Cathrine Prenot: How a Fool Bird Regained its Footing. August 11, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: August 11, 2016

Weather Data from the Bridge: N/A

Science and Technology Log

Marine Mammal Excluder Net on the Bell M. Shimada.

Marine Mammal Excluder Net on the Bell M. Shimada.

Unreeling the nets behind the ship and trawling is the equivalent of ringing a dinner bell at sea. We may not even be in sight of land, but as soon as the fishermen begin to unroll the huge nets, birds begin descending from the skies, appearing in the distance, and gliding on their wings over the waves.

Black Footed Albatross. Photo By Kathryn Willingham

Black Footed Albatross. Photo By Kathryn Willingham

The birds are arriving in hopes of getting a part of the catch or the bycatch. They will patiently wait until fish that have been measured and weighed are tossed overboard, and were particularly fond of Walleye Pollock liver from the Oscar Dyson. Sometimes marine mammals like Pacific White Sided Dolphins will also show up, but all fishing operations stop when they are in the waters around the ship—we don’t want to encourage them to associate nets with dinner.

White Sided Pacific Dolphins. Photo By Kathryn Willingham

Pacific White Sided Dolphins. Photo By Kathryn Willingham

Some of my favorite birds to watch are the albatross. They are enormous, with a six foot wingspan and feet wide enough to surf in the wake of the ship before splashing down. All of the albatross I saw were Black Footed, but one of the scientists on the ship, Ryan Shama from the West Coast Groundfish Observer Program, told me to keep an eye out for birds that looked like a black footed albatross but with a bright bubble gum pink bill. These were the “vulnerable” Short Tailed Albatross, and there were only about 4,750 in the world—up from 25 individuals in 1954.

Black Footed Albatross. Photo By Kathryn Willingham

Black Footed Albatross. Photo By Kathryn Willingham

I got pretty excited a few times, but evidently their bills are REALLY pink, not just pink-ish.

Short tailed albatross populations are rebounding after a pretty devastating 200 years. They were collected for food, but their numbers really declined through feather hunting, which was fueled by a ladies’ fashion craze.

Photo from here.

Photo from here.

Photo from here.

To give you an idea of the scale of this craze, below is the full bird count from two afternoon walks in 1886 through the streets of NYC by Frank Chapman, an Ornithologist at the American Museum of Natural History:

“Robin, four. Brown thrush, one. Bluebird, three. Blackburnion warbler, one. Blackpoll warbler, three. Wilson’s black-capped flycatcher, three. Scarlet tanager, three. White-bellied swallow, one. Bohemian waxwing, one. Waxwing, twenty-three. Great northern shrike, one. Pine grosbeak, one. Snow bunting, fifteen. Tree sparrow, two. White-throated sparrow, one. Bobolink, one. Meadow lurk, two. Baltimore oriole, nine. Purple grackle, five. Bluejay, five. Swallow-tailed flycatcher, one. Kingbird, one. Kingfisher, one. Pileated woodpecker, one. Red-headed woodpecker, two. Golden-winged woodpecker, twenty-one. Acadian owl, one. Carolina dove, one. Pinnated grouse, one. Ruffed grouse, two. victorian hatQuail, sixteen. Helmet quail, two. Sanderling, five Big yellowlegs, one. Green heron, one. Virginia rail one. Laughing gull, one. Common tern, twenty-one. Black tern. one. Grebe, seven.” (from here )

All of these birds were on women’s hats. Of the 700 hats he counted, 543 were decorated with feathers.

And then let’s start looking at the specifics of the decimation of the albatross population:

“From the mid-19th to the early 20th century it was highly fashionable to wear extravagant hats decorated with feathers, wings and even whole birds. In 1875, the magazine Harper’s Bazaar described one such hat: “The entire bird is used, and is mounted on wires and springs that permit the head and wings to be moved about in the most natural manner.” The demand for feathered headwear was enormous. By 1886 more than five million birds were harvested annually for the millinery trade in North America. Large albatross feathers were popular, and hunters harvested hundreds of tons of feathers annually—first from Japanese islands and then from Northwestern Hawaiian islands where albatrosses breed. In 1904 Japanese hunters killed 285,000 albatrosses on Lisianski Island in six months, then another 70,000 albatrosses on Laysan Island that same year—just for feathers. All over the world many species of birds were hunted for their plumage, to near extinction.”  (from here)

The Short Tailed Albatross nested almost exclusively on one island in Japan, and “feather hunters” killed an estimated 5 million birds over many years. The birds wouldn’t move as the feather hunters moved among them, clubbing them to death, giving them the name “Ahodori” in Japanese, which means “fool bird.”

From here. The site is also a good read.

From here.

But you can read all about it in Adventures in a Blue World: “The Fool Regains its Footing.”

Adventures in a Blue World: The Fool Regains its Footing. CNP

Adventures in a Blue World: The Fool Regains its Footing. CNP

Personal Log

The scenery on the last day at sea was pretty wonderful. The Strait of Juan de Fuca is absolutely gorgeous, and although we traveled a lot of it under the cover of darkness, I went up on the flying bridge at dusk and loved watching huge container ships in the channel next to us. After being on the largest ship for two weeks—with smaller fishing vessels keeping about a mile or more radius and having the ocean be the whole world around you, it was somewhat comforting to see land on either side and ships many times more massive than us cruising calmly by. Once day broke, we got to see constant ferry traffic between the islands around Seattle, and tons of small boats scurrying around us like ants.

As you might note from the dates, I am no longer out at sea. We pulled into the port of Seattle on August 30, and I made a beeline to the airport thanks to some of the scientists, and got home in time to start work the next day.   I am SO very thankful for the crew, Corps, and scientists from the Shimada for making me feel so welcome and including me in all of their work. I have a few more cartoons to go, so will continue to blog, but I won’t be able to report to you in as much detail all of the “freedom of the seas” that I was granted on the Shimada.

It's a tough life, being a Teacher at Sea!

It’s a tough life, being a Teacher at Sea!

 Did You Know?

Pacific White Sided Dolphins are extremely acrobatic and live and travel together in groups of up to 100 individuals!

Resources:

Interesting articles on the bird hat craze. This one, and this one, and oh yeah, one more.

Cathrine Prenot: Why Math Matters. July 29, 2016.

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 29, 2016

Weather Data from the Bridge

Lat: 4901.93N (We’re in Canada!)
Lon: 12651.64W
Speed: 5.7 knots
Windspeed: 34.2 deg/knots
Barometer: 1018.10 mBars
Air Temp: 15.0 degrees Celsius
Water Temp: 13.92 degrees Celsius

Science and Technology Log

IMG_4287

Panoramic view of the back deck of the Bell M. Shimada from the wet lab.

There is a book on the bridge of most sailing vessels called “The American Practical Navigator.” Most people call it Bowditch, for short. It is a thick tome, and has an insane wealth of information in it, as Nathanial Bowditch vowed to “put down in the book nothing I can’t teach the crew.” He evidently thought his crew could learn anything, as Bowditch is an encyclopedia of information. You can find distances to nearby planets, how magnetic fields change around iron vessels, what to do if you are lost at sea, what mirages are, and rules to navigate around hurricanes. It’s been updated multiple times since Bowditch’s version in 1802, but one fact has remained. There is math—oodles and oodles of geometry and algebra and calculus—on every page. In fact, a lot of the Bell M. Shimada runs on math—even our acoustic fishing is all based on speed and wavelengths of sound.

transfer

Screenshot from the Bell M. Shimada’s Acoustics Lab showing the visual rendition (left to right) of 18,000Hz, 38,000Hz, and 120,000Hz.  The ocean floor is the rainbow wavy line 250-450meters below.  This was transect #38; we fished the red/orange splotches approx 150 meters deep.  They were all hake!

Sonar was first used in World War I to detect submarines, and began to be used to sense fish soon after the war ended, with limited success. Sonar advanced rapidly through World War II and fishermen and scientists modified surplus military sonar to specifically detect ocean life. Since sound will bounce off “anything different than water,” we can now use different frequencies and energy to determine an incredible amount of information on a fish’s life. We can “try to tell what kind of fish, where they are, map vertically what they do, and determine their density.” The chief scientist, Dr. Sandy Parker-Stetter says it best. “My job is to spy on fish.” In my opinion, Sandy seems good enough to be in the Acoustics CIA. Click on Adventures in a Blue World; Why Math Matters, to learn all about fish spying and other reasons you should pay attention in algebra class.

Adventures in a Blue World, CNP. Why Math Matters.

Adventures in a Blue World, CNP. Why Math Matters.

 

Personal Log

Life onboard continues to be interesting and fun. The wind has picked up a bit, which has translated into higher seas. I tried to film the curtains around my rack last night opening and closing of their own accord, but every time I’d pick up the camera, they’d stop. I did get a few seconds of some wave action outside the workout room; riding a bike is now much easier than running on the treadmill. Pushups are insanely easy when the ship falls into the waves, and ridiculously difficult when rising.

Porthole video.

I’ve also been involved in a chemical spill drill (that does say drill), and was lucky to be given the helm for a brief moment on the Bell Shimada.

Staging a chemical spill for the crew's spill drill

Staging a chemical spill for the crew’s spill drill

Prenot at the Helm

Prenot at the Helm

 

Did You Know?

NOAA has been around since 1970! Thanks to our great Survey Tech Kathryn Willingham for keeping our science team working so seamlessly. Well… …and making it fun too.

Kathryn

Kathryn Willingham

 

Resources: 

Ocean frequencies: explore sound in the ocean.
Check out this great TED talk about the importance of mathematics at sea.

Cathrine Prenot: Sea Speak. July 25, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Sunday, July 24, 2016

Weather Data from the Bridge

Lat: 47º32.20 N
Lon: 125º11.21 W
Speed: 10.4 knots
Windspeed: 19.01 deg/knots
Barometer: 1020.26 mBars
Air Temp: 16.3 degrees Celsius
Water Temp: 17.09 degrees Celsius


Science and Technology Log

Typical evening view from the flying bridge of the Bell M. Shimada

Typical evening view from the flying bridge of the Bell M. Shimada

We have been cruising along watching fish on our transects and trawling 2-4 times a day. Most of the trawls are predominantly hake, but I have gotten to see a few different species of rockfish too—Widow rockfish, Yellowtail rockfish, and Pacific Ocean Perch (everyone calls them P.O.P.)—and took their lengths, weights, sexes, stomachs, ovaries, and otoliths…

…but you probably don’t know what all that means.

The science team sorts all of the catch down to Genus species, and randomly select smaller sub-samples of each type of organism. We weigh the total mass of each species. Sometimes we save whole physical samples—for example, a researcher back on shore wants samples of fish under 30cm, or all squid, or herring, so we bag and freeze whole fish or the squid.

For the “sub samples” (1-350 fish, ish) we do some pretty intense data collection. We determine the sex of the fish by cutting them open and looking for ovaries or testes. We identify and preserve all prey we find in the stomachs of Yellowtail Rockfish, and preserve the ovaries of this species’ females and others as well. We measure fish individual lengths and masses, take photos of lamprey scars, and then collect their otoliths.

Fish Otolith showing concentric growth rings from here.

Otoliths are hard bones in the skull of fish right behind the brain. Fish use them for balance in the water; scientists can use them to determine a fish’s age by counting the number of rings. Otoliths can also be used to identify the species of fish.

Here is how you remove them: it’s a bit gross.

Otolith instructions from here.

Cod, Redfish, and Hake otoliths from here.

 

A bigger fish species does not necessarily mean a larger otolith. From here.

If you want to check out an amazing database of otoliths, or if you decide to collect a few and want to see what species or age of fish you caught, or if you are an anthropologist and want to see what fish people ate a long time ago? Check out the Alaska Fisheries Science Center—they will be a good starting spot.  You can even run a play a little game to age fish bones!

Pacific Ocean Perch, or P.O.P.

Pacific Ocean Perch, or P.O.P.

 

Personal Log

I haven’t had a lot of spare time since we’ve been fishing, but I did manage to finagle my way into the galley (kitchen) to work with Chief Steward Larry and Second Cook Arlene. They graciously let me ask a lot of questions and help make donuts and fish tacos!  No, not donut fish tacos.  Gross.

How to make friends and influence people

How to make friends and influence people

Working in the galley got me thinking of “ship jargon,” and I spent this morning reading all sorts of etymology.  I was interested to learn that the term crow’s nest came from the times of the Vikings when they used crows or raven to aid navigation for land.  Or that in the days of the tall ships, a boat that lost a captain or officer at sea would fly blue flags and paint a blue band on the hull—hence why we say we are “feeling blue.”  There are a lot more, and you can read some interesting ones here.

You can also click on Adventures in a Blue World below (cartoon citations 1 and 2).

TAS Cat Prenot 2016 cartoon4 v2

And here is a nautical primer from Adventures in a Blue World Volume 1:

A Nautical Primer part I from 2011 aboard the Oscar Dyson

A Nautical Primer from 2011 aboard the Oscar Dyson

 

Did You Know?

Working in the wet lab can be, well, wet and gross. We process hundreds of fish for data, and then have hoses from the ceiling to spray off fish parts, and two huge hoses to blast off the conveyor belt and floors when we are done. But… …I kind of love it.

Yay Science!

Yay Science!

Resources

Etymology navy terms: http://www.navy.mil/navydata/traditions/html/navyterm.html

Interestingly enough, the very words “Sea Speak” have a meaning.  When an Officer of the Deck radios other ships in the surrounding water, they typically use a predetermined way of speaking, to avoid confusion.  For example, the number 324 would be said three-two-four.

 

Cathrine Prenot: Lights in the Ocean. Thursday, July 21, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard Bell M. Shimada
July 17-July 30, 2016

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: Thursday, July 21, 2016

Weather Data from the Bridge
Lat: 46º18.8 N
Lon: 124º25.6 W
Speed: 10.4 knots
Wind speed: 12.35 degree/knots
Barometer: 1018.59 mBars
Air Temp: 16.3 degrees Celsius

 

Science and Technology Log

The ship’s engineering staff are really friendly, and they were happy to oblige my questions and take me on a tour of the Engine Rooms. I got to go into the ‘belly of the beast’ on the Oscar Dyson, but on the tour of the Shimada, Sean Baptista, 1st assistant engineer, hooked us up with headsets with radios and microphones. It is super loud below decks, but the microphones made it so that we could ask questions and not just mime out what we were curious about.

I think the job of the engineers is pretty interesting for three main reasons.

On the way to see the bow thruster below decks

On the way to see the bow thruster below decks

One, they get to be all over the ship and see the real behind-the-scenes working of a huge vessel at sea. We went down ladders and hatches, through remotely operated sealed doors, and wound our way through engines and water purifiers and even water treatment (poo) devices. Engineers understand the ship from the bottom up.

One of four Caterpillar diesel engines powering the ship

One of four Caterpillar diesel engines powering the ship

Second, I am sure that when it is your Job it doesn’t seem that glamorous, but an engineer’s work keeps the ship moving. Scientists collect data, the Deck crew fish, the NOAA Corps officers drive the ship, but the engineers make sure we have water to drink, that our ‘business’ is treated and sanitary, that we have power to plug in our computers (the lab I am writing in right now has 6 monitors displaying weather from the bridge, charts, ship trackers, and science data) and science equipment.

I did not touch any buttons. Promise.

I did not touch any buttons. Promise.

Finally, if something breaks on the ship, engineers fix it. Right there, with whatever they have on hand. Before we were able to take the tour, 1st Assistant Engineer Baptista gave us a stern warning to not touch anything—buttons, levers, pipes—anything. There is a kind of resourcefulness to be an engineer on a ship—you have to be able to make do with what you have when you are in the middle of the ocean.

The engineers all came to this position from different pathways—from having a welding background, to being in the navy or army, attending the U.S. Merchant Marine Academy, or even having an art degree.  The biggest challenge is being away from your family for long periods of time, but I can attest that they are a pretty tight group onboard.

 

In terms of the science that I’ve been learning, I’ve had some time to do some research of some of the bycatch organisms from our Hake trawls. “Bycatch” are nontargeted species that are caught in the net.  Our bycatch has been very small—we are mostly getting just hake, but I’ve seen about 30-40 these cute little fish with blue glowing dots all over their sides. Call me crazy, but anything that comes out of the ocean with what look like glowing sparkling sapphires is worthy of a cartoon.

So… …What is small, glows, and comprises about 65% of all deep-sea biomass? Click on the cartoon to read Adventures in a Blue World 3.

Adventures in a Blue World, CNP. Lights in the Ocean

Adventures in a Blue World, CNP. Lights in the Ocean

 

Personal Log

The weather is absolutely beautiful and the seas are calm. We are cruising along at between 10-12 knots along set transects looking for hake, but we haven’t seen—I should say “heard” them in large enough groups or the right age class to sample.  So, in the meanwhile, I’ve taken a tour of the inner workings of the ship from the engineers, made an appointment with the Chief Steward to come in and cook with him for a day, spent some time on the bridge checking out charts and the important and exciting looking equipment, played a few very poor rounds of cornhole, and have been cartooning and reading.

I was out on the back deck having a coffee and an ice cream (I lead a decadent and wild life as a Teacher at Sea) and I noticed that the shoreline looked very familiar. Sure enough—it was Cannon Beach, OR, with Haystack Rock (you’ll remember it from the movie The Goonies)! Some of my family lived there for years; it was fun to see it from ten miles off shore.

Chart showing our current geographic area. Center of coast is Cannon Bean, Oregon.

Chart showing our current geographic area. Center of coast is Cannon Beach, Oregon.

View of Tillamook Head and Cannon Beach. It looked closer in person.

View of Tillamook Head and Cannon Beach. It looked closer in person.

 

Did You Know?

One of the scientists I have been working with knows a lot about fish. He knows every organism that comes off the nets in a trawl down to their Genus species. No wonder he knows all the fish—all of the reference books that I have been using in the wet lab were written by him. Head smack.

Dan Kamikawa, our fish whisperer

One of the books written by Dan Kamikawa, our fish whisperer

 

Resources

My sister (thank you!) does my multi media research for me from shore, as I am not allowed to pig out on bandwidth and watch lots of videos about bioluminescence in the ocean.  This video is pretty wonderful.  Check it out.

If you want to geek out more about Lanternfish, read this from a great site called the Tree of Life web project.

Interested in becoming a Wage Mariner in many different fields–including engineering?  Click here.

Cathrine Prenot: A Fish Tale, Too Big to Fail. July 18, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard the Bell M. Shimada
July 17-July 30, 2016

 

Mission: 2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem

Geographical area of cruise: Pacific Coast from Newport, OR to Seattle, WA

Date: July 18, 2016

Weather Data from the Bridge:
Lat: 45º19.7 N
Lon: 124º21.6 W
COG: 11.2
Speed: 17.1 knots
Air Temp: 16.4 degrees Celsius
Barometer (mBars): 1019.54
Relative Humidity: 84%

Science and Technology Log

It is exciting to be out to sea on “Leg 2” of this cruise! The official title of our research is “2016 California Current Ecosystem: Investigations of hake survey methods, life history, and associated ecosystem.” One of the key portions of this leg of the trip is to collect data on whether or not a piece of equipment called the “Marine Mammal Excluder Device” (MMED) makes any difference in the fish lengths or the species we catch. Here is how it works (all images from Evaluation of a marine mammal excluder device (MMED) for a Nordic 264 midwater rope trawl):

The catch swims towards the codend of the net and encounters the MMED

The catch swim towards the codend of the net and encounter the MMED

The catch encounters the grate; some go through the grate while others escape the net through the hatch (shown by the orange buoy).

Some of the catch go through the grate (to the codend) while others escape the net through the hatch (shown by the orange buoy).

Why is this important?  For example, if all of one type of fish in a trawl escape through this MMED, we would be getting a different type of sample than we would if the equipment was off the nets.  Our lead scientist, Dr. Sandy Parker-Stetter explained: “If all the rockfish go out the top escape panel, how will we know they were there?”   To collect data on this, we will be doing a lot of trawls—or fishing, for those non-sea faring folk—some with the MMED and others without it. These will be small catches, we need about 300-400 fish, but enough to be able to make a determination if the equipment effect the data in any way.

We have done a few trawls already, and here are some of the photos from them:

'Young of the Year' Hake

‘Young of the Year’ Hake

Pacific Hake sample

Pacific Hake sample

Wanted: must love fish. And science.

Wanted: must love fish. And science.

All of this reminds me of why we are so concerned with accurately estimating the population of a little fish. To illustrate, let me tell you a story—a story of a fishery thought too big to fail—the Great Banks Atlantic Cod fishery. Why don’t you click on Issue 2 of Adventures in a Blue World: A Fish Tale, Too Big to Fail.

Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail

Adventures in a Blue World, CNP. A Fish Tale: Too Big to Fail

Cod populations decreased to such a degree (1% of previous numbers), that the Canadian Government issued a moratorium on Cod fishing in 1992.  Our mission—to investigate of hake survey methods, life history, and associated ecosystem—is designed to prevent such a devastating result. We don’t want Hake or other species to go the same route.

Atlantic Cod circa 1920s: from here

Personal Log

We left the left the dock on Sunday at 1145, and made our way under the Newport Bridge and out to sea. It was really wonderful to watch the ship leave the harbor from way up on the Flying Bridge—the top-most deck of the ship. There are four tall chairs (bolted to the deck) at the forward end of the deck, an awning, and someone even rigged a hammock between two iron poles. It is rather festive, although again, there were no drinks with umbrellas being brought to us.

View of Newport, OR from the flying bridge of the Shimada

View of Newport, OR from the flying bridge of the Shimada

I didn’t have any problems with seasickness on my last voyage, but I did take some meds just in case. One of the researchers said that he doesn’t take any meds any more, he just gets sick once or twice and then feels much better. If you are interested, here is a link to my previous cartoon about why we are sea-sick, and how and why ginger actually works just as well as other OTC drugs. All I can say now is that I’m typing this blog in the acoustics lab, and the ship does seem to be moving rather alarmingly from fore to aft–called pitching.  Maybe I should find a nice porthole. In the meanwhile, you can read “Why are we seasick.”

 

Did You Know?

The end of the fishing net is called the codend.  Who knew?  This and many more things can be learned about fishing from reading this handy reference guide.

Cathrine Prenot: Introduction, July 8, 2016

NOAA Teacher at Sea
Cathrine Prenot
Aboard the Bell M. Shimada
July 17-July 30, 2016

Mission: Pacific Hake Research
Geographic area of cruise:
Newport, OR – Seattle, WA
Date:
Friday, July 8, 2016
Weather Data from the Bridge: N/A

Personal Log
In 2011 I was honored to learn and work aboard the NOAA ship the Oscar Dyson in Alaska as a Teacher at Sea, and I can’t tell you how many people told me that it was the trip of a lifetime.  Imagine my excitement to learn that I get to return to sea as a Teacher at Sea alumni aboard the Bell M. Shimada.  The way I see it is that I get two trips of a lifetime, in one lifetime!  I feel pretty lucky.

On my first Teacher at Sea voyage, I documented my trip via a cartoon series called Adventures in a Blue World, a tribute to Sylvia Earle’s book The World is Blue.  This time I will once again do my best to bring to life my Teacher at Sea experiences via a second volume of cartoons.  You can read the introduction below on being selected as a Teacher at Sea, Hake, and the beginning of this next adventure.  (Cartoon citations 1, 2, and 3)

Adventures in a Blue World, CNP, 2016

Adventures in a Blue World, CNP, 2016 Click on the image to open in a new window

I have been an educator for nineteen years, and now live and work in West Texas–on the Llano Estacado–in Lubbock.  I’m a science instructional coach at Estacado High School, which basically means that I get to collaborate with teachers and students to develop great labs and activities.  It is a wonderful job, and I am looking forward to bringing back real-world research and developing curriculum for our students.

I am going to miss my family, Ike, Madalyn, and Eva.  The girls love the water (even bringing inflatable fish into the house…), and Ike has run rivers all over the Southwest, but I get to go where no family and friends are allowed–from Newport, Oregon, to Seattle, Washington on the NOAA ship the Bell M. Shimada.  They will also be following along with me remotely.

Gulf of Mexico, 2014

Gulf of Mexico, 2014

The girls 'water' the garden

The girls ‘water’ the garden

Found Nemo: in living room

Found Nemo: in living room

Did you Know?

Some quick math for you: since its inception in 1990, Teachers at Sea have logged over 100,000+ hours of research on 8,200+ days at sea.  Crunching some quick numbers, this equals about 67 school years of professional development in Real Science-Real Research-and Real Experience.  Pretty nifty, eh?  See this link for more.

Until our next adventure,

Cat