Meredith Salmon: Fun in the Sun with the Sunphotometer, July 19, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

 

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.39°N

Longitude: 65.02°W

Air Temperature: 28.3°C

Wind Speed:  11.8 knots

Conditions: Partly sunny  

Depth: 5092.22 meters

 

Science and Technology Log

“Explorations of opportunity” including NASA Maritime Aerosol Network are conducted on the Okeanos Explorer while underway. The Maritime Aerosol Network is an organized opportunity to collect aerosol data over oceans. Aerosols are liquid or solid particles that can be generated in two ways: natural phenomena (volcano, sand storm, pollination, waves, etc.) or anthropogenic sources (combustion of hydrocarbons, chemical industries, etc.). The open ocean is one of the major sources of natural aerosols of sea-salt aerosols. Sea-salt aerosols, together with wind-blown mineral dust, and naturally occurring sulfates and organic compounds, are part of natural tropospheric aerosols.

Depending on their color, aerosols absorb sunlight in different ways. For instance, soot particles generated from the combustion of hydrocarbons absorb all visible light, therefore generating a rise in atmospheric temperature. Conversely, crystals of salt reflect all visible light and cause climatic cooling. Other studies have shown that their presence is essential for the water cycle: without aerosols, water could not condense in the form of clouds. Therefore, these particles influence the climate balance. In order to achieve this, NASA provides sunphotometers to “Vessels of Opportunity.” These vessels can be either scientific or non-scientific in their nature of operations.

SunFun

Sunphotometer device used throughout the expedition

Garmin

Garmin GPS used to collect coordinates before obtaining sunphotometer reading

How Does This Process Work?

Sunphotometer takes aerosol maritime measurements by using a photometer that is directed at the sun to measure the direct-sun radiance at the surface of the Earth. These measurements are then used to obtain a unit-less parameter: Aerosol Optical Depth (AOD). AOD is the fraction of the Sun’s energy that is either scattered or absorbed (attenuated) while it moves through the Earth’s atmosphere. The attenuation of the Sun’s energy is assumed to be a result of aerosols since the measurements are collected when the path between the sun and the sunphotometer instrument is cloud-free.

Why Is This Process Important?

This collaboration between NOAA and NASA allows for the addition of thirteen more data sets to the Maritime Aerosol Network. Regions in the open ocean are unable to be studied from land-based sunphotometers located on islands, so ships are the only other alternative to compile data. As a matter of fact, satellite based measurements are not as accurate over the ocean compared to hand-held surface measurements. Therefore, the measurements we have been logging serve as ground truth verification for satellites. In addition, the Maritime Aerosol Network allows for the expansion of data sets to the Arctic, thanks to NOAA Ship Ronald H. Brown and other West Coast hydrographic ships.

SunFUN

Tatum and I collecting sunphotometer readings

sunfun 4 (3)

 

Personal Log

Safety is an absolute priority while out at sea, so the team aboard the Okeanos Explorer conducts weekly fire/emergency and abandon ship drills, and a man overboard drill every three months. We completed a man overboard drill today with an orange buoy. Everyone on the ship has designated reporting locations once the alarm sounds and the drill commences. Once you arrive at your assigned area on the ship, you must scan the water for the target and point in its direction once you find it. The fast rescue boat (FRB) is deployed to go retrieve the target and once it is safely back aboard, the drill is complete.

 

MOB

Fast Rescue Boat used during the Man Overboard Drill

man over board 2

Man Overboard Drill on the Okeanos Explorer

Did You Know?

The Mauna Loa Observatory record of solar transmission of sunlight is the longest continuous record in existence!

Resources:

https://www.esrl.noaa.gov/gmd/grad/instruments.html

https://earthobservatory.nasa.gov/Features/Aerosols/page5.php

https://www.esrl.noaa.gov/gmd/obop/mlo/programs/esrl/solar/solar.html

 

Meredith Salmon: Sonars, Sub-bottoms, and Summertime! July 18, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

 

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

 

Weather Data from the Okeanos Explorer Bridge

Latitude: 29.03°N

Longitude: 62.11°W

Air Temperature: 27.5°C

Wind Speed:  6.38 knots

Conditions: Sunny

Depth: 5167.70 meters

Science and Technology Log

EK 60

SIMRAD EK 60 echo sounder readings – 38kHz frequency is not pictured

In conjunction with the EM302 multibeam sonar, the Okeanos Explorer uses five different frequencies of SIMRAD single beam echo sounders to identify biomass in the water column: an 18 kHz, 38kHz, 70 kHz, 120 kHz, and 200kHz. (38 kHz is not pictured because it is not used in conjunction with the EM302 since the frequencies are too similar and they can cross talk). These sonar systems are common on fishing boats for estimating fish abundance and they’re used for other marine research, as well. In deeper waters, lower frequency sonar is used. Since we are surveying in approximately 5,000 meters of water, the 18 kHz will be used.

Knudsen sub-bottom profiler

3.5 kHz Knudsen sub-bottom profiler data

The third piece of important equipment used during this mission is a 3.5 kHz Knudsen sub-bottom profiler. This technology is used to assist in many surveys since these systems identify and characterize layers of sediment or rock under the seafloor. In sub-bottom profiling a sound source directs a pulse towards the seafloor and parts of this pulse reflect off the seafloor while others penetrate the seafloor. The portions of the pulse that penetrate the seafloor are both reflected and refracted as they pass into different layers of sediment. These signals return towards the surface and can be used to determine important features of the seafloor. For instance, the time it takes for the reflected sound pulses to return to the vessel can be used to determine the thickness and positioning (ex. Sloped or level) of the seafloor. The refracted pulses can provide information about the sub-bottom layers. The variability in density can be used to explain differences in composition (ex. greater density is representative of harder materials). Frequency differences can help scientists obtain optimal results that can be used when collecting data during a survey. Lower frequency pulses can penetrate the seafloor but produce a lower-resolution picture while higher-frequency pulses produce the opposite.

The EM 302, EK60, and Knudsen sub-bottom profiler are all used simultaneously during this seafloor mapping operation.

Personal Log 

Throughout the cruise, one of the NOAA Corps Officers is in charge of planning fun morale events for everyone aboard to participate in. Today, we had a cookout complete with delicious food, music, and corn-hole on the fantail. Everyone had a great time! Additional morale events are planned throughout the rest of the mission so I will post about those later on!

cookout

Corn Hole!

Competitive Cornhole on the Fantail

 

NOAA Squad

Some of the Mapping Team aboard the Okeanos Explorer!

Did You Know?

The earliest technique of bathymetry (depth measurement in water) involved lowering a weighted-down rope or cable over the side of a ship, then measuring the length of the wet end when it reached the bottom. Inaccuracies were common occurrences using this technique because of the bending of the rope caused by deflection from subsurface currents and ship movements.

This technique was replaced in the 1920s by echo sounding, in which a sound pulse traveled from the ship to the ocean floor, where it was reflected and returned.

The multibeam echosounder was invented in the 1960’s.

 

Resources: 

https://www.simrad.com/ek60

https://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/1AE8CC56C6F31E51C1256EA8002D3F2C?OpenDocument

https://pdfs.semanticscholar.org/076b/1259200b5dddf07c4043b97c1d753782183a.pdf

Meredith Salmon: Let The Surveying Begin! July 15, 2018

NOAA Teacher at Sea

Meredith Salmon

Aboard NOAA Ship Okeanos Explorer

July 12 – 31, 2018

Mission: Mapping Deep-Water Areas Southeast of Bermuda in Support of the Galway Statement on Atlantic Ocean Cooperation

 

Weather Data from the Okeanos Explorer Bridge

Latitude: 28.12°N

Longitude: 62.04°W

Air Temperature: 27.0°C

Wind Speed:  14.08 knots

Conditions: Rain and clouds

Depth : 5133.67 meters

Science and Technology Log

Hypack for Line Planning 

This morning, we learned how to upload a variety of planning lines for the survey that will be conducted for the Atlantic Seabed Mapping International Working Group (ASMIWG) established area Southeast of Bermuda.

The black circle pictured on the map below is Bermuda’s Exclusive Economic Zone (EEZ). Bermuda’s EEZ is an area of ocean within 200 nautical miles of the island that covers 464,940 km2 of ocean. Under the United Nations Convention on the Law of the Sea, Bermuda has special jurisdiction over the use and exploration, management, and conservation of those resources. According to Bermuda’s Department of Environment and Natural Resources, this zone was established in 1996 and this distinction allows Bermuda to gain important economic value from these resources.

 

Bermuda's EEZ

The black circle pictured above is Bermuda’s Exclusive Economic Zone. The red line is the outline of the survey area and the green lines are previously collected data that will be considered when the Okeanos Explorer collects new mapping data.

The red line (ASMIWG Galway mapping box) displayed on the screen is the outline of the survey area. This area is 145,120 km2; however, during this expedition, we will be mapping a quarter to a third of the region. Within the survey area are small blue lines that are considered to be planning lines. These lines were crafted on the computer using Hypack and are 180 nautical miles in length. For efficiency, it is important for them to be oriented to follow the contour lines, and to be long because it requires less turns, which saves time while mapping. The distance between the lines is 4,300 meters and may be subject to change at the discretion of the mapping team.

The green lines are existing multibeam or bathymetric data in the region. This is crucial information to consider because the Okeanos Explorer’s goal is to map what has not been investigated and combine it with the data that already exists in those areas. The previously collected data was recorded from a variety of ships such as Atlantis, Healy, and Knorr, so we will use our EM 302 sonar to edge match their data.

In addition to the existing data, there is a background telemetry layer (blue background) that shows satellite measurements to predict what the seafloor may look like. Scientists use the existing data to update the layers to create a more accurate depiction of the seafloor.

So far, the data collected in transit has been very reliable due to weather conditions and the flat abyssal seafloor. As survey data is incoming, the personnel on watch must ensure that the sonar and computer systems are operating correctly. We will begin the actual surveying this afternoon once we reach the first line!

 

Line Plans in Hypack

Red 180 nautical mile planning lines created for the survey area in Hypack

 

Personal Log

Now that we have begun the survey, everyone is busy collecting, processing, cleaning, and updating data files in the Mission Control room. We have been learning all about the software used to create files, and it is very interesting to learn how all of the different systems are being used to make sense of the data from multiple sources (ex. EM 302, EK 60, and sub-bottom profiler). Everyone on board is really enjoying each other’s company and is eager to collaborate to help one another learn. It is really fun! One of the best parts of being in the middle of the ocean has definitely been watching the sunsets. They are incredible!

sunset 7.14.18

7/14/18 Sunset

sunset 7.15.18

7/15/18 Sunset

Did You Know?

The Sargasso Sea is considered to be one of the great ecological wonders of the world! It is home to golden algae known as Sargassum. This algae serves as a floating habitat and provides food, refuge, and breeding grounds for an array of marine organisms such as fish, sea turtles, marine birds, crabs, shrimp, and more!

The Sargasso Sea is the only sea in the world surrounded by currents, rather than land and Bermuda is the only island within it.

The algae directly benefits Bermuda when it washes ashore and sinks into the sand since it fertilizes the soil and protects the island against storms and erosion.

sargassum

Sargassum off the side of the bow

Resources:

https://www.gov.bm/articles/monitoring-bermuda%E2%80%99s-exclusive-economic-zone-eez

http://www.bermuda-online.org/environ.htm

Emily Cilli-Turner: Out to Sea! July 26, 2018

NOAA Teacher at Sea

Emily Cilli-Turner

Aboard NOAA Ship Oscar Dyson

July 24 – August 11, 2018

 

Mission: Pollock Acoustic-Trawl Survey

Geographic Area of Cruise: Eastern Bearing Sea

Date: July 26, 2018

 

Weather Data from the Bridge:

Latitude: 56º 11.29 N

Longitude: 171º 12.29 W

Wind Speed: 14.33 knots

Wind Direction: 329.81º

Air Temperature:  9.1º Celsius

Barometric Pressure: 1016.2 mb

 

Science Log:

Scientists aboard NOAA Ship Oscar Dyson are aiming to estimate the number and biomass of pollock in the Eastern Bering Sea, which, as you can imagine, is a big undertaking.  In order to complete this job, they use a lot of sophisticated technology to determine where the fish are as well as statistical methods to extrapolate the total number of fish from the samples taken. This job is extremely important as it helps to determine the health and sustainability of the pollock population in the Bering Sea so that the government can model and forecast next year’s population numbers, and the North Pacific Fishery Management Council can set future catch quotas.

The first piece of technology used is the underwater acoustics. Echosounders send an audible ping down into the water and measure how long it takes to bounce off of an object (like a pollock) and return to the surface.  Using the known value of the speed of sound, this technology can create a picture of where the fish are below the boat.  While the acoustics only show that there is an object the length of a fish below, the scientists use their knowledge of the regions pollock normally occupy, the depth they regularly swim at, as well as the shape and size of pollock aggregations to determine when they are seeing pollock versus other types of fish.

EK60 for TAS

The picture of the fish below the water created by the underwater acoustics.

Once it is determined that there is likely a large school of pollock in the area, then the trawling nets are deployed to catch pollock.  Once the nets are hauled in, the total catch is weighed and then a smaller sample is pulled to collect length and weight data to determine the sizes of fish in the area.  Other samples, such as the pollock ear bone (otolith) or ovaries may also be taken at this time. Using statistics, the number and length of pollock in the entire catch and then in the entire area is estimated.

Trawling nets on the ship.

Trawling nets on the ship.

Personal Log:

The flight into Dutch Harbor was very exciting.  Before boarding the plane, they weigh you and your carry-on baggage to make sure the plane will be balanced and that there is not too much weight.  The airport at Dutch Harbor is not much more than a landing strip between two mountains.  We came in for landing right over the water and for a second it looked like we might land on the water before the landing strip appeared. Once we reached the dock where we boarded the NOAA Ship Oscar Dyson, I saw a sea otter, but it disappeared before I could take a picture of it!

welcome

The sign at the Dutch Harbor airport. Notice the latitude and longitude; this is the farthest north I have ever been!

So far, I am adjusting to life at sea.   The first day the boat was a little rough and I got a bit seasick, however after seeing the ship’s medic for some medication I am feeling much better.  During our first full day at sea we had to practice safety drills, which are required within 24 hours of departing.  Once they announce the drill, you have to grab your life jacket and survival suit from your stateroom and bring them to the assembly point on the deck.  Then, we had to practice putting on the survival suit, which is sort of like a giant wet suit complete with a hood, lights and a manually-inflated flotation device.

plane

The plane I flew on from Anchorage to Dutch Harbor.

The ship itself is like a small city; there are the residences, which are the staterooms where we sleep, the entertainment, which is the lounge where there is always a moving playing, and the restaurant, which is the mess hall where great food is served three times a day.  However, this “city” runs and powers itself; all electricity and water must be made aboard the boat.

The hardest adjustment so far has been a temporal one.  I am responsible for the 4am – 4pm shift in the fish lab, which means I must rise by 3:30am every day! I am normally not an early riser so this has been tough, but the rocking of the ship means that when I do go to bed I normally get a great night’s sleep!

Did You Know?

Scientists collect the ear bone, called the otolith, from pollock to determine their age.  This bone grows in rings for each year, just like a tree!

 

David Tourtellot: A Musical Perspective of Sonar, July 24, 2018

NOAA Teacher at Sea

David Tourtellot

Aboard NOAA Ship Thomas Jefferson

July 9-26, 2018

Mission:  Hydrographic Survey – Approaches to Houston

Geographic Area of Cruise: Gulf of Mexico

Date: July 24th, 2018

Weather Data from the Bridge

Latitude: 29°09.1270’N

Longitude: 093°46.5544’W

Visibility: 5 Nautical Miles

Sky Condition: 8/8

Wind: Direction: 70.1°, Speed: 13.3 knots

Temperature:

Seawater: 29.24°C

Air: Dry bulb:26.9°C          Wet bulb: 24.7°C

 

Science and Technology Log

Coming to NOAA Ship Thomas Jefferson, I was eager to learn all I could about sonar. I am amazed that we have the ability to explore the ocean floor using sound.

uncharted wreck

An uncharted wreck discovered by NOAA Ship Thomas Jefferson

Over the course of my previous blog entries, I have described the tools and processes used to survey using sonar. This time, I am going to try to frame the sounds that the sonars are using in a musical context, in the hope that doing so will help students (and myself) better understand the underlying concepts.

Note – many aspects of music are not standardized. For the purpose of this blog post, all musical tuning will be in equal temperament, at A=440. When I reference the range of a piano, I will be referencing a standard 88-key instrument. Many of the sonar frequencies do not correspond exactly to an in-tune pitch, so they have been written to the nearest pitch, with a comment regarding if the true frequency is higher or lower than the one written.

In sonar and in music, when considering soundwaves it is important to know their frequency, a measure of how many waves occur over the course of a set period of time. Frequency is measured in a unit called Hertz (abbreviated as Hz), which measures how many soundwaves occur in one second. One Hertz is equal to one soundwave per second. For example, if you heard a sound with a frequency of 100Hz, your ears would be detecting 100 soundwaves every second. Musicians also are concerned with frequency, but will use another name for it: pitch. These words are synonymous – sounds that are higher in pitch are higher in frequency, and sounds that are lower in pitch are lower in frequency.

Below are the eight octaves of the note A that are found on a piano, each labeled with their frequency. The notes’ frequencies have an exponential relationship – as you move from low to high by octave, each note has a frequency that is double that of its predecessor.

Piano As with frequencies

The frequency of each A on a piano

The highest note on a piano, C, has a frequency of 4186.01Hz

Highest Note on a piano

The frequency of the highest note on a piano

Average, healthy young humans hear sounds ranging from 20Hz to 20,000Hz. All sounds outside of that range are inaudible to people, but otherwise no different from sounds that fall within the human range of hearing. The highest note we would be able to hear would be an E♭, at a frequency of 19,912.16Hz (a frequency of exactly 20,000Hz would fall in between E♭ and E♮, though would be closer to E♭). If put on a musical staff, it would look like this:

High Eb 19kHz

The frequency of the highest note in the human range of hearing

The hull of NOAA Ship Thomas Jefferson is equipped with several sonar transmitters and receivers, which can operate at a wide variety of frequencies.

TJ Sonar

The hull of NOAA Ship Thomas Jefferson, with several sonars. Note that the projectors that transmit lower frequencies are larger than the ones that transmit higher frequencies. This is similar to musical instruments – instruments that make lower sounds, like the tuba or the double bass, are larger than instruments that make higher sounds, like the trumpet or the violin

Higher frequencies provide higher resolution returns for the sonar, but they dissipate more quickly as they travel through water than lower frequencies do. Surveyors assess the depth of the water they are surveying, and choose the frequency that will give them the best return based on their conditions. Most of the sonar frequencies are too high for humans to hear. The ship’s multi-beam echo sounder has a variable frequency range of 200,000Hz-400,000Hz, though as I’ve been on board they’ve been scanning with it at 300,000Hz. Likewise, the multi-beam sonars on the launches have also been running at 300,000Hz. The ship has a sub-bottom profiler, which is a sonar used for surveying beneath the seafloor. It operates at a frequency of 12,000Hz, and has the distinction of being the only sonar on the ship that is audible to humans, however, we have not had a need to use it during my time aboard the Thomas Jefferson.

The ship’s side scan towfish (which I described in my previous blog entry) operates at 455,000Hz.

Here, we can see what those frequencies would look like if they were to be put on a musical staff.

Assorted Sonars and reference pitches

The frequencies of sonar, with reference pitches

Altering the frequency isn’t the only way to affect the quality of the reading which the sonar is getting. Surveyors can also change the pulse of the sonar. The pulse is the duration of the ping. To think about it in musical terms, changing the pulse would be akin to switching from playing quarter notes to playing half notes, while keeping the tempo and pitch the same. Different sonar pulses yield different readings. Shorter pulses provide higher resolution, but like higher frequency pings, dissipate faster in water, whereas longer pulses provide lower resolution, but can reach greater depths.

Personal Log

Mariners have a reputation for being a rather superstitious bunch, so I decided to ask around to see if that held true for the crew of the Thomas Jefferson. Overall, I found that most didn’t strictly adhere to any, but they were happy to share some of their favorites.

Everyone I spoke to told me that it is considered bad luck to leave port on a Friday, though the Commanding Officer, CDR Chris van Westendorp, assured me that you could counteract that bad luck by making three 360° turns to the left as soon as the ship is able. Many on the crew are also avid fishermen, and told me that bringing bananas aboard would lead to a bad catch, and one went so far as to be mistrustful of yellow lighters as well.

Certain tattoos are said to bring good luck – I was told that sailors often have a chicken and a pig tattooed on their feet. According to custom, those animals were often stored in wooden crates that would float if a ship went down, and having them tattooed onto you would afford you the same benefit. When asked if he was superstitious one of our helmsmen Jim proudly showed me a tattoo he has of a dolphin. He explained that having a sea creature tattooed on your body would prevent drowning. “It works!” he said with a grin, “I’ve never drowned!”

Several maritime superstitions deal with foul weather. Umbrellas are said to cause bad weather, as is split pea soup. Whistling while on the bridge is said to “whistle in the winds.” While not a superstition per se, many crew members told me variations of the same meteorological mantra: Red sky at night, sailor’s delight. Red sky in the morning, sailors take warning.

One of the NOAA Corps Officers aboard, ENS Garrison Grant, knew several old superstitions related to shipbuilding. When laying the keel (the first piece of the ship to be put into place), shipbuilders would scatter evergreen boughs and tie red ribbons around it to ward off witches. Historically, having women aboard was considered bad luck, though, conversely it was said that if they showed their bare breasts to a storm, it would subside. This is why several ancient ships had topless women carved into the masthead. Legend has it that in order to assure that a ship would float, when it was ready to be launched for the first time, virgins would be tied to the rails that guided the ship from the ship yard into the water. The weight of the ship would crush them, and their blood would act as a lubricant, allowing the ship to slide into the water for the first time. Yikes! Thankfully, as society became more civilized, this practice evolved into the custom of breaking a bottle of champagne against a ship’s bow!

Did you know? Musical instruments play an important role in ship safety! In accordance with maritime law, ships will use auditory cues to make other vessels aware of their presence in heavy fog. For large ships, this includes the ringing of a gong at regular intervals.

Latest Highlight: During this week’s fire drill, I got to try the fire hose. It was very powerful and a lot of fun!

David Tourtellot during a fire drill

David Tourtellot during a fire drill

Michelle Greene: Visual Sighting Team, July 23, 2018

NOAA Teacher at Sea

Michelle Greene

Aboard NOAA Ship Gordon Gunter

July 19 – August 3, 2018

 

Mission: Cetacean Survey

Geographic Area: Northeast U.S. Atlantic Coast

Date: July 22-23, 2018

Latitude: 40° 35.213″ N

Longitude: 66° 6.692″ W

Sea Surface Temperature: 23.4° C (74.1° F)

Knots: 7.85 knots

Science and Technology Blog:

The visual sighting team started early this morning at 6:00 am and had rotating shifts of 30 minutes each until 7:00 pm.  The different shifts included watching with regular binoculars on the port and starboard sides, watching with the big eyes on the port and starboard sides, and being the data recorder for sightings.  I had the opportunity to shadow scientists in each of these positions throughout the first day and actually performed the duties on the second day.

Members of the Cetacean Survey Visual Team on Lookout

Members of the Cetacean Survey Visual Team on Lookout

One of the important jobs the data recorder has is to input the environmental conditions at a certain point in time.  The first measurement to input is the percent of cloud cover which is just a number from 0 to 100. Then the glare magnitude is determined on an ordinal scale from 0 to 4 with a value of zero meaning none and a value of four meaning severe.  After determining the glare magnitude, the percent of glare cover is determined.  Since the two sets of big eyes cover from 90 degrees left of the bow to 90 degrees right of the bow, the glare covering this spaced is what is determined.  The data recorder also has to determine the degree angle and height of the ocean swell.  Swell is not the wind waves generated by local weather.  It is the wind waves that are generated by distant weather systems.  Then the Beaufort scale is used to determine the amount of wind on the ocean.  The scale was developed by Sir Francis Beaufort of the United Kingdom Royal Navy in 1805.  The scale ranges from 0-12.  A zero score means the surface is smooth and mirror like, while a score of 12 means there are hurricane force winds.  Rain or fog is also determined by the data recorder.  Finally, the data recorder has to determine a subjective condition of the weather overall.  This is on an ordinal scale from 1 to 4 with 1 being poor and 4 being excellent.

When a marine animal is sighted by one of the observers, the data recorder has to input several measurements about the event.  The bearing of the location of the animal has to be determined using the big eyes.  Also, the big eyes have a scale in the lens called reticles that determines distance from the ship to the animal.  A conversion scale can then be used to determine how far away the animal is in meters or nautical miles.  The number of animals sighted, including any calves that are in the group, has to be given.  The group’s swim direction has to be determined based on bearing from the ship.  If possible, the species of the group has to be given.  Since the objective of this survey is to find the occurrence of Mesoplodons in the North Atlantic Ocean, determining the species is very important.  Also the observer has to give the initial cue as to what determined the identification of the species.  Several different cues are available such as the body of the animal, the blow of a whale or dolphin, or the splash.

The software used to input the occurrence of a marine mammal automatically inputs the GPS of a sighting.  The initial route for this survey is a zig zag pattern out of Rhode Island towards Georges Bank.  There are several canyons with very deep waters (over 1,000 meters) which is where the Mesoplodons make foraging dives to get food.  Instead of making a straight line through the canyons and only making one pass through the area, using zig zag routes gives the survey a better chance of locating Mesoplodons.  The chief scientist uses the information from sightings to track a path for the ship to take the next day.  Sometimes the acoustics team hears possible Mesoplodons.  If the acoustics team can find a convergence of the area of an animal, they will tell the ship to go at a slower rate or turn.

The map here shows the sightings of Mesoplodons from the beginning of our journey and the zig zag pattern taken by the chief scientist.  The first day of our journey, a storm was coming up the East Coast.  The Gordon Gunter‘s Commanding Officer (CO) determined that we could run from the storm by going east in a straight line direction instead of doing the zig zag motion.  The CO was correct, because we did not have bad weather.  The ocean had a lot of high swells which made the boat rock tremendously at times but no rain.

GU18-03_Map_24July2018_wLegend

A map of the daily route of the Gordon Gunter based on sightings.

 

Personal Log

I have found my favorite place to be on the visual sighting team…being the data recorder.  Statistics is my passion, and being the data recorder puts me in the middle of the action getting mass amounts of data.  It also helps that the data recorder sits in a high chair and can see a wide area of the ocean.  The scientists have been very helpful in finding me a milk crate, because that chair is so high I cannot get onto it without the milk crate.  Being the data recorder can be intense sometimes, because multiple sightings can be made at the same time.  In any free time I have, I will fill in as the data recorder.  It is lots of fun!

Data Recorder

Favorite place to be on the visual team – Data Recorder

One thing that was a little intimidating to me at first was the intercom system.  I would hear things like, “Fly Bridge Bridge.”  Then the data recorder would say “Bridge Fly Bridge.”  I had no clue of what they were talking about.  Then all of a sudden it made sense to me.  In “Fly Bridge Bridge,” someone from the Bridge is calling up to us on the Fly Bridge.  The Bridge has a question or wants to tell the people on the Fly Bridge something.  Since I figured it out, I am ready to go.

I have learned so much on this cruise in the short time I have been aboard the Gordon Gunter.  My head is exploding with the numbers of lessons that I can incorporate into my statistics classes.  I have also talked with the acousticians, Jenny, Joy, Emily, and Anna Maria, and have come up with lessons that I can use with my algebra and calculus classes as well.  The scientists have been very generous in sharing their knowledge with a science newbie.  Being a math teacher, I want to be able to expose my students to all kinds of content that do not deal with just the boring math class.  Being a Teacher at Sea has opened up a whole new experience for me and my students.

We have an interesting participant in our cruise that I was not expecting but was happy to meet…a seabird observer.  Before this cruise I did not know there were birds that pretty much lived on the surface of the ocean.  These birds have been flying around the ship which is about 100 nautical miles from shore.  The seabird observer documents all sightings of seabirds and takes pictures to include in his documentation.

Did You Know?

Reticles are the way a pair of binoculars helps observers to determine the distance to an animal; however, the conversion from reticles to distance is not an instantaneous solution.  Based on the height of a pair of binoculars on the ship, reticles can mean different distances.  A conversion chart must be used to determine actual distance.

Check out this article on how to estimate distance to an object with reticles in a pair of binoculars:

https://www.osc.co.uk/estimate-range-with-reticle-binoculars-2/

Animals Seen

  1. Sperm whales (Physeter macrocephalus)
  2. Fin whales (Balaenoptera physalus)
  3. Cuvier’s beaked whale (Ziphius cavirostris)
  4. Risso’s dolphins (Grampus griseus)
  5. Bottlenose dolphins (Tursiops truncatus)
  6. Common dolphin (Delphinus delphis)
  7. Great shearwater bird (Puffinus gravis)
  8. Cory’s shearwater bird (Calonectris borealis)
  9. Wilson’s storm petrel bird (Oceanites oceanicus)
  10. Leach’s storm petrel bird (Oceanodroma leucorhoa)
  11. White-faced storm petrel bird (Pelagodroma marina)
  12. Red-billed tropicbird (Phaethon aethereus)

Vocabulary

  1. acoustician – someone whose work deals with the properties of sound
  2. bearing – the direction from your location to an object in the distance starting at 0° which is located at absolute north.  For example, if an animal is spotted at 90°, then it is due east of your location.
  3. blow of a whale – the exhalation of the breath of a whale that usually looks like a spray of water and is an identifying feature of different species of whales
  4. bow of a ship – the point of the ship that is most forward as the ship is sailing (also known as the front of the ship)
  5. cloud cover – the portion of the sky that is covered with clouds
  6. foraging dive – a type of deep dive where a whale searches for food on the ocean floor
  7. glare – the light reflected from the sun off of the ocean
  8. nautical mile – a measurement for determining distance on the ocean which is approximately 2025 yards (or 1.15 miles) or 1852 meters
  9. port side of a ship – when looking forward toward the bow of the ship, the left side of the ship is port
  10. starboard side of a ship – when looking forward toward the bow of the ship, the right side is starboard

Taylor Planz: A Story of Undocking, July 25, 2018

NOAA Teacher at Sea

Taylor Planz

Aboard NOAA Ship Fairweather

July 9 – 20, 2018

Mission: Arctic Access Hydrographic Survey

Geographic Area of Cruise: Point Hope, Alaska and vicinity

Date: July 25, 2018 at 10:25am

Weather Data from the Bridge
Latitude: 33.4146° N
Longitude: 82.3126° W
Wind: 1 mph N
Barometer: 759.968 mmHg
Temperature: 26.1° C
Weather: Mostly cloudy, no precipitation

Science and Technology Log

I’m going to take you back in time to July 13, a day when a once-in-a-leg event took place. We awoke that morning to a strong breeze blowing NOAA Ship Fairweather towards the dock in Nome. Normally a breeze blowing a docked ship is fine, but that day was the start of our long awaited departure to Point Hope! 0900 was quickly approaching, and Ensign Abbott was excited for his first opportunity as conn during an undocking process! With XO Gonsalves at his side for support, he stepped up to the control center outside the bridge on the starboard side.

Ensign Abbott takes the conn

Ensign Abbott takes the conn during undocking with XO Gonsalves by his side

As you may or may not know, taking the conn is no small feat. “Conn” is an old name for the conning officer, or controller of the ship’s movement. The conning officer used to stand on the conning tower, an elevated platform where the ship’s movement could be monitored. Although the conn no longer stands on a conning tower, the name and role remain the same. The conn makes commands to the rest of the ship and, during docking and undocking, controls the two engines, two rudders, bow thruster, and the lines attaching the ship to the dock. Each part causes the ship to move in specific way and has a very important function in undocking.

ENS Abbott did a great job deciding which parts of the ship to maneuver which way and when. The process was so technical that I cannot begin to describe it. However, the persistent westerly wind just kept drifting the ship back into its docking station. Every time we got the ship positioned the way we wanted, it would push right back into its starting place. The situation turned hazardous because we had a giant barge docked in front of us, a fishing vessel docked behind us, and the wall of the dock to our starboard side. The only direction we could go without danger of crashing into something was to the left. Unfortunately you cannot move a ship side to side very far without forward or backward movement, so there are strategies for moving the ship in a forward to backward motion while simultaneously moving left or right.

In our situation, the best thing to do was to slowly back the ship out while swinging the stern end into the harbor. Once out enough to account for the westerly wind, the engines could push forward and the ship could safely exit the harbor. Unfortunately all did not go as planned and when the engines went forward, the wind pushed the ship so far towards the dock in a short amount of time that the stern narrowly missed a collision with the wall of the dock! It was a close call! The conn was unlucky in the fact that he was assigned control of the ship during weather conditions no sailor would elect, but he did his best and it was a great learning lesson for everyone!

Fast forward to July 19. The members of the NOAA Corps new to ship docking and undocking had a brief in the conference room. They discussed all of the physics involved in the undocking from the week prior, debriefed the challenge the wind posed, and reviewed the different types of maneuvers for undocking. Then they shifted the conversation to planning for the next day’s docking maneuver. XO Gonsalves, with a vast array of unique skills in his toolbox, turned on a PlayStation game that he created for his crew to practice docking and undocking! Docking a ship is a skill with the unique problem that you cannot simply practice it whenever you want to. The only attempt offered to the crew during this leg was on the morning of July 20. It was a “one and done” attempt. Lucky for them, XO thought outside the box! With the video game, they could practice as often as they wanted to and for as long as necessary to get the skill down.

 

The challenge presented to the crew was to dock and then undock the boat seen in the photo above eight different times with varying obstacles to work through. Examples of obstacles were having a small docking space, turning the boat around, and wind adding a new force to the boat. Three controllers were needed for the job. The first controller, and the little tiny person at the front of the boat, controlled the bow thruster. The bow thruster could push the boat left or right in a jet propulsion-like manner. Using the bow thruster on the port side pushed the boat right, and using the bow thruster on the starboard side pushed the boat left. The XO also assigned this person the roll of the conn, so they had to call out directions to everyone playing the game. The next person controlled the engines. This was a difficult task because there is a port and a starboard engine, and each engine can go forward or backward. The conn could give a simple order like “all ahead” or a more difficult order like “port ahead, starboard back” (trust me, that one is not easy). The last person controlled the rudders. The rudders worked in unison and could be turned right or left. The rudders can be fine-tuned in reality but in the game, due to the controller’s limitations, we used the commands of “half rudder” and “full rudder” to choose how significantly the rudders should be turned. You can see a small clip of the game in action below. Turn up the volume to hear the conn. As a reminder, the Corps members participating are learning the process, so you may hear a variety of commands as they fine tune their vocabulary to use more specific language.

 

On the morning of July 20, the docking process was smooth with no surprise forces at play on the ship. The NOAA Corps did an excellent job with the maneuver. As soon as we thought we would get a chance to relax, a food order arrived with 2,700 lbs of food that needed to be hauled from the top deck of the ship down to the bottom. Horizontal forces affecting the ship were no comparison to the vertical force of gravity pulling all those boxes down towards Earth, but we used an assembly line of 20 people passing boxes down the stairwell and we all ended the day with a good workout!

Personal Log

It seems fitting to begin my last blog with the story of undocking the Fairweather in Nome at the start of the leg. This is not the end of my Teacher at Sea journey but the start of my work, integrating my personal experience into something relevant for my students in a physical science classroomSince returning home, I completed my first media interview about my time at sea. Ironically teaching others about myself led to my own epiphanies, namely refining my “why” to becoming an educator. I told Amanda, my interviewer, how I spent my childhood soaking my shoes in ponds trying to catch frogs, harvesting new rocks for my shoe box collection under my bed, and following the streams of water every April when snow melted away. I grew up with a curiosity for all things natural and scientific. Science classes were simply an outlet for my inquisitive mind, so it was easy to be engaged in school. Below are a few photos of me in high school, memories of times that inspired my love for the ocean. That natural wonder, excitement, curiosity I had for the world around me as a child and young adult…that’s what I want to instill in my students. My experience on the Fairweather helped me find new tools for my “teaching toolbox” and new ideas for my curriculum that I hope will inspire more students to become curious about their worlds. You’re never too old to discover the intrigue of the natural world. When you begin to understand that the purpose of science is to explain what we observe, your desire to uncover the secrets will grow!

 

The ability of a ship to make 3,000,000 lbs of weight float on water, that is intriguing. The idea of using sound waves, something we interact with constantly on land, under the water to map what we cannot see, that is amazing. Collecting an array of data that, to the untrained mind seem unrelated, and putting them together into a chart used by mariners all over the world, that is revolutionary. NOAA hydrographic ships connect science and the economy in a way not dissimilar to how I hope to connect education and career for my students. This experience inspired me in ways beyond my expectations, and I cannot wait to share my new knowledge and ideas in my classroom!

Did You Know?

The Multibeam Echosounder on the ship obtains ocean depths accurate to 10 centimeters. The average depth of the ocean is 3,700 meters, or 370,000 centimeters, according to NOAA. That is an average percent accuracy of 99.997%!