Catherine Fuller: National Mooring Day, July 11, 2019

NOAA Teacher at Sea

Catherine Fuller

Aboard R/V Sikuliaq

June 29 – July 18, 2019


Mission: Northern Gulf of Alaska (NGA) Long-Term Ecological Research (LTER)

Geographic Area of Cruise: Northern Gulf of Alaska

Date: July 11, 2019

Weather Data from the Bridge

Latitude: 59° 00.823 N
Longitude: 148° 40.079 W
Wave Height: 1 ft, ground swell 3-4 ft
Wind Speed: 5.4 knots
Wind Direction: 241 degrees
Visibility: 5 nm
Air Temperature: 13.3 °C
Barometric Pressure: 1014.6 mb
Sky: Overcast


Science and Technology Log

At home, I regularly check information from the buoys that literally surround our islands.  They give me real time, relevant data on ocean conditions and weather so that I am informed about storm or surf events.  We also have buoys that track tsunami data, and the accuracy and timeliness of their data can save lives.  Deploying and monitoring these buoys is a job that requires knowledge of ocean conditions, electronics, rigging and computer programming. 

preparing buoy system
Pete (foreground) and Seth set up the buoy system in preparation for deployment
buoy anchors
The anchors for the buoys were made of train wheels

Pete Shipton is onboard as the mooring technician from UAF’s Seward Marine Center. This morning, he, Dr. Danielson and the crew deployed three moorings near oceanographic station GAK6i (about 60 miles offshore in the Northern Gulf of Alaska) at a depth of 230 meters. The search for the right depth required that R/V Sikuliaq do an acoustic survey of the area last night to find a kilometer-long area of the right depth and bottom slope.  The three moorings will be situated close enough to each other that for all purposes they are collecting a co-located set of readings representative of this site, yet far enough apart, with small watch circles, that they don’t overlap and foul each other.  The set of three is designed to have one surface buoy on either side with sensors at the surface and through the water column and a third buoy in the middle with sensors also distributed across all depths.

The first buoy, GEO-1, gives information on physics, optics, nutrient
chemistry and has a profiling instrument that will “walk” up and down the mooring wire from about 25 m above the seafloor to 25 m below the surface, collecting profiles four times a day. The mooring has many of the sensors that the ship’s CTD has, including an ADCP (Acoustic Doppler Current Profiler), a weather station with a GPS that measures wind speed, relative humidity, sea level pressure, and air temperature.  The buoy system was designed to withstand and operate in 8 m waves; in larger waves the surface buoy is expected to become submerged.  At one meter of depth, GEO-1 measures the temperature, salinity, chlorophyll fluorescence and photosynthetically available radiation. 

On GEO-2 (the center buoy), similar data is recorded at 22 m below the surface.  There will also be a sediment trap, mammal acoustics recorder, particle camera, and an AZFP (acoustic zooplankton fish profiler), which has four frequencies that can detect sea life from the size of fish down to the size of zooplankton. It records sound reflections from all sizes of creatures and can see fish migrations during day or night within a range of 100m (from 100m depth to the surface).

Buoy GEO-3 is the primary “guard” buoy, or marker for the whole set. It also has a real-time transmitting weather station and near-surface measurements.

Linking the mooring lines and the anchors are acoustic releases,
which are remotely controlled tethers whole sole function to listen for a “release” command that will tell them to let go of the anchor.  Since the limiting factor on the instruments is the life of the batteries, they will be picked up in a year and the acoustic release will allow the instruments to be brought back aboard Sikuliaq. These buoys will be providing real time information for groups such as the Alaska Ocean Observing System (www.aoos.org) about weather and ocean conditions, while also collecting
information about sea life in the area.

Pete and Seth on buoy
Pete (left) and Seth (right) test the stability of the buoy

Deploying the buoys was a lengthy process that required careful
coordination of parts, lines, chains and personnel.  Luckily everything
went off perfectly!  As the anchor weights for the two surface buoys deployed, they briefly pulled the buoys under, causing a bit of joking about whether the line length was calculated correctly. The brief “dunk test” was an excellent first trial for submergence during this coming winter’s storm conditions.

The second buoy briefly scares us by going under!


MarTechs:

There are opportunities for careers at sea in a wide variety of positions on board a research vessel.  One of the most interesting is the MarTech (Marine Technician), because of their dual role during a scientific cruise. 

The Marine Technicians are technically assigned to the science team although they are a part of the ship’s crew.  Bern and Ethan are the MarTechs on this cruise and both work specifically with R/V Sikuliaq. They are considered a part of whatever science team is on board at the time. The MarTechs are on 12-hour shifts, from 8:00 to 8:00.  Ethan is on at night, and Bern is on during the day, although there is some overlap.  The two men help to deploy and recover instruments for the science team and as well as helping the crew with any deck operations.  They also are responsible for the computer lab and overseeing the data displays and production from the various sensors, as well as maintaining the instruments on the ship that provide information.  Although they are always at hand to help when we need it, you will often find them also repairing and upgrading ship’s equipment and helping with engineering tasks.

Bern sets up camera
Bern setting up one of his cameras.

Bern has been a MarTech on R/V Sikuliaq since 2013, and had previous experience on other research vessels, both American and international.  Bern is also the ship’s unofficial documentation guy; he has a number of small cameras that he regularly uses to capture the action on board, whether from the vantage point of one of the cranes or on top of his own helmet. You can find examples of Bern’s camera work on R/V Sikuliaq’s Instagram site (@rvsikuliaq).

Ethan and Ana
Ethan helps Ana with the iron fish.

Like Bern, Ethan has also worked on other research vessels but has been on R/V Sikuliaq since it was built.  This is the only ship he’s been a MarTech on.  His interest in oceanography, especially marine acoustics, led him to this career.  Marine acoustics is more than just listening for large species such as whales.  There are acoustic sensors that “listen” to the ship and help ensure that it is functioning normally.  Other acoustic sensors, such as the ones based in the open keel of the ship use sound technology to map the ocean floor as we progress on our path.  Ethan was kind enough to show me the keel and explain the instrumentation. In addition, there are instruments that constantly record salinity, temperature, current strength, solar radiation and other measurements along the path we travel to provide a more complete picture of the environmental conditions existing at every point. 

open keel
The ship’s acoustic instruments are mounted in the open keel; it’s open to the sea!

The marine technicians manage the computer lab when they are not needed for operations.  This lab is the nerve center of the ship and allows the science team to work closely with the bridge to coordinate the movement of instruments and the speed of the vessel through the water to achieve optimum results.  You can find information on meteorology, navigation, engine performance, depth sounders, closed circuit monitors, ship acoustics and deck winch statistics by looking at specific screens.  In addition, the staterooms have monitors that also allow viewing of certain screens. 

computer lab
The screens in the computer lab provide all the information needed to make decisions about how and when to deploy data-gathering instruments.

By far the two displays that are followed most closely are the CTD cast screens and the AIS screen.  The AIS screen gives our course on a map, and shows our progress as well as future waypoints.  It also shows our speed and bearing to our next point as well as ocean depth and wind speed and direction.  The CTD screen shows real-time results in a number of categories such as salinity, oxygen, chlorophyll, temperature, nitrates and light as the CTD descends and ascends through the water column.  Based on the results of the down cast, the teams determine the depths from which they’d like water samples collected as the CTD rises. 

AIS screen
The OLEX or AIS screen shows our path as well as navigational information.
The CTD screen looks like spaghetti until you understand the color code for each line.


The Bridge:

The equipment on the bridge represents the pinnacle of technology as far as ship operations go.  The captain’s chair has been described by some members of the science team as the “Battlestar Galactica” or “Star Trek” chair, and it really does look like it fits in a science fiction movie.  Displays on the bridge show performance of the engines, radar returns and our bearing and range from them, and any other pertinent information to vessel performance.  Ship movement and waypoints are hand plotted by the second mate, who also oversees ship movement along with the captain, chief mate and third mate.  The ship’s officers work the bridge on a rotating watch schedule.  One of the cool features of this ship is that it operates two Z-drives, similar to what is used on tugboats.  These are propellers that can move independently of each other and turn in any direction.  They allow the ship to be maneuvered precisely, which is a great help when we need to stay on a station through multiple operations.  Various views of the bridge and the navigational instruments used by the ship’s crew are shown in the gallery below.

Captain Eric Piper
Captain Eric Piper shows off his new jacket


Personal Log

Happy Mooring Day!  It’s our self-declared “national holiday”! Because the process of deploying the moorings and buoys took up all of the morning and a part of the afternoon, most of the rest of the science team took the morning off and slept in.  So many of them ran on the treadmill that running might become a part of our “holiday” tradition.  My roommate even took bacon back to her room to eat in bed.  Gwenn brought out her Twizzlers…somewhat appropriate because they look like steel cable (even though the moorings did not use cable).  It was a nice breather for the science team, who have been working very hard to collect samples and run experiments.  Somewhere along the line, the idea of making Mooring Day a “holiday” caught on, and it’s become a bit of a joke amongst the team.  We’re down to a week to go, and everyone is beginning to think about what happens when we get in and when we all go home.  But… we’re not quite there yet, and there’s a lot of work left to do.


Animals Seen Today

stowaway
Our stowaway came to inspect today’s deployment.

We apparently have a stowaway…a small finch-like bird that flits about the ship.  It must have joined us when we were near land, and now we ARE the land. 

Shelley Gordon: ACCESS Partnership, July 24, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 24, 2019


Applied California Current Ecosystem Studies (ACCESS) is a joint research project conducted by NOAA (Cordell Bank National Marine Sanctuary and Greater Farallones National Marine Sanctuary) and Point Blue Conservation Science. 

NOAA’s Office of National Marine Sanctuaries manages 13 sanctuaries and two marine national monuments, protecting a total of 600,000 square miles of marine and Great Lakes waters within the United States.  Four of the sanctuaries are in California.  Greater Farallones National Marine Sanctuary (GFNMS) is a large sanctuary that protects over 3,000 square miles of California coast and offshore marine habitat from San Francisco to Point Arena.  There are numerous beaches and costal habitats included in this sanctuary, as well as the Farallon Islands.  Cordell Bank National Marine Sanctuary (CBNMS) is a smaller sanctuary around Cordell Bank, a large offshore seamount approximately 22 miles from the coast.  Sitting at the edge of the continental shelf, Cordell Bank is approximately 26 square miles in size, and while you cannot tell it is there from the surface, it supports a huge diversity of brightly colored sponges, corals, anemones, and other invertebrates.  Both sanctuaries protect a wide variety of living organisms across the food chain, from phytoplankton to blue whales.

Cordell Bank and Greater Farallones NMS
Map of Cordell Bank and Greater Farallones National Marine Sanctuaries. Map taken from cordellbank.noaa.gov

Point Blue Conservation Science is a non-profit organization that is working to combat climate change, habitat loss, and other environmental threats by helping to develop solutions that benefit wildlife and people.  They work with local natural resource managers (like National Marine Sanctuaries) to help monitor and improve the health of the planet. 

Scientists from each of these organizations have come together to work on ACCESS.  This project, started back in 2004, collects data on the physical conditions and living things within GFNMS and CBNMS.  Scientists use this data to document wildlife abundance, monitor changes over time, and help inform decisions about conservation efforts.  For example, data collected on the location of whales can help create policies to reduce threats to whales, like ship strikes and entanglements.   There are many huge ships that come in and out of San Francisco Bay on a daily basis.  Scientists are currently working with the industry to support a reduction in ship speed, which can reduce the likelihood of whales coming into dangerous contact with ship hulls.  Another threat to whales are entanglement in fishing gear.  Legal commercial crab fishing using crab pots occurs within the sanctuaries.  In recent years there have been greater incidents of whales being entangled in the buoy lines that fisherman use to help them collect the crab pots from the bottom of the ocean.  As the result of a recent lawsuit filed by ­­­­­the Center for Biological Diversity, the commercial crab season ended early this year to try to help protect the whales.

Adult Common Murre
Adult Common Murre. Photo: Dru Devlin

An interesting, and possibly concerning, phenomenon is being observed on our cruise.  Kirsten Lindquist, the seabird expert on this cruise, has seen a great number of Common Murres on the water during our data collection observations.  However, she has noticed a lack of chicks.  Common Murres nest on rocky outcroppings and the chicks leave the nest 15-25 days after they hatch, before they are able to fly.  The chicks then float on the water are fed by their parents for several weeks until they can feed themselves.  Generally, at this time of year she would expect to see a large number of adult and chick pairings floating on the surface of the water together.  Today we saw quite a few chicks floating with an adult, but this has not been the case during the other days on this cruise.  It is unclear why there are fewer Common Murre chicks than are typically seen.

Did You Know?

Dani and Shelley deploy CTD
Dani Lipski and me deploying the CTD, a device used to measure water conductivity, temperature, and depth. Photo: Jaime Jahncke

Scientists use “conductivity” as a measure of how salty the ocean water is.  If the water is relatively cold and salty that is a sign of “good” upwelling conditions, meaning that the cold water from the deep ocean is moving up over the continental shelf, bringing a high concentration of nutrients with it.  The upwelling along the California coast is a main reason why there is such a diversity of ocean life here.

Shelley Gordon: Life on Board R/V Fulmar, July 23, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 23, 2019

Weather Data: Wind – NW 19-23 knots, gust ~30 knots, wind wave ~7′, swell SSW 1′ at 16 seconds; Partly sunny, with patchy fog early

R/V Fulmar
R/V Fulmar refueling at Spud Point marina in Bodega Bay.

During this week, I am living aboard R/V Fulmar.  The “research vessel” is a 67-foot catamaran (meaning it has two parallel hulls) with an aluminum hull.  This boat was specifically designed to support research projects in the three National Marine Sanctuaries along the central and northern California coast, and was first put in the water in 2007.  Normally, the Fulmar is based out of Monterey Bay harbor in the Monterey Bay National Marine Sanctuary.  However, this week she is being put to work on an ACCESS cruise in the two sanctuaries a little farther to the north, Cordell Bank and Greater Farallones.  

Fishing trawlers at Spud Point marina
Fishing trawlers at Spud Point marina.

Each evening, after a full day of collecting samples, the Fulmar motors back into the harbor for the night.  We are working out of two harbors on this cruise, Sausalito and Bodega Bay.  The vibe in each harbor is quite different.  Sausalito is full of private pleasure yachts, small sailboats, and live aboard boats/houseboats.  Spud Point marina in Bodega Bay is much more of a working marina.  The majority of the boats are large fishing trawlers.  It is currently salmon fishing season, and the boats that are working bring back their daily catch to the marina so that it can be transported to market.

The Fulmar is operated by two crew members on this cruise.  Clyde Terrell is the captain and Rayon Carruthers is the first mate.  In addition to the crew there have been 6-7 scientists on board, and myself.  Jan Roletto is a scientist from Greater Farallones, Kirsten Lindquist and Dru Devlin work at the Greater Farallones Association, and from Cordell Bank we have Dani Lipski and Rachel Pound.  Jaime Jahncke is lead Principal Investigator on ACCESS and works at Point Blue Conservation Scientist.  Kate Davis, currently a post-doc at the University of South Carolina, also joined the first half of the trip.

The boat has 5 main areas.  The “bridge” contains the digital and physical equipment that the crew uses to steer the ship.  There are several computers that display radar signals and a GPS map.  In the main cabin there are bunks for sleeping, a marine head (bathroom) with a toilet, sink, and shower, a fully-equipped kitchen, and a lab/work area.  The back deck is where most of the equipment for sample collecting is stored and put to use when samples are being collected.  On the top deck there are life rafts and safety equipment, as well as an additional steering wheel.  This is also where the team sits to make observations as we move along the transects.  Finally, there are two engine rooms underneath the main cabin.

Shelley in immersion suit
Me, putting on the immersion suit. Photo: Jan Roletto

Safety on the boat is obviously very important.  Before we went the first day, I received a full safety briefing and I got to practice donning an immersion suit, which we would need to wear in the case of an emergency where we might need to evacuate the ship and be exposed to cold water for a prolonged period of time.  The immersion suit is like a full-footed, full-fingered, and hooded wetsuit.  The goal is to be able to get into the immersion suit in less than two minutes, which was actually a little more difficult than I expected given that once you have the full-fingered gloves on it is difficult to effectively use your hands to finish zipping up the suit.  Anyone working on the back deck collecting samples is required to wear a life jacket or float coat and a hard hat. 

The daily activities on the boat vary depending on your role.  In general, we have been leaving the marina between 6:30-7:00am and there has typically been a 1-2 hour transit to the first data collection station.  During that time the team is generally relaxing, preparing for the day, or employing their personal strategy to combat seasickness (napping, lying down, or sitting in the fresh air on the top deck).  I’ve been fortunate to feel pretty good on this trip and haven’t struggled with seasickness.  Once data collection begins, my role on the back deck has been a series of action and waiting.  Since we are using heavy tools to collect data at significant depths, we use a crane and cable to hoist the equipment in and out of the water.  The winch that unwinds and winds the cable can lower or lift the equipment at a rate of ~20 m/min.  For the most part while the equipment is away from the boat we are waiting, and at times we have lowered data collection tools beyond 200m, which means a travel time of ~20 minutes, down and back.

Jaime and Kirsten
Jaime Jahncke and Kirsten Lindquist recording observations along ACCESS transect 3N.

However, today we actually did observation-only lines, so I had a lot of time to relax and observe.  The weather also turned a little bit today.  We had pretty dense fog in the morning, and more wind and rougher seas than on previous days.  But, near the end of the day, as we reached Drake’s Bay in Point Reyes National Seashore, the fog suddenly cleared and Point Reyes provided some protection from the wind.  The marine life seemed to appreciate the sun and wind protection as well as there was a large group of feeding seabirds and humpback whales right off the point.  We ended the day on a pleasant, sunny ride along the coast and underneath the Golden Gate Bridge, docking for the night in Sausalito.


Did You Know?

Humpback whales are migratory.  The population we are able to see here migrate annually from their breeding grounds off the coast of Mexico.  They come each summer to enjoy the nutrient rich waters of the California coast.  Humpback whales thrive here due to upwelling of nutrients from the deep ocean, which helps supports their favorite food – krill!  Humpback whales feed all summer on krill, copepods, and small fish so that they can store up energy to migrate back down to the warmer tropical waters for the winter breeding season.  I hope they get their fill while they’re here since they won’t eat much until they return, next summer.

humpback whale tail.
A humpback whale tail. Photo: Dru Devlin

Shelley Gordon: A Day on the Back Deck, July 20, 2019

NOAA Teacher at Sea

Shelley Gordon

Aboard R/V Fulmar

July 19-27, 2019


Mission:  Applied California Current Ecosystem Studies Survey (ACCESS)

Geographic Area of Cruise:  Pacific Ocean, Northern and Central California Coast

Date:  July 20, 2019

Weather data: Wind – variable 5 knots or less, wind wave ~1’, Swell – NW 7’@ 10sec / S 1’ @ 11sec, Patchy fog


Science Log

7:39am – We are about to pass under the Golden Gate Bridge, heading west toward the Farallon Islands.  Several small fishing boats race out in a line off our port side, hulls bouncing against the waves and fishing nets flying in the wind.  I am aboard R/V Fulmar in transit toward data collection point 4E, the eastern most point along ACCESS Transect 4.  The TTG (“time to go,” or the time we expect to arrive at 4E) is estimated at 1h53’ (1 hour, 53 minutes), a figure that fluctuates as the boat changes course, speeds up, or slows down.  

This is my second day on an ACCESS research cruise.  Yesterday I got my boots wet in the data collection methods used on the back deck.  The ACCESS research project collects various types of data at specific points along transects (invisible horizontal lines in the ocean). Today we will be collecting samples at 6 different points along Transect 4.  With one day under my belt and a little better idea of what to expect, today I will aim to capture some of the action on the back deck of the boat throughout the day. 

9:41am – Almost to Station 4E. “5 minutes to station.”  This is the call across the radio from First Mate Rayon Carruthers, and also my signal to come down from the top deck and get ready for action.  I put on my rain pants, rubber boots, a float jacket, and a hard hat.  Once I have my gear on, I am ready to step onto the back deck just as the boat slows down for sample collection to commence.  At this first station, 4E, we will collect multiple samples and data.  Most of the sampling methods will be repeated multiple times through the course of the day at different locations and depths (most are described below). 

deploying hoop net
Dani Lipski and Shelley Gordon deploy the hoop net. Photo: Rachel Pound

10:53am – Station 4EX. We finished cleaning the hoop net after collecting a sample at a maximum depth of 33m.  The hoop net is a tool used to collect a sample of small living things in deep water.  This apparatus consists of an ~1m diameter metal ring that has multiple weights attached along the outside.  A 3m, tapered fine mesh net with a cod end (small plastic container with mesh vents) hangs from the hoop.  Attached to the net there is also a flow meter (to measure the amount of water that flowed through the net during the sample collection) and a depth sensor (to measure the depth profile of the tow).  To deploy the net, we used a crane and winch to hoist the hoop out over the surface of the water and drop the net down into the water. Once the net was let out 100m using the winch, we brought it back in and pulled it back up onto the boat deck.  Using a hose, we sprayed down the final 1m of the net, pushing anything clinging to the side toward the cod end.  The organisms caught in the container were collected and stored for analysis back at a lab.  On this haul the net caught a bunch of copepods (plankton) and ctenophores (jellyfish).

Kate Davis preps samples
Kate Davis fills a small bottle with deep water collected by the Niskin bottle.

11:10am – Station 4ME. Dani Lipski just deployed the messenger, a small bronze-colored weight, sending it down the metal cable to the Niskin sampling bottle.  This messenger will travel down the cable until it makes contact with a trigger, causing the two caps on the end of the Niskin bottle to close and capturing a few liters of deep water that we can then retrieve back up at the surface.  Once the water arrives on the back deck, Kate Davis will fill three small vials to take back to the lab for a project that is looking at ocean acidification.  The Niskin bottle is attached to the cable just above the CTD, a device that measures the conductivity (salinity), temperature, and depth of the water.  In this case, we sent the Niskin bottle and CTD down to a depth of 95m. 

deploying the CTD
Dani Lipski and Shelley Gordon deploy the CTD. Photo: Rachel Pound

12:16pm – Station 4M. Rachel Pound just threw a small plastic bucket tied to a rope over the side of the boat.  Using the rope, she hauls the bucket in toward the ship and up over the railing, and then dumps it out.  This process is repeated three times, and on the third throw the water that is hauled up is collected as a sample.  Some of the surface water is collected for monitoring nutrients at the ocean surface, while another sample is collected for the ocean acidification project.

surface water sample
Rachel Pound throws a plastic bucket over the side railing to collect a surface water sample.

1:36pm – Station 4W. Using a small hoop net attached to a rope, Rachel Pound collected a small sample of the phytoplankton near the surface.  She dropped the net down 30ft off the side of the boat and then towed it back up toward the boat.  She repeated this procedure 3 times and then collected the sample from the cod end.  This sample will be sent to the California Department of Public Health to be used to monitor the presence of harmful algal blooms that produce domoic acid, which can lead to paralytic shellfish poisoning.

Tucker trawl net
Shelley Gordon, Dru Devlin, Jamie Jahncke, and Kirsten Lindquist prepare the Tucker trawl net. Photo: Kate Davis

2:54pm – The final sample collection of the day is underway.  Jaime Jahncke just deployed the first messenger on the Tucker trawl net.  This apparatus consists of three different nets.  These nets are similar to the hoop net, with fine mesh and cod ends to collect small organisms in the water.  The first net was open to collect a sample while the net descended toward ocean floor.  The messenger was sent down to trigger the device to close the first net and open a second net.  The second net was towed at a depth between 175-225m for ~10 minutes.  After the deep tow, a second messenger will be sent down the cable to close the second net and open a third net, which will collect a sample from the water as the net is hauled back to the boat.  The Tucker trawl aims to collect a sample of krill that live near the edge of the continental shelf and the deep ocean.

3:46pm – After a full day of action, the boat is turning back toward shore and heading toward the Bodega Bay Marina. 

5:42pm – The boat is pulling in to the marina at Bodega Bay.  Once the crew secures the boat along a dock, our day will be “done.”  We will eat aboard the boat this evening, and then likely hit the bunks pretty early so that we can rise bright and early again tomorrow morning, ready to do it all again along a different transect line!


Did You Know?

The word copepod means “oar-legged.” The name comes from the Greek word cope meaning oar or paddle, and pod meaning leg. Copepods are found in fresh and salt water all over the world and are an important part of aquatic food chains. They eat algae, bacteria, and other dead matter, and are food for fish, birds, and other animals. There are over 10,000 identified species of copepods on Earth, making them the most numerous animal on the planet.

David Madden: Engines, Dolphins, and Sharksuckers, July 24, 2019

NOAA Teacher at Sea

David Madden

Aboard NOAA Ship Pisces

July 15-29, 2019


Mission: South East Fishery-Independent Survey (SEFIS)

Geographic Area of Cruise: Atlantic Ocean, SE US continental shelf ranging from Cape Hatteras, NC (35°30’ N, 75°19’W) to St. Lucie Inlet, FL (27°00’N, 75°59’W)

On board off the coast of South Carolina – about 50 miles east of Charleston (32°50’ N, 78°55’ W) – after a slight change of plans last night due to the approaching tropical depression.

Date: July 24, 2019

Weather Data from the Bridge:
Latitude: 32°50’ N
Longitude: 78°55’ W
Wave Height: 3-4 feet
Wind Speed: 15 knots
Wind Direction: Out of the North
Visibility: 10 nm
Air Temperature: 24.6°C 
Barometric Pressure: 1011.8 mb
Sky: Cloudy

Sunset over the Atlantic Ocean
Sunset over the Atlantic Ocean
NOAA Pisces Full Track 7-20-19
This is a map from the other day outlining the path of the ship. The convoluted pattern is the product of dropping off and picking up 24 (6 x 4) fish traps per day, along with the challenges of navigating a 209 foot ship in concert with gulf stream currents and winds.



Science and Technology Log

Life and science continue aboard NOAA Ship Pisces.  It seems like the crew and engineers and scientists are in the groove.  I am now used to life at sea and the cycles and oddities it entails.  Today we had our first rain along with thunderstorms in the distance.  For a while we seemed to float in between four storms, one on the east, west, north, and south – rain and lightning in each direction, yet we remained dry.  This good thing did indeed come to an end as the distant curtains of rain closed in around us.  The storm didn’t last long, and soon gathering the fish traps resumed. 

Dave with red grouper
Processing fish: measuring length and weight of a red grouper, Epinephelus morio.
Fish Count for July 23, 2019
Yesterday’s fish count. Compare to other day’s catches: Tons of vermillion snapper, tomtate, and black sea bass. And one shark sucker (read on for more). Thank you, Zeb, for tallying them up for me. 


The highlight of yesterday (and tied for 1st place in “cool things so far”) was a tour of the engine room lead by First Assistant Engineer, Steve Clement.  This tour was amazing and mind-blowing.  We descended into the bowels of the ship to explore the engine rooms and its inner workings.  I think it rivals the Large Hadron Collider in complexity. 

I kept thinking, if Steve left me down here I would surely get lost and never be found.  Steve’s knowledge is uncanny – it reminded me of the study where the brains of London cab drivers were scanned and shown to have increased the size of their hippocampus.  (An increase to their memory center apparently allows them to better deal with the complexities of London’s tangled streets.)  And you’re probably thinking, well, running a massive ship with all its pipes and wires and hatches and inter-related, hopefully-always-functioning, machinery is even harder.  And you’re probably right!  This is why I was so astounded by Steve’s knowledge and command of this ship.  The tour was close-quartered, exceptionally loud, and very hot.  Steve stopped at times to give us an explanation of the part or area we were in; four diesel engines that power electric generators that in turn power the propeller and the entire ship.  The propeller shaft alone is probably 18 inches in diameter and can spin up to 130 rpm. (I think most of the time two engines is enough juice for the operation).  Within the maze of complexity below ship is a smooth running operation that allows the crew, scientists, and NOAA Corps officers to conduct their work in a most efficient manner. 

Dave and Steve and engines
First Assistant Engineer Steve Clement and TAS Dave Madden in the Engine Room

I know you’ve all been wondering about units in the marine world.  Turns out, students, units are your friend even out here on the high seas!  Here’s proof from the bridge, where you can find two or three posted unit conversion sheets.  Makes me happy.  So if you think that you can forget conversions and dimensional analysis after you’re finished with high school, guess again!

conversions
Posted unit conversion sheets

Speaking of conversions, let’s talk about knots.  Most likely the least-understood-most-commonly-used unit on earth.  And why is that?  I have no idea, but believe me, if I were world president, my first official action would be to move everyone and everything to the Metric System (SI). Immediately. Moving on. 

Back to knots, a unit used by folks in water and air.  A knot is a unit of speed defined as 1 nautical mile/hour.  So basically the same exact thing as mph or km/hr, except using an ever-so-slightly-different distance – nautical miles.  Nautical miles make sense, at least in their origin – the distance of one minute of longitude on a map (the distance between two latitude lines, also 1/60 of a degree).  This works well, seeing as the horizontal lines (latitude) are mostly the same distance apart.  I say mostly because it turns out the earth is not a perfect sphere and therefore not all lines are equidistant.  And you can’t use the distance between longitude lines because they are widest at the equator and taper to a point at the north and south pole.  One nautical mile = 1852 meters.  This is equal to 1.15 miles and therefore one knot = 1.15 miles/hour. 

This next part could double as a neato fact: the reason why this unit is called a “knot” is indeed fascinating.  Old-time mariners and sailors used to measure their speed by dropping a big old piece of wood off the back of the boat.  This wood was attached to some rope with knots in it, and the rope was spun around a big spool.  Once in the water the wood would act kind of like a water parachute, holding position while the rope was let out.  The measuring person could then count how many evenly spaced knots passed by in a given amount of time, thus calculating the vessel’s speed. 



Personal Log

The scientists on board have been incredibly helpful and patient.  Zeb is in charge of the cruise and this leg of the SEFIS expedition.  Brad, who handles the gear (see morning crew last post), is the fishiest guy I’ve ever met.  He seriously knows everything about fish!  Identification, behavior, habitats, and most importantly, how extract their otoliths.  He’s taught me a ton about the process and processing.  Both Zeb and Brad have spent a ton of time patiently and thoroughly answering my questions about fish, evolution, ecology, you name it.  Additionally, NOAA scientist Todd, who seeks to be heroic in all pictures (also a morning crew guy), is the expert on fish ecology.  He has been exceptionally patient and kind and helpful. 

The fish we’re primarily working with are in the perches: Perciformes.  These fish include most of your classic-looking fish.  Zeb says, “your fish-looking fish.”  Gotcha!  This includes pretty much all the fish we’re catching except sharks, eels, and other rare fish. 

For more on fish evolution here are two resources I use in class.  Fish knowledge and evolution: from Berkeley, A Fisheye View of the Tree of Life.

Fish Tree of Life Berkeley
Fish Tree of Life, from University of California-Berkeley

And check out Neil Shuban’s Your Inner Fish series.


General Updates:

  1. Plenty of exciting animals lately.  Here’s a picture of those spotted dolphins from the other day.
  2. The weather has been great, apart from yesterday’s storm.  Sunrises and sunsets have been glorious and the stars have been abundant. 
  3. We found a common octopus in the fish trap the other day.  The photo is from crew member Nick Tirikos.      
  4. I’m missing home and family. I can’t wait to see my wife and son. 
  5. That tropical depression fizzed out, thankfully. 
spotted dolphins
Spotted Dolphins
common octopus
Common Octopus (Photo by crewmember Nick Tirikos)


Neato Facts =

Yesterday we caught a shark sucker in the fish trap.  I was excited to see and feel their dorsal attachment sucker on top of their head. 

Hold on.  I just read more about these guys and turns out that sucking disc is their highly modified dorsal fin!  That is the most neato fact so far.  What better way to experience the power of this evolutionarily distinct fish than to stick it to your arm?!  The attachment mechanism felt like a rubber car tire that moved and sealed against my skin. (Brad calls them sneakerheads).

Shark sucker
Shark Sucker on Dave’s Arm

Consider all the possible biomimicry innovations for the shark sucker’s ability to clasp onto sharks and fish and turtles while underwater.  This grasp and release adaptation surely has many cool possible applications.  Here are a few: Inspiring New Adhesives.  Robotic Sticky Tech.   Shark Sucker biomimicry

I’d love to hear your questions and comments!

Meg Stewart: What the Bathymetry Looks Like at Cape Newenham, Alaska: Flat and a Little Wavy, July 23, 2019

NOAA Teacher at Sea

Meg Stewart

Aboard NOAA Ship Fairweather

July 8 – 19, 2019


Mission: Cape Newenham Hydrographic Survey

Geographic Area of Cruise: Bering Sea and Bristol Bay, Alaska

Date: July 23, 2019

Weather Data from Home
Latitude: 41°42’25.35″N
Longitude: 73°56’17.30″W
Wind: 2 knots NE
Barometer: 1011.5 mb
Visibility: 10 miles
Temperature: 77° F or 25° C
Weather: Cloudy

Science and Technology Log

As you can tell from 1) the date of my research cruise and 2) my latitude and longitude, I am no longer in Alaska and I am now home. For my final NOAA Teacher at Sea post, I am pleased to show you the results of the hydrographic survey during the Cape Newenham project. The bathymetric coverage (remember that bathymetry means the topography underwater or depth to the bottom of oceans, seas and lakes) is not final as there is one more leg, but it is pretty close. Then the hard part of “cleaning up” the data begins and having many layers of NOAA hydrographers review the results before ever being placed on a nautical chart for Cape Newenham and Bristol Bay. But that day will come!

project location
Fig 1. First, here is a reminder of the location area for the project in Alaska, in the Bering Sea and Bristol Bay (circled in red).
coverage graphic
Fig 2. Here is the entire coverage of the project area to date. Notice that some of the coverage is complete and some is in spaced line segments. The red areas on the map are shallow and vessels should avoid those. The dark blue to purple zone is the deepest shown on the map and that is where ships should navigate and mariners will know that by looking on the future navigational chart. During the project, the Chief Hydrographer began to notice that the sea bed was nearly flat and gently sloping. The decision was made to use set line spacing for the rest of the project. (Hint: Click on the image to see more detail)
Cape Newenham
Fig 3. Going in a little more closely, I’ll show you the Cape Newenham area, shown in the dashed line region. You may recall that this is the nautical chart from three blog posts ago.
Cape Newenham surveyed
Fig 4. Now, we’ve zoomed in one of the cool parts of the bathymetric map. As I said above in Fig 2, most of the Cape Newenham sea floor surface is gently sloping. There are no obvious obstructions such as large boulders or shipwrecks; if there were, those would show up in the hydrographic survey. I’ll talk more about the red (or shallower) part of the map in the next figure.
sand waves
Fig 5. This is a 3D side view of the upper part of Fig 4. The red that you see is 5 meters or about 16 feet below the ocean surface. The light blue area is about 36 or so meters deep which is about 120 feet deep. What the hydrographers noticed were sand waves, which they found interesting but non-threatening to navigation unless the crests neared the ocean surface. Sand waves can migrate or move around and they can also grow larger and possibly become a navigational hazard in the future. As a geologist, I think the sand waves are excellent. These waves (sometimes they are called ripples) of sediment form as a result of ocean currents and show the direction of flow. See the next figure for a profile view (cross section view) along the light blue line on this map.
profile of sand waves
Fig 6. This is 2D profile view along the surface of the light blue line shown in Fig 5. This is the top of the sand waves. I’ve pointed to a couple of sand wave crests; there are five crests shown in this profile length. Notice that there is a gently sloping face of the wave and a steeper face. The ocean current direction is moving from the gentle face towards the steep face in this location on Cape Newenham which is from north to south. The hydrographers told me that, though the ocean flow may be north to south here now, it is possible that in the winter, the current reverses. There is also a tidal influence on the current here, too.


Part II – Careers at Sea Log, or
Check Out the Engine Room and Meet an Engineer

engineer Klay Strand
Photo 1. Klay Strand, 2AE, showing us around the Fairweather engine room.

This is Klay Strand who is 2nd Engineer on the Ship Fairweather. He’s been on the ship for about a year and a half and he graciously and enthusiastically showed three of us visiting folk around the engine room towards the end of our leg. It was truly eye-opening. And ear-popping.

Before I get to the tour, a little bit about what Engineering Department does and how one becomes an engineer. There are currently nine engineers on the Ship Fairweather and they basically keep the engines running right. They need to check fluid levels for the engine (like oil, water and fuel) but also keep tabs on the other tanks on the ship, like wastewater and freshwater. The engine is on the lower level of the ship.

Klay Strand’s path to engineering was to go to a two-year trade school in Oregon through the JobCorps program. Strand then worked for the Alaskan highway department on the ferry system and then he started accruing sea days. To become a licensed engineer, one needs 1,080 days on a boat. Strand also needed advanced firefighting training and medical care provider training for his license. There are other pathways to an engineering license like a four-year degree in which you earn a license and a bachelor’s degree. For more information on becoming a ship’s engineer, you can go to the MEBA union, of which Strand is a member. On Strand’s days off the ship, he likes to spend time with his niece and nephews, go skydiving, hike, and go to the gun range.

The following photos are some of the cool things that Klay showed us in the engine room.

ship's engines
Photo 2. There are two engines that power the ship. Ear protection is a must. Standing between the two engines felt like standing inside a running car engine if you were a tiny mouse. I didn’t get a shot of us standing there, so I drew an approximate line for reference.
engine room
Photo 3. The ceiling in the engine room is very low. There are A LOT of moving parts. And wires, cords, pipes, valves, enormous tools, tanks, meters and things I’ve never seen before. This part in the foreground, with the yellow painted on the cylinder, is akin to a car’s driveshaft.
waste water levels
Photo 4. This shows how much black water and gray water the ship currently has in the tanks. Those tanks are located in the engine area and the engineers keep a close eye on that information. Gray water is wastewater from washing dishes, clothes washers, and the showers. Black water is from the toilets, I mean ship’s heads. Black water is treated through a chlorination process. Both wastewaters are released at sea, where permissible.
desalination
Photo 5. Recall in my last “Did You Know?” that I said the ship makes its own freshwater from sea water. This is the reverse osmosis monitor showing how much freshwater is being produced. Yes, the engineers keep an eye on that, too.


Personal Log

Dutch Harbor panorama
Before I boarded the small plane that took off from Dutch Harbor to take me to Anchorage, AK, I looked out over the harbor. It was so lovely in Alaska. There’s so much space and untouched landscape. The green, pointed hill on the right side of the image is called Mount Ballyhoo, which I hear was named by Jack London on a swing through Dutch Harbor in the late 1800s.

Now that I’ve been home for a few days, I’ve had a chance to reflect on my time on NOAA Ship Fairweather. When I tell people about the experience, what comes out the most is how warm and open the crew were to me. Every question I had was answered. No one was impatient with my presence. All freely shared their stories, if asked. I learned so much from all of them, the crew of the Fairweather.  They respected me as a teacher and wondered about my path to that position. I wondered, too, about their path to a life at sea.

My first week on the ship, I spent a lot of time looking out at the ocean, scanning for whales and marveling at the seemingly endlessness of the water. Living on the water seemed fun and bold. As time went by, I could tell that I may not be cut out for a life at sea at this stage of my life, but I sure would have considered it in my younger days. Now that I know a little bit more about these careers on ships, I have the opportunity to tell my students about living and working on the ocean. I can also tell my educator colleagues about the NOAA Teacher at Sea Program.

Though I loved my time on the Ship Fairweather, I do look forward to seeing my West Bronx Academy students again in September. I am so grateful for all I learned during my time at sea.

Did You Know?

Marine Protected Area map
Using the interactive Marine Protected Area map, I zoomed in on the Cape Newenham area. Though there is a Walrus Protection Area there, we did not see any on our leg.

If you are interested in finding out about areas of the ocean that are protected from certain types of human activity because of concerns based on habitat protection, species conservation and ecosystem-based marine management, here are some links to information about Marine Protected Areas. Marine Protected Areas are defined as “…any area of the marine environment that has been reserved by federal, state, territorial, tribal, or local laws or regulations to provide lasting protection for part or all of the natural and cultural resources therein.”  Did you know that there are over 11,000 designated MPAs around the world?

NOAA Marine Protected Areas – this is information about MPAs in the U.S.

Atlas of Marine Protection is an interactive map that shows all the MPAs around the globe. 

National Geographic – Marine Protected Areas – a good teaching resource. Here is a NG lesson looking at MPAs.

Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) – the science of marine reserves.

Quote of the Day

“All of us have in our veins the exact same percentage of salt in our blood that exists in the ocean, and, therefore, we have salt in our blood, in our sweat, in our tears. We are tied to the ocean. And when we go back to the sea – whether it is to sail or to watch it – we are going back from whence we came.” – John F. Kennedy

Allison Irwin: Art and Science, July 22, 2019

NOAA Teacher at Sea

Allison Irwin

NOAA Ship Reuben Lasker

July 7-15, 2019


Mission: Coastal Pelagic Species Survey

Geographic Area: Northern Coast of California

Date: July 22, 2019

Weather at 1200 Pacific Standard Time on Monday 22 July 2019

When I walk outside onto the deck, the sky is a stunning shade of blue matching the color of Frost Glacier Freeze Gatorade. The sun is warm against my skin – I’m finally not wearing a jacket – and bright, but not so bright that I have to squint against the reflection of the water. I put my sunglasses on anyway since the polarized lenses help me see more defined colors in bright sunlight.  The instruments show 15° Celsius right now with 25 knot winds. The horizon has a funny haze along its whole length even though the sky above me is absolutely clear. When I look over the long distance, I’m seeing cumulative aerosols – dust, water vapor, and other particles suspended in the air to form a haze along the horizon. I can’t see it directly above me even though it must be there.

PERSONAL LOG


One of the most beautiful things I’ve seen this whole trip, even when you take the coastline into account, are the squid. Never thought I’d write that sentence. But they sparkle and change colors! Last week we found a tiny octopus in something called a bongo tow (I’ll explain that in the science section). That little critter was even more awe inspiring. It had big turquoise eyes that reminded me of peacock feathers.

Juvenile Octopus
Juvenile Octopus – Species Unknown

While I was in Newport, Oregon before the ship left, I was walking around Newport Marina and found a couple of guys painting a mural. The one who designed the mural is an art teacher at Newport High School. We started talking about his mural and the NOAA Teacher at Sea program. In addition to his career as an art teacher, Casey McEneny also runs his own art studio called Casey McEneny Art. The other guy helping him, Jason, has an art studio called Jay Scott Studios.

By painting the commissioned mural, he was connecting his career with his love of art and his community. His son even participated in the process by filling in a small portion of the mural while Casey worked on outlining the rest of it. Later he’ll go back and overlay the mural with color so it pops off the wall.

  • Casey McEneny with his son
  • Full mural
  • Jason from Jay Scott Studios


THE SCIENCE


Ok, so the bongo tow. Do you remember as a kid (if you were a kid in the movies) when you used to run through fields of flowers catching butterflies in a butterfly net? I’m imagining a 6 year old girl with a flowing sundress. Well, take two oversized white butterfly nets and attach them to a metal frame that look like spectacles. Each hoop in this frame has a 71 centimeter diameter. These mesh nets each have a codend just like the trawl nets, except these codends are less than 1 foot long and are made out of extremely fine mesh. They’re designed to catch zooplankton – copepods, krill – and other smaller things that the net collects while traveling through the water column.

Bongo Net Ready to Deploy
Bongo Net Ready to Deploy

The juvenile octopus we found in the bongo tow last week was too difficult to identify at that young stage. It was only about 1 inch long. I searched through their identification books in the lab and tried to figure it out, but even the scientists said that the science community just doesn’t know enough yet about cephalopods (think octopus and squid species) to identify this beautiful creature until it’s an adult. We do know, since it has 8 arms and a fused mantle, that it’s at least an octopus and not a squid. Squid are not octopods, they’re decapods – in addition to the 8 arms they also have 2 long tentacles.

There are two species of octopus living in this area that look very similar even as adults. They are the Enteroctopus dofleini (Pacific Giant Octopus) and the Octopus rubescens (East Pacific Red Octopus). As adults, they’re both a dark red color almost like rust or brick. The artist I mentioned earlier, Casey, included a Pacific Giant Octopus in his mural at Newport Marina. But those are just two of many, many species of octopods in this area. Our little guy is probably neither of those. Still, I’m hoping it is a baby Octopus rubescens since they have a high density of chromatophores that make them sparkle!

Pacific Giant Octopus
Pacific Giant Octopus from Casey McEneny’s Mural

The chromatophores are cells that both reflect light and contain different colors (pigment). They come in all different patterns and are distinct enough to use as identification tools for different species. They can be individually large or small and show up either in dense patches or scattered like freckles. Octopus and squid species contract and expand these special cells to change color based on necessity, if they need camouflage for example, or it’s thought that they even use color to communicate their mood. I’ve seen them sparkle in brilliant colors like a kaleidoscope but that’s probably, unfortunately, an expression of their agitated state since we’re catching them.

While there’s no way to tell exactly what they’re thinking, it is well known that octopus species are highly intelligent compared to other animals found in the ocean. They are curious, they sometimes play pranks on divers, and they seem to be more intentional than fish in their actions. Their intelligence made me think they’d have long lives, that they gained experience and personality over time, but octopus species typically only live a few years. Females will usually only reproduce once in their short life spans.

TEACHING CONNECTIONS


There are so many ways to connect cephalopods to the classroom! First, research shows octopus species may plan ahead and that they can learn and adapt to their surroundings. They’re problem solvers. They’re curious by nature. How often do I wish my students were more curious about learning and literacy! By reading about the resiliency and learning capabilities of an octopus, maybe it will inspire my students to see themselves as more capable of persevering through difficult challenges and adapting their learning styles to meet the needs of different disciplines. I can drive home the point that studying for biology might not look the same as studying for their upcoming test in civics, and that the more academic learning tools they have to employ from their toolbox, the more they’ll be able to master this whole “being a student” thing.  If you’re at a loss for how to bring an octopus into the classroom, try starting with this activity from the NY Times Learning Network called Learning with “Yes, the Octopus is Smart as Heck. But Why?”.

Casey, the art teacher from Newport High School, shared an interesting activity from his art class. He recommends using images of zooplankton under microscope (we found plenty of these in our bongo tow!) to inspire abstract art projects similar to how Carl Stuwe intertwined science with art at the beginning of the 20th century.  English teachers could share the same images to get students writing creative fiction or a mini lesson on imagery.  Science and art provide a natural blend and plenty of opportunities for teachers to collaborate and combine our instructional force so we can integrate important concepts across the disciplines.

As a literacy teacher, I can’t help but think about how awesome it would be to teach my students the Latin prefixes and root words that are commonly used to name sea creatures. Names like Doryteuthis opalescens, Rossia pacifica, Octopus californicus, or Thysanoteuthis rhombus.  Then, let them loose to name, design, describe, and share their own octopus species – yet to be discovered! While I’m sure their imaginations would come up with some elaborate ideas, few things are ever as fantastical as reality. Check out the Vampyroteuthis infernalis living in the deep, dark depths of the ocean.

Vampire Squid
Vampire Squid Source: https://marinebio.org

We wouldn’t have found this creature or been able to capture its image without technology like Remotely Operated Vehicles (ROVs) and underwater submersible vehicles. There are clearly ways to link instruction to technology courses in addition to art, science, and literacy. Maybe students could take a sea creature that already exists and use mixed media to present an artistic representation of it like the Oregon Coast Aquarium did for their Seapunk exhibit. They could get their mixed media supplies from scrap leftover in the tech wing.

TEACHING RESOURCES