened, but I still stumble when I walk down the hall.

We have had beautiful views of ice, sea, and sky for the last few days.

Ice with cool clouds

Ice with cool clouds

Waves and sky

Waves and sky