Heather O’Connell: Voyage through the Inside Passage, June 9, 2018

NOAA Teacher at Sea

Heather O’Connell

NOAA Ship Rainier

June 7 – 21, 2018

Mission: Hydrographic Survey

Geographic Area of Cruise: Seattle, Washington to Southeast, Alaska

Date: 6/9/18

Weather Data from the Bridge:

Latitude and Longitude : 49°49.7’ N, 124 °56.8’ W, Sky Condition: Overcast , Visibility: 10+ nautical miles, Wind Speed: 5 knots, Air Temperature: 12.2°C

Science and Technology Log

Today while in transit through the Inside Passage, I learned to mark the position of the vessel from the pilot house, or Bridge of the ship, using three different methods thanks to Junior Officer Airlie Pickett. Utilizing this triangulation of data ensures accuracy in the placement of the ship on the two dimensional chart located on the port side of the bridge. This process must be completed every fifteen minutes when the ship is in motion close to small landmasses or every thirty minutes when further from land.

The first method involves choosing three different landmarks and recording the angular measurement to the body using alidades. Alidades are located on the port and starboard sides directly outside of the Bridge. When looking at your landmark, it is important to choose the easternmost or westernmost side of the body with a more prominent feature. When viewing the landmass through the alidade, there will be a bearing of the object in relation to the bridge. Once you have the measurements, use the north lines on the map as the zero degree of the protractor and mark a line with the proper angular measurement from the landmass. Repeat this process for the other two locations. Then, draw a circle within the triangle formed from the three intersecting lines along with the time to mark the placement of the ship.

Alidade on the port side of ship

Alidade on the port side of ship

Another way to mark the placement of the vessel visually is to look at the radar for three known landmarks. Record the distance to each landmark. One nautical mile equals one minute of latitude. Longitude cannot be used for distance since these values change as you approach the poles of the Earth. Use a compass to mark the appropriate distance from the scale on the perimeter of the map. Then, draw an arc with the compass from the landmass. Repeat this process for both of the other landmarks. The three arcs intersect at the current location of the vessel and should be marked with a circle and the time.

Protractor and compass

Protractor and compass used to mark the course of the ship on the chart.

The two visual methods for marking the placement of the vessel are used in conjunction with an electronic fix. The digital latitude and longitude recording  from the G.P.S, or Global Positioning System, provides the third check. This data is recorded and then charted using the latitude and longitude marks on the perimeter of the chart.

Another responsibility of the navigator is to mark on the nautical chart the approximate location of the ship moving forward. This is called D.R, or dead reckon, and it shows where you would be if you were to continue on coarse at the current speed for up to two hours.

Personal Log

As we approached the Inside Passage, a feeling of peace and serenity came over me as I viewed snow capped mountains beyond islands with endless evergreen trees. The feelings of the navigators may be different since this is a treacherous journey to traverse, although it is preferred to the open sea. The Inside Passage proves to be a great learning opportunity for new junior officers without much navigation experience. However, due to the weather issues and narrow passages, the Commanding Officer, Senior Watch Officer and Officer of the Deck have extended experience navigating the Inside Passage.

The strong currents at Seymour Narrows in British Columbia can make this voyage dangerous. This was taken into consideration and we crossed them during slack tide, the time between high and low tide, with a current of only about two knots. Tides can get as high as 15 knots during maximum ebb and flood tides. The visible circular tides, or eddies, are created from the current coming off of Vancouver Island being forced into a narrow channel. As Senior Survey Technician Jackson shared, the Seymour Narrows once had Ripple Rock, a two peak mountain, that caused several shipwrecks and was home to the largest non-nuclear explosion in North America in 1958.

Inside Passage by Seymour Narrows

Inside Passage by Seymour Narrows

As we entered the Inside Passage, islands covered in Western red cedar, Sitka spruce and Western hemlock provided the beautiful green amongst the spectacular ocean and sky blue. These colors paint the canvas indicative of the Pacific Northwest that make my soul feel at home. The cloud covered sky could be seen in every direction. We saw moon jellyfish floating by from the flying bridge and later a group of porpoises jumping up out of the water. The watch from the deck crew would spot lighthouses and fishing boats with binoculars well before anyone with a naked eye. I observed the approaching sunset from the bow of the ship and felt gratitude for the day.

Approaching sunset in Inner Passage

Inner Passage Sunset

Did You Know?

There are two different types of radar on the Bridge. S Band radar sends out pulses between 4 and 8 centimeters at 2-4 GHz and can go over longer distances. This is helpful to determine what is happening far from the boat. The X Band radar sends out smaller pulses of 2.5 -4 cm at 8-12 GHertz and can create a clear image of what is occurring close to the boat. Both radar systems provide useful information and must be used in conjunction with one another to have an understanding of what is happening near and far from the ship.

Source – https://www.everythingweather.com/weather-radar/bands.shtml

Roy Moffitt: Last Day of School, Onward to Summer in the Arctic Ocean. June 21, 2018

NOAA Teacher at Sea
Roy Moffitt
Aboard Ship: USCGC Healy
Cruise Dates: 8/7/2018 – 8/25/2018

Mission: Arctic Distributed Biological Observatory

Geographic Area: Arctic Ocean (Bering Sea, Chukchi Sea, Beaufort Sea)

Date: June 22, 2018

From New Hampshire and coming soon this August from the Arctic

Yesterday, June 21, 2018, was the last day of school for us at the Maple Street School in Hopkinton, New Hampshire. It was an appropriate day for the last day of school as summer vacation starts on the summer solstice this year. We ended the school year with a promotion of the NOAA research mission I will be taking part in this summer. Part of this unique learning opportunity is to bring the learning experience to students and the general public, not only in Hopkinton, NH but across the country. If you have found my blog, congratulations! Please follow the blog so you to can join me on this adventure.

Above are the students of Maple Street during the end of year assembly. The Maple Street School is located in the village of Contoocook in the town of Hopkinton New Hampshire. The school is composed of students in grades 4-6 grade and approximately 210 students.

Above are the students of Maple Street during the end of year assembly. The Maple Street School is located in the village of Contoocook in the town of Hopkinton, New Hampshire. The school is composed of students in grades 4-6 grade and approximately 210 students.

Overview of Mission

There will be over 40 scientists and I the Science teacher headed into the Arctic Ocean sailing out of Nome Alaska to the Barrow Canyon. The Barrow Canyon is an underwater gorge that runs East to North West of Barrow Alaska and is known for its rich marine life. Scientists will be conducting numerous studies and observations at many locations during the trip.   The scientific studies taking place will have a common theme, how are the rapid changing Arctic Sea Ice conditions affecting the region?

This NOAA image from November shows the historically low ice in the study area this fall. Historically the Chukchi Sea has had sea ice at this time. This map is a good guide to orient you to the study area from Nome to the north-northwest of Barrow Alaska.

This NOAA image from November shows the historically low ice in the study area this fall. Historically the Chukchi Sea has had sea ice at this time. This map is a good guide to orient you to the study area from Nome to the north-northwest of Barrow, Alaska.

For the last two years, regional sea ice in the Bering Sea has been at a historic low. What changes does this have on the region’s ecosystem? This includes the microscopic plankton to fish, marine birds to larger marine mammals. These creatures live anywhere from the sea floor to the air, and all these areas will be observed. As we observed in my 6th-grade science class this year, in an ecosystem the living (biotic) is affected by the non-living (or abiotic). Non-living factors that will be measured will include the salinity of the water, the water temperature, and changes in ocean currents themselves. Changes in ocean currents have larger effects on local and regional climates, which include those on land.

This annual survey will allow for changes over time to monitored. What will scientists learn this year? Follow this blog to find out. To sign up to be notified of updates click the follow button on the bottom right of your screen and you will be notified when there is a new post to read.  The blog will be updated at the start of and during the mission from the from one of the most remote areas of the world, north of the Arctic Circle in the Arctic Ocean.  I look forward to talking to you again soon from the Arctic Ocean during the first week of August!

Vickie Obenchain: Alaska Here I come! June 22, 2018

NOAA Teacher at Sea

Victoria (Vickie) Obenchain

Aboard NOAA Ship Fairweather

June 25 – July 6, 2018

Mission:   Arctic Access Hydrographic Survey

Geographic Area of Cruise: Northwest, Alaska

Date: June 22nd, 2018

 

Personal Log

Hello, my name is Vickie Obenchain and I am the K-5 science specialist and 6-8 middle school science teacher at the Saklan School in Moraga, California. I was an outdoor environmental educator before becoming a classroom teacher and found water ways fascinating, as they can show you the health of an area, see human impact and also connect so many areas of the world and environments.  Now in the classroom, as my school is very close to the San Francisco Bay, water and ocean topics are always a discussion in my science classes.

Tomorrow, I leave for northwest Alaska to take apart in oceanic research on board NOAA Ship Fairweather. I will be working with NOAA scientists to help map the ocean floor around Alaska to help boats maneuver along those water ways, as most commerce comes either by boat or plane. Accurate up to date data is necessary to help also with storm surges and wave modeling.

NOAA Ship Fairweather_Photo courtesy NOAA__1513364385969__w960

NOAA Ship Fairweather (Courtesy of NOAA)

I am very excited to take part in this research. Being chosen to be a Teacher At Sea and learn along other scientists, take part in important research and travel to an area I have never seen before excites me to think of what all learning opportunities I will be able to bring back to my classroom. Most of all, I am excited to share with my students what a scientist’s life may look like; as they may get inspired themselves.

The weather in Alaska looks like it is in the 50’s and 60’s during the day and down into the 40’s at night, so I am packing a bit warmer clothes then I have been wearing the last week. Along with my awesome new NOAA Teacher At Sea swag I received to make me feel like one of the gang.

I hope you will follow along with me this summer!

 

Eric Koser: Welcome– Its Almost Time! June 21, 2018

NOAA Teacher at Sea

Eric Koser

Aboard NOAA Ship Rainier

June 25 – July 9, 2018

Mission: Hydrographic Survey of navigable waters to develop and update navigational charts. At sea June 25 – July 9, 2018.
Geographic Area of Cruise: Lisianski Strait, along the SE coast of Alaska followed by transit of the Inside Passage to home port in Newport, OR.
Date: June 21, 2018, the Summer Solstice!

Weather Data from the Bridge [okay, the front porch at home!]:

44.1589° N, 94.0177° W
Current Weather: Light Rain, 70°F (21°C)
Humidity: 79%
Wind Speed: E 15 mph
Barometer: 29.81 in
Dewpoint: 63°F (17°C)
Visibility: 10.00 mi

Welcome!
It’s nearly time to embark on this adventure! I’ve always appreciated chances in life to explore and learn about different parts of the world. Recently I’ve enjoyed the book “One Earth, Two Worlds” by the Minnesota SCUBA diver Bill Mathies. I’m fascinated by the realm of underwater exploration. A large percentage of our planet has never even been seen by humans! NOAA’s hydrographic research vessels are in place around the world to map the ocean floor and promote safe navigation.

Science and Technology Log
I am Eric Koser and I live in southern Minnesota where I have worked with students learning about physics for 24 years. I teach at Mankato West High School, one of two mid-sized high schools in our river community of about 100,000 people. Mankato and North Mankato are the regional hub of south-central Minnesota. Our school district is home to about 9000 students K-12. Our community has particular strengths in manufacturing, education, and healthcare. Read more here at greatermankato.com!
I teach a variety of physics courses at West including AP Physics and Physics First at grade 9. I love to engage kids in learning physics by helping them to discover patterns and systems in nature. I really enjoy developing experiments and demonstrations to illustrate ideas. I also coach our YES! Team as a part of our Science Club here at West. Youth Eco Solutions is a program to support students to make positive energy and environmental based changes in their communities. These kids have tackled some big tasks – replacing styrofoam lunch trays with permanent trays, updating our building lighting’s efficiency, and systematically monitoring campus electrical usage.

Mankato West Scarlets

YESmn

Mankato Area Public Schools

Personal Log
My wife Erica and I have four kids that we love to support. They are currently ages 20, 18, 15, and 10 and always on the move. Our oldest, Josh, is an engineering and technical theater student at the U of MN. Our next, Zach, just graduated from high school and is rebuilding a small hobby farm and an 1800’s house to become his rural home. Ben is an avid photographer now working at a local photo studio shooting professionally for events. Meron is headed to fifth grade– she is our most social kid who loves being with her friends and our many pets here at home.

Team Koser

“Team Koser” – our immediate family.

Our summers often involve many days at ‘the lake’, a place we enjoy in northern Minnesota with extended family. We love to fish, swim, kayak and explore the water there. As a SCUBA diver, I’ve begun to explore below the surface of the water as well.

SCUBA MN

Lake diving in Minnesota can be chilly! – Photo by Ben Koser

MN Lake Sunset

Ben captures the last of this Minnesota lake sunset – photo by Eric Koser

This summer has also involved lots of construction on Zach’s farm as we bring a once gutted two-story house into a finished home.

MN Hobby Farm

Zach’s Minnesota Hobby Farm – photo by Eric Koser

In a few short days, I look forward to joining the NOAA Ship Rainier on a hydrographic survey of Lisianski Inlet on the SE coast of Alaska. I’ll meet up with the Ship in port at Sitka, Alaska.

NOAA Ship Rainier

NOAA Ship Rainier – Photo courtesy NOAA

The Rainier is a 231 foot long ship equipped with a variety of tools to digitally map the bottom of the ocean with the goal of updating and improving navigational charts. I look forward to meeting and working alongside the experts on Rainier while I learn everything I can about the important work that they do. I look forward to bringing questions and ideas to my students and community during and after this experience!

Questions!

The Rainier design specifications list a “draft” of 14.3 feet. What does this mean?

This ship displaces 1800 tons of water. What does this mean?

How could you determine the ‘footprint’ of the ship in the sea based on these two pieces of data? What is the average area of the footprint of this ship?

Kimberly Godfrey: Night time..Day time! June 10, 2018

NOAA Teacher at Sea

Kimberly Godfrey

Aboard NOAA Ship Reuben Lasker

May 31 – June 11, 2018

 

Mission: Rockfish recruitment and ecosystem assessment survey

Geographic Range: California Coast

Date: June 10, 2018

Data from the Bridge

Latitude: 36° 39.980′ N

Longitude: 122° 33.640′ W

Wind: 30.87 Knots from the SE

Air Temperature: 12° C

Waves: 2-3 feet with 6-8 foot swells

Science Log

As you may have gathered from my previous blogs, I spent my time working with the night scientists. However, there was a lot happening during the daylight hours that I would like to highlight. There was a separate team assigned to the day shift. Some of their tasks included analyzing water samples, fishing, and surveying marine mammals and seabirds.

Catching fish during the day allowed them to see what prey were available to diurnal predators, and they could also compare their daytime catch to the evening catches. They used a different net called a MIK Net, which is a smaller net used for catching smaller and younger fish.

MIK Net

The MIK net used by the day time scientists to catch juvenile fish.

The day shift is also the best time for spotting seabirds and marine mammals. Some of the bird species spotted included brown pelican, common murre, terns, black-footed albatross, shearwaters, and at least 1 brown booby. The marine mammals we spotted included humpback whales, fin whales, blue whales, common dolphins, and sea lions.

I had an opportunity to speak with Whitney Friedman, a postdoctoral researcher with NOAA, and she explained to me some of the goals of their marine mammal survey. Many may recall that there was a time when whale populations, especially humpback whales, were in significant decline. Today, humpback whales are considered a success story because of rebounded populations. The concern now is monitoring the success of their food sources. Humpback whales feed on krill and fish like anchovies. However, it is possible that when these sources are less available or as competition increases, they may feed on something else. The question is, what is that something else? During this survey, one goal was to collect whale scat for analysis. Studies have found that some seabirds feed on juvenile salmon incidentally when their preferred local prey is limited, and they move inshore to feed on anchovy. Is it possible that whales might do the same? What else might they be foraging on? Unfortunately, we did not have much luck catching whale scat this time around, but they will try again in the future, and hopefully will find the answers they are looking for.

As previously mentioned, we also did water quality tests and took water samples using the Conductivity, Temperature, and Depth (CTD) Rosette. This instrument has multiple functions. As the initials suggest, it detects conductivity (the measure of how well a solution conducts electricity) and temperature at any given depth. Salinity (the amount of dissolved salts and other minerals) and conductivity are directly related. By knowing the salinity and temperature, one can determine the density. Density is one of the key factors that drives the ocean currents. Many species depend on the ocean currents to bring in nutrients and food. It all comes full circle.

CTD

CTD Rosette used to capture conductivity, temperature, and depth. We also used this to take water samples at specified depths.

CTD

The CTD is lowered into the water by a winch with the assistance of the deck crew.

When we lowered the CTD we could also take water samples at any given depth. This allowed scientist to test for various parameters. For example, we filtered various water samples to determine the amount of chlorophyll at certain depths. This can help scientists estimate the growth rates of algae, which in the open ocean are called phytoplankton. One of the scientists collected water to analyze for environmental DNA (eDNA). This is DNA that might be left in the air, soil, or water from feces, mucus, or even shed skin of an organism. In her case, she was trying to find a way to analyze the water samples for sea turtle DNA.

I’ve heard of eDNA, but I have never actually understood how they collected and analyzed samples for this information. My understanding is that it can be used to detect at least the presence of an extant species. However, when collecting these samples, it is likely to find more than one species. Scientists can use previously determined DNA libraries to compare to the DNA found in their samples.

Personal Log

We started trawling again on the evening of June 7th. By then we settled ourselves into the protection of the Monterey Bay due to the weather getting bad. While we still had some off-shore stations, we tried our best to stay close to the bay because of the wind and swells. We had some interesting and challenging trawls in this area: lots of jellyfish. Some of the trawls were so full we had to actually drop the catch and abort the trawl. If not, we risked tearing the net. We tried to mitigate the overwhelming presence of jellies by reducing our trawls to 5 minutes instead of 15 minutes, and we still had similar results. One night, we had to cancel the final trawl to sew up the net. I’ve been told that sewing a fish net is an art form. Our deck hands and lead fisherman knew exactly what to do.

Let me tell you my experience with jellyfish during the survey. As you may recall, someone must be on watch for marine mammals on the bridge. This is the ship’s control room that sits on the 5th level above water.

Reuben Lasker

The Bridge of the Reuben Lasker is where we do inside Marine Mammal Watch. This is where the main controls of the ship are located.

From here you can see the surface of the water quite well, which makes it a great spot for the marine mammal watch. It was also great for watching hundreds of moon jellies and sea nettles float right by. It was one of the coolest things to watch. It was somewhat peaceful, especially hanging your head out of the window, the cool air blowing against your face, and the occasional mist of sea spray as the ship’s hull crashes against some of the larger swells. However, that same peaceful state disappears the moment you realize, “I’m gonna have to lift, count, and sort all those jellies!” I wasn’t too concerned about being stung; we had gloves for the sea nettles and the moon jellies were no real threat. However, the sea nettles (Chrysaora fuscenscens) smelled AWFUL, and the moon jellies (Aurelia spp.) are quite large and heavy. I’m honestly not sure how much they weighed; we did measure up to 20 per haul, some of them measuring over 400 mm. Even if they weighed about 5 pounds, lifting 50-60 of them consecutively until the count is complete is enough to get the muscles burning and the heart rate elevated. It was a workout to say the least. I was literally elbows deep in jellyfish. I also wore my hair in a ponytail most of the time. Anyone that knows me knows well enough that my hair is long, and definitely spent some time dipping into the gelatinous goop. I smelled so bad! HAHAHAHA! Nonetheless, it was still one of the most intriguing experiences I’ve had. Even though the jelly hauls proved to be hard work, I enjoyed it.

In those last few days, I felt like I became integrated into the team of scientists, and I felt comfortable with living out at sea. I had a few moments of nausea, but never really got sea sick. I still couldn’t walk straight when the ship rocked, but even the experts wobbled when the ship hit the big swells. Then, that was it for me. By the time I got the hang of it all, it was time to leave. I wish there were more hours in the day, so I could have experienced more of the day time activities, but I still got to see more than I thought I would, and for that I am grateful.

Did you know…

NOAA offers many career options. As a scientist, here are some things one might study:

  • track and forecast severe storms like hurricanes and tornadoes; monitor global weather and climatic patterns
  • Research coastal ecosystems to determine their health, to monitor fish populations, and to create policies that promote sustainable fisheries
  • Charting coastal regions and gathering navigational data to protect the ship from entering unsafe waters

NOAA Corps allows one to serve as a uniformed officer, commanding a ship or piloting aircraft. On NOAA Ships, they need engineers, technicians, IT specialists, deck hands, fishermen, and even cooks (The Reuben Lasker had two of the best, Kathy (Chief Steward) and Susan (second cook)). There are many opportunities available through NOAA, and there is a longer list of amazing experiences one can have working for this organization. If you want to explore in more detail, visit http://www.careers.noaa.gov/index.html

 

Lacee Sherman: Teacher Counting Krill June 16, 2018

NOAA Teacher at Sea

Lacee Sherman

Aboard NOAA Ship Oscar Dyson

June 6, 2018 – June 28, 2018

Mission: Eastern Bering Sea Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date:  June 16, 2018

 

Scientists on deck

Fisheries Biologist Sarah Stienessen, Chief Scientist Denise McKelvey, TAS Lacee Sherman, and Fisheries Biologist Nate Lauffenburger on the Hero Deck of NOAA Ship Oscar Dyson in front of a few volcanoes.

 

Weather Data from the Bridge at 18:30 on 6/17/18:

Latitude: 57° 09.7 N

Longitude: 166° 26.4 W

Sea Wave Height: 3-5 ft

Wind Speed: 10 knots

Wind Direction: 345°

Visibility: 8 knots

Air Temperature: 7.2° C

Water Temperature: 7.8° C

Barometric Pressure:  996.8 mb

Sky:  Grey and slightly foggy

More scientists on deck

TAS Lacee Sherman with Fisheries Biologists Matthew Philips and Nate Lauffenburger on deck of NOAA Ship Oscar Dyson in front of nearby Volcanoes

Science and Technology Log

In the fish lab, after the haul is sorted out, a sample of each species are randomly selected to undergo additional measurements and data collection.  One of the primary pieces of information needed is the lengths for about 300 pollock per haul.  The length of the pollock is important because larger fish have larger internal organs.  The internal organ that matters most to this survey is the size of the swim bladder since this is what give us the echo that can be picked up by our acoustic transducers.

According to the NOAA Ocean Service, “If fish relied solely on constant swimming to maintain their current water depth, they would waste a lot of energy. Many fish instead rely on their swim bladder, a dorsally located gas-filled organ, to control their stability and buoyancy in the water column. The swim bladder also functions as a resonating chamber that can produce and receive sound, a quality that comes in handy for scientists locating fish with sonar technology.”

To process a trawl sample, the pollock are put into baskets and weighed. One basket is selected at random to obtain the lengths and weights of individual fish. 30-35 Fish are selected for otolith samples (ear bones) that can be used to age the fish.  These fish are also inspected to look for the sex of the fish and their maturity stages.  There are 5 different maturity stages for pollock:  immature, developing, pre-spawning, spawning, and spent.  Since the fish already needs to be cut open for this process, we will sometimes look at the stomach contents of the fish as well to see what they are eating.  Based off of stomach contents, one of the main food sources for pollock in the Bering Sea this summer are euphausiids, or krill.

Flow meter

Flow Meter used on the Methot Net. This is a calibrated instrument and we use the number of spins to measure the volume of water going through the net. This is an important tool for determining the catch per unit effort.

In addition to trawl samples, we also are taking samples of Euphausiids with a special tool called a Methot net. Four Methot samples will be taken on each leg of this research survey.  A Methot net includes a sturdy metal frame of a set circumference with a net attached to the back. The net is a very fine mesh (small holes), so that the small euphausiids don’t escape.  A flow meter is attached that measures the volume of water that is going through the net.

Methot Net on deck

A photo of the methot net on deck of the NOAA Ship Oscar Dyson

The euphausiids are a very important component of the marine food web in the Bering Sea.  Euphausiids eat very small phytoplankton and zooplankton, so they are omnivores.  Pollock eat the euphausiids, and then the pollock are eaten by marine animals such as seals, orcas, large cod, and even larger pollock.  Humans also eat pollock, often in the form of imitation crab meat and the fish filet sandwiches from fast food chains.

Euphausiids being counted

Euphausiids being separated into groups of 10 so that they can be counted. This only represents a small sample of what was brought in with the Methot. There were 1,110 in total counted.

Once the Methot net has come back on the ship at the end of the haul, a scoop (sub-sample) of them is taken and counted.  Fish larvae and anything else that is not euphausiids is taken out and counted separately and then we go to work counting to get a total number of euphausiids from our sample.  In our small sub-sample of .052 kg, our count was 1,110 euphausiids.  Based off of the total haul weight of 2.12 kg, we are able to estimate the total number of euphausiids for this haul to be 45,251.  This number is calculated based off the total number and weight of our sub-sample, compared to the total weight of the Methot haul.

Personal Log

I finally saw Orcas!!  All of the running around on the ship was worth it!  We always seem to be heading in opposite directions so I have seen mostly just dorsal fins, but I’ll take it!  One morning I finally saw them from a closer distance and was able to see the white patch near the eye.  I feel like I will be remembered by everyone on the ship as the “crazy whale-obsessed teacher,” but I can live with that.

First Orca

The dorsal fin of an Orca spotted from NOAA Ship Oscar Dyson

One of the side experiments happening on the ship looks at the survival rate of fish caught on traditional fishing lines versus fish caught in trawl nets.  One pollock had been caught and all of us on the ship decided the name should be Jackson Pollock.  Jackson survived for a few days, but didn’t last past 6/15/18.  The next day six new fish were put into the tank after a trawl catch, and after 24 hours, only two were still alive.

 

NOAA Careers and Unexpected Learning Opportunities

I have been trying to talk to everyone on the ship about how they first got interested in this type of work and exactly what their role is for day to day operations.  There are so many different career options that can allow you to live on ships and be involved with scientific research.

The past few days I have spent time trying to learn as much as I can about everything related to the ship.  I spent time speaking with Commanding Officer (CO) Michael Levine and Ensign (ENS) Sony Vang about their ship and land assignments and the requirements of the NOAA Corps.  ENS Vanessa Oquendo showed me how some of the ship’s controls work.  They are regularly focused on navigation (on a paper chart and electronically), and communication with other ships about positioning, weather, and the speed and direction of the ship.  There is a lot to consider and to maintain 24/7.

Easy button and emergency affirmation

A few of my favorite buttons on the ship.

Getting the nets in and out of the water is a very complicated process and involves many different ropes, chains and weights.  I noticed this really cool type of knot that seemed to undo itself, so I asked one of the Deck Crew members, Jay Michelsen to teach me some cool ship knots.  I learned how to make:  bowline knots, flying bowline knots, cow hitch knots, daisy chains, double daisy chains, and a way to finally wrap up headphones so that they won’t tangle themselves.

Matthew Phillips and Scientist Mike Levine taught me how to fillet a fish which will be useful since I enjoy cooking so much! I will no longer be intimidated to buy fish whole.  We got some practice on a spare cod that we caught and a few rockfish.

One of the licensed engineers, Becca Joubert, gave me a tour of the engine room and I was able to see the engines, winches, rudder, water filtration systems, and the repair shop.  I didn’t realize that fuel was held in different tanks, but it works best that way because of safety and because it helps to distribute the weight all around the ship better.

 

 

Did You Know?

The NOAA Ship Oscar Dyson was named after a commercial fisherman named Oscar Dyson.   There is a smaller boat on board named the Peggy Dyson after his wife, who would broadcast the weather forecast twice a day every day to local ships as well as personal announcements and important sports scores.

Things to Think About:

Dolphins and Orcas eat a variety of fish, squid, and sometimes other marine mammals, while large whales such as blue whales and humpbacks mostly rely on krill as their main food source. Why would such large marine mammals feed primarily on tiny krill?

Since there is a relationship between pollock and euphausiids, as the number of pollock grows, what is a reasonable prediction about the number of euphausiids?

 

 

Joan Shea-Rogers: Teacher at Sea becomes Student at Sea, June 19, 2018

NOAA Teacher at Sea

Joan Shea-Rogers

Aboard NOAA Ship Oscar Dyson

July 1-22, 2018

 

Mission: Walleye Pollock Acoustic Trawl Survey

Geographic Area of Cruise: Eastern Bering Sea

Date: July 19, 2018

Personal Log

I must begin by trying to convey how honored and excited I am to be a part of NOAA’s Teacher At Sea program.  I will be sailing aboard NOAA Ship Oscar Dyson with another teacher, Lee Teevan. What an adventure! More importantly, it’s an opportunity to gain knowledge about the management of the Bering Sea Fishery, the commercial fishing industry and how these forces impact both the ocean ecosystem and our lives. It is an opportunity to educate my students and community about these factors and the career opportunities that support them. It also demonstrates the fact that, life long learning opportunities come in many forms.

For the last five years I have been teaching at Lanphier High School in Springfield, Illinois. I look forward to bringing lessons into the classroom that can spark an interest in an unfamiliar aspect of scientific research and its real-life implications. Through these lessons, I also hope to expand student awareness of the related realm of job opportunities associated with this work.

I graduated with a Bachelor’s degree in Biology and a concentration in Fishery Science. I earned my Teacher Certification in Biology and the Sciences. Following graduation, I chose a career in teaching. Through my education at the University of Wisconsin – Superior, I became interested in the Foreign Fishery Observer Program. I was a Foreign Fishery Observer on Japanese fishing ships that fished primarily for Arrowtooth Flounder in the Bering Sea. This involved sampling the catches, and determining how much of each species of fish were caught to guard against exceeding their assigned quota. I spent a month and a half aboard 3 different ships. The opportunity to work on NOAA Ship Oscar Dyson will allow me to learn about the Fisheries Management aspect of the Bering Sea.

I returned to school to earn my Special Education Teaching Certification and earned a Master’s Degree in Educational Administration. As a teacher, I continued going to school and learning about many topics that supported my work. In order to increase my knowledge about Fishery Science, I took a class in which I created a teacher’s manual (An Aquatic Organisms Educational Module for the Therkildsen Field Station at the Emiquon Wetland Area on the Illinois River). This manual allows teachers to bring students to the field station, collect plankton samples and use the labs to study the results of their sampling. Students learn about the many aspects of the wetland ecosystem and even calculate estimates of the planktonic biomass of the wetland. How fun is that!

TAS Joan Shea-Rogers and a Glacier

Traveling and Learning About the World Around Me

I hope with my introduction, I peak your interest in this aspect of our world. I invite you to be a part of my experience in order to continue your life long learning journey as I continue mine.