Amanda Dice: From Sea to Shining Sea, August 17, 2017

NOAA Teacher at Sea

Amanda Dice

Soon to be aboard NOAA Ship Oscar Dyson

August 21 – September 2, 2017

 

Mission: Juvenile Walleye Pollock and Forage Fish Survey

Geographic Area of Cruise: Gulf of Alaska (near Kodiak)

Date: August 17, 2017

Weather Data: 30.5°C, cloudy, 78% humidity

Location: Baltimore, MD

Intro

Out on the east coast waters utilizing my favorite form of Baltimore’s transportation options – its fleet of kayaks!

Introduction

It is hot and sticky here in Baltimore and I am looking forward to breathing in the crisp air in Alaska. I am also looking forward to being out on the water. As a Baltimore resident, I am able to spend time in the beautiful Chesapeake Bay. It is a great place to get out on a kayak and take in nature. I can’t wait to take this experience to the next level on the waters of the Gulf of Alaska. I try to go on at least one big adventure each year, and the Teacher at Sea experience definitely will fulfill this goal for 2017! I am also excited about all of the new things I will learn on this trip and I am looking forward to sharing these with my students. I teach STEM courses to students who attend online school. I have seen how connecting scientific experiences and data with students can spark their interest in STEM fields.  I am very excited to have the opportunity to use this experience to engage students in scientific activities and discussions.

 

Science and Technology Log

This mission will take place on the NOAA Ship Oscar Dyson, which has its home port in Kodiak, Alaska. From Kodiak we will move through the waters surrounding Kodiak Island and eastward into the Gulf of Alaska. The scientific team will be studying populations of walleye pollock and zooplankton in these waters. The mission will be conducted in two parts. I will be aboard for Leg 1 of the mission. Leg 2 will begin shortly after we return to port on September 2nd. The map below show all of the sampling locations that will be visited during this mission. Leg 1 sampling locations are indicated by red dots. At each location, a variety of sampling will take place. From what I have learned about the mission, it looks like we will be using several different trawls to collect samples. We will then use a variety of methods to identify species and collect data once the samples are onboard.

leg 1 map

This map shows the sampling locations of Leg 1 (red) and Leg 2 (blue) for the Gulf of Alaska Juvenile Walleye Pollock Survey. Courtesy of NOAA.

The Oscar Dyson is described as “one of the most technologically advanced fisheries survey vessels in the world.” From what I see on the NOAA website, it seems to have an impressive amount of scientific equipment onboard. It has a wet lab, dry lab, computer lab, biology lab and hydrology lab. It also has a wide array of data collection gear and mechanical equipment. I am looking forward to checking out all of this equipment for myself and learning more about how it will be used.

Science and Tech Log

NOAA Ship Oscar Dyson on the chilly waters in Alaska. Courtesy of NOAA.

This study will focus on collecting data on walleye pollock populations. This fish is a member of the cod family and lives primarily in the waters of the northern Pacific Ocean. As juveniles, this species feeds on krill and zooplankton. As they mature, they eat other fish, including juvenile pollock!  Many marine species rely on populations of these fish as a food source in the Gulf of Alaska. Humans also like to eat pollock. It is sold as fillets, but is also used in fish fingers and to make imitation crab meat. Pollock fillets are becoming more popular as cod and haddock populations become overfished. Pollock populations have fluctuated over the years, but are not currently overfished. The dotted line in the graph below shows population numbers in the Gulf of Alaska (GOA).

pop graph

The dotted line on this graph shows the population numbers of walleye pollock in the Gulf of Alaska (GOA). Courtesy of NOAA.

A scientist from the U.S. Fish and Wildlife Service will also be aboard the Oscar Dyson conducting a seabird observation study. She will work mainly from the bridge, keeping track of the different seabird species she sees as we move from one sampling location to the next.

Personal Log

I am excited about my upcoming adventure for many reasons. As an undergrad, I majored in Natural Resource Management. I went on to be a science teacher, but have always been interested in learning about findings from ecological studies. This experience will allow me to get an up close look at the technology and techniques used to conduct this kind of study. I am looking forward to being able to contribute to the team effort and learn new things to bring back to my students. I am also very excited to be aboard a ship off the coast of Alaska. A trip to Alaska has always been on my bucket list and I am looking forward to taking in the scenery and spotting marine mammals and seabirds. I am also hopeful that we will be able to see a partial solar eclipse from the water. I am bringing my sun viewers, just in case!

Did You Know?

It would take 88 hours to drive from Baltimore, MD to Kodiak, AK.

Did You Know

Glad I am flying! Courtesy of Google Maps.

Kip Chambers: Parting Shots II of II… August 7, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17 – 30, 2017

 

Mission:  West Coast Pelagics Survey   

Geographic Area of Cruise:  Pacific Ocean; U.S. West Coast

Date: August 7, 2017

 

 

L to R Austin Phill Nina Kip

Left to Right: Austin, Phill, Nina, Kip

 

Weather Data from the Bridge:  (Pratt, Kansas)

Date: 08/07/2017                                    Wind Speed: E at 9 mph

Time: 19:25                                               Latitude: 37.7o N

Temperature: 22o C                                  Longitude: 98.75o W  

 

Science and Technology Log:

A week has passed since I left the Reuben Lasker, but I have continued to monitor the haul reports from the ship.  The last haul report indicates that haul #79 of the West Coast Pelagics Survey was conducted off of the coast of California just south of San Francisco Bay.  The survey is fast approaching the concluding date of August 11th when the Reuben Lasker is scheduled to be in port in San Diego.  Based on their current location, there are probably only a couple of days/nights of sampling left for the survey before the ship has to steam for its home port of San Diego.

As I looked through the spreadsheet with the summary of the data that is being collected for the survey, I can’t help but be impressed by the volume of data and the efficiency in which it is being recorded.  Although I was only on the ship for a short period of time, I know how much work is involved in preparing for the evening trawls and how much time it takes to process the catch and record the data.  I have a tremendous amount of respect for the talented, dedicated, hard-working science team members aboard the Reuben Lasker.  Below is a series of interviews with many of the science team members that I had the pleasure to work with while I was on the ship.

 Each team member was asked the following 3 questions:

Q1:  Can you tell me a little bit about your background, including education and work history?

Q2:  What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?

Q3:  What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?

Science Team Member: Phill Dionne

 

 

Q1:  Phill’s post-secondary academic career started at Stoney Brook College in New York where as an undergraduate he studied Geology.  Phill’s undergraduate program also included time in Hawaii where he took several courses towards his minor in Marine Science. After his bachelor’s degree, Phill spent a year in the Florida Keys, initially as an intern, then as a marine science instructor at a science camp.  As Phill continued to pursue his educational goals he began to focus on marine science as a career pathway.  Ultimately, Phill completed a graduate degree program at the University of Maine where he studied the migrations and abundance of ESA listed sturgeon and earned masters degrees in marine biology and marine policy.

Phill moved to the state of Washington in 2011 where he currently works for the Department of Fish and Wildlife.  Phill’s current positon as Senior Research Scientist includes overseeing programs centered on habitat and stock assessments for forage fish including surf smelt, sand lance and Pacific herring.

Q2:  When asked what he had learned during his time on the Reuben Lasker, Phill pointed to gaining a better understanding of the techniques and challenges associated with managing coastal fisheries, and how they differ from nearshore survey techniques.

Q3:  Phill’s advice to first year college students considering a career in science is to get experience in data management and to get involved in internships early in your academic career.  Phill also emphasized that it is important to understand that a career in marine science is more than just a job, it is a “lifestyle” that requires commitment and hard work.

Science Team Member: Andrew Thompson

Q1:  Although originally from California, Andrew earned his graduate degree from the University of Georgia where his studies focused on stream ecology.  Eventually Andrew would earn his PhD from the University of California in Santa Barbara.  As part of his work for his PhD, Andrew studied a unique mutualistic symbiotic relationship between a species of shrimp and shrimp gobies (fish) on tropical reefs near Tahiti.  In this unusual relationship there is a system of communication between the fish and shrimp in which the fish acts as a type of watchdog for the shrimp communicating the level of danger in the environment to the shrimp based on the number of tail flips.  After a stint with the United States Fish and Wildlife Service in California, Andrew began working for NOAA in 2007 where he specializes in identification of larval fish.

Q2:  Having experienced multiple assignments on NOAA research vessels, Andrew’s response to what he had learned while on this cruise related to his enjoyment in watching the younger volunteers see and experience new things.  He voiced an optimism in the younger generation expressing how many “good, talented kids are coming through programs today.”  One of the observations that Andrew pointed out about this survey was the number of pyrosomes that are being found which is uncommon for this geographical area.  In a bit of an unusual find, a juvenile medusa fish within a pyrosome also sparked Andrew’s interest (see photo above).

Q3:  With regards to advice for prospective students, Andrew pointed out that a career path in science is often non-linear.  Like many of the science team members that I interviewed, he talked about how important it is to persevere and push through the difficult times as you pursue your goals.

Science Team Member: Nina Rosen

 

 

Q1:  Nina Rosen grew up in California where her connection and love of the ocean developed at an early age.  Nina completed her undergraduate degree at Humboldt State University in northern California.  Her graduate degree is a masters degree in advanced studies (MAS) from SCRIPPS Institution of Oceanography.  Nina’s work while at SCRIPPS was focused on understanding interactions between communities and ocean resources with a particular interest in small scale fisheries.  Nina’s background includes a diverse work history that includes working as a naturalist at field stations in Alaska, and working with the Department of California Fish and Wildlife to gather information from anglers that is used to help manage the California’s recreational fisheries.

Note: A special thank you to Nina.  Many of the outstanding photos included on my blogs throughout the survey were taken by her (see images above).

Q2:  When asked about what she had learned while on the survey, Nina stressed how important it was for a variety of people with different specialties to come together and communicate effectively to make the project successful.  I think her comment “all of the parts need to come together to understand the fishery” reflects her holistic approach to trying to understand our oceans and how people interact with this precious resource.

Q3:  Nina’s response when asked what advice she would give to 1st year college students interested in a career in science was simple and to the point. She said “go for it” reflecting her enthusiasm for marine science and research.  She went on to point out how important it is to take advantage of every opportunity that presents itself because “you never know what may come out of the experience.”

Science Team Member:  Austin Grodt

 

Q1:    Austin is from Orange, California, he will be entering his 4th year of studies at the University of California in San Diego majoring in environmental chemistry.  In addition to going to school, Austin works as a California state lifeguard.  Like many of the people I met while on the ship Austin’s connection to our oceans is central to his core values.  When I first met Austin he described himself saying “I am a stereotypical California guy, I am all about the water.”

Q2:  With regards to what he has learned while on the survey, Austin expressed that he had developed a greater understanding of the state of California fisheries and how they operate.  Austin also spent a lot of time interacting with the members of NOAA Corps learning about how the ship functions and large vessel navigation.

Q3:  When asked what advice he would give 1st year college students Austin said “when it gets hard don’t be discouraged, keep pushing. It is totally worth it.”  Austin also pointed out that the opportunities and number of fields available for STEM graduates are diverse and “in higher quantity than you can imagine.”

Science Team Member: Lanora

Q1:  Lanora’s first experiences with the ocean were in the Gulf of Mexico during family vacations. She went on to earn a BS degree from the University of Southern Mississippi.  After graduating, she spent time working for NOAA on research cruises in the Gulf of Mexico.  Lanora would eventually return to school and complete a masters program in marine science at the University of South Alabama.  In 2016 she would once again go to work as a NOAA scientist where she is currently working on research vessels stationed out of California.

Q2:  When asked what she had learned during the survey Lanora said “all of the pieces have to come together in order for the big picture to work.”  She went on to explain that several groups of people with a common task have to work together in order for the overall goals of the survey to be accomplished.

Q3:  Lanora’s advice to college students interested in marine science is to seek out opportunities to volunteer and participate in internships.  She indicated it was important to explore different areas to find out what you are truly interested in.  Like many of the science team members she went on to say that if you are passionate about science “go for it, don’t quit, and persevere.”

Personal Log:  Final Thoughts…

 

The most important, lasting impression that I will take away from this experience is the quality and commitment of the people that I have met along the way.  Although I will remember all of the people that I have worked with, the individuals on the science team have each given me something special.  I will remember and learn from: Dave, his calm demeanor, focus and attention to detail; Sue, her easy smile, and determination; Lanora, her relentless work ethic, and ability to manage multiple layers of responsibility; Andrew, his sense of optimism and genuine happiness; Phill, his relaxed sense of self awareness and wisdom beyond his years; Nina, her contagious laugh and commitment to, and love of our oceans; Austin, his boundless energy and curiosity about everything… thank you.

I also learned that the ocean has a heartbeat. If you’re quiet you can hear it in the rhythm of the waves.  The ocean has a soul; you can feel it in your feet if you wiggle you toes in the sand.  The ocean has an immensity and strength beyond imagination.  At first glance it seems as if the ocean has a beauty, diversity and abundance that is boundless, but of course it is not.

Due to our relentless pursuit of resources, and the pollution generated by that pursuit, our oceans are hurting.  We have to do better.  In many ways we live in troubling times, but as I learned from Andrew, it is not too late to be optimistic.  We can live a more peaceful, balanced existence with the planet’s resources and the other organisms that call the earth home.  It is my sincere desire that through hard work, education and the commitment of people from all generations we can come together to make our oceans and the planet a more harmonious home for all species…Thank you to everyone who has made this journey such a rewarding experience.

Learn more about education and career opportunities in marine science at the web site below.

NOAA Fisheries: Southwest Fisheries Science Center

https://swfsc.noaa.gov/swfsc.aspx?id=7532&ParentMenuId=33

 

 

Samantha Adams: Mahalo Nui Loa, August 10, 2017

NOAA Teacher at Sea

Samantha Adams

Aboard NOAA Ship Hi’ialakai

July 25 – August 3, 2017

Mission: Woods Hole Oceanographic Institution (WHOI) Hawaii Ocean Time-series Station deployment (WHOTS-14)

Geographic Area of Cruise: Hawaii, Pacific Ocean

Date: Thursday, 10 August 2017

Weather Data from the “Bridge”:

Latitude & Longitude:21.3245#oN,157.9251oW. Air temperature: 86oF. Humidity: 48%.Wind speed: 14 knots. Wind direction: 45 degrees. Sky cover: Scattered.

Science and Technology Log:

blog.final.image4

Downloading data from the MicroCats on the WHOTS-13 buoy’s mooring line. Back on land, the instruments will be given a more thorough cleaning, re-calibrated, and re-used next year on the WHOTS-15 buoy.

blog.final.image1

Packing gear into the shipping container returning to Woods Hole, Massachusetts, at the end of the WHOTS-14 buoy deployment.

The data has been downloaded. The instruments have been cleaned and removed from the buoy. The lines and winches and capstans have been removed from the Hi’ialakai‘s deck. It’s all been packed away into a a shipping container, headed back to the East Coast. Next summer, it will all be shipped to Hawaii again, to head out to Station ALOHA for another year at sea, as part of the WHOTS-15 buoy deployment.

As I sit in the gate area at the Honolulu International Airport, waiting for my flight back to New York City, I’m thinking about everything I learned in my time aboard the Hi’ialakai. I’m thinking about the best way to convey it all to my students — because I love using data in my classroom. One of my favorite things to do, when I am introducing a topic, is to give them a data set — either raw numbers, graphs, or other visualizations — and have them draw some preliminary conclusions. What is the data doing? Are there trends that you notice? Does anything stand out to you? Look weird? Because I teach Earth Science, there is a wealth of publicly available data, from the USGS, from NASA, from NOAA. For just about anything I choose to teach, from the atmospheres of exoplanets to mass extinction events, a quick Google search almost always yields useful, peer-reviewed, scientific data. However, until I had the opportunity to sail aboard the Hi’ialakai and observe the deployment of the WHOTS-14 buoy and the retrieval of the WHOTS-13 buoy, I never quite appreciated just how difficult obtaining all the data I use could be.

blog.final.image2

Members of the science team and crew of the Hi’ialakai. Photo courtesy of Kelsey Maloney, University of Hawaii.

Despite my best efforts, I think my students still believe that science is a solitary pursuit — something done by people in white coats in a lab somewhere. I hope that my experiences aboard the Hi’ialakai will help me paint a more realistic picture of what science is all about for my students. It’s a highly collaborative profession that needs people with all sorts of skills; not only science, but computer programming, mathematics, technology, logistics, resourcefulness and patience. I also hope be able to impress upon my students just how difficult doing good science can be. I know that I will certainly never look at the data sets I download with just a few clicks of my mouse the same way again.

Personal Log:

I would like to take this opportunity to say mahalo nui loa (thank you very much) to everyone aboard the Hi’ialakai for the WHOTS-14 cruise — for answering all my questions, even the ones I didn’t think to ask; for sharing data, seasickness medication, hardhats, and the occasional power tool; for the fabulous meals (and the best chocolate chip cookies ever!); for the impromptu education about monk seals and the philosophical discussion on fidget spinners.

It’s been a truly unforgettable experience, and I can’t wait to dig into the hard-won data from the WHOTS buoys and share it all with my students.

blog.final.image3

Enjoying yet another gorgeous Hawaiian sunset at sea. Photo courtesy of Kelsey Maloney, University of Hawaii.

Did You Know?

Dry land can feel like it’s moving, too! After spending an extended amount of time at sea, your body seems to expect the ground to be rolling underneath your feet, just like the deck of the ship… but nope! Just you! One slang term for this is “dock rock” — and it’s more than a little strange.

Kip Chambers: Parting Shots I of II… July 22, 2017

NOAA Teacher at Sea

Kip Chambers

Aboard NOAA Ship Reuben Lasker

July 17-30, 2017

Mission: West Coast Pelagics Survey  

Geographic Area of Cruise: Pacific Ocean; U.S. West Coast

Date: 07/22/2017

 Weather Data from the Bridge: (Pratt, Kansas)

Date: 08/02/2017                                                                    Wind Speed: SE at 5 mph

Time: 18:40                                                                            Latitude: 37.7o N

Temperature: 29o C                                                                Longitude: 98.75o W

Science and Technology Log:

During my last few days aboard the Reuben Lasker before steaming to Bodega Bay for a small boat transfer on July 30th, we were fishing off of the southern Oregon coast. The ship continued to run the longitudinal transect lines using acoustics and collecting data using the continuous underway fish egg sampler (CUFES) during the day and performing targeted trawls for coastal pelagic species (CPS) at night. The weather and the pyrosomes picked up as we moved down the Oregon coast to northern California, but on what would turn out to be the last trawl of my trip in the early morning hours of July 28th, we had our biggest catch of the trip with over 730 kg in the net. Once again we saw 3 of the 4 CPS fish species that are targeted for the survey including the Pacific sardine, Pacific mackerel, and jack mackerel, but no northern anchovies were to be found. The science crew worked efficiently to process the large haul and collect the data that will be used to provide the Southwest Fisheries Science Center (SWFSC) with information that can be used to help understand the dynamics of CPS in the California Current. The data collected from the CPS fish species includes length and weight, otoliths (used to age the fish), gender and reproductive stage, and DNA samples. The information from these different parameters will provide the biologists at SWFSC with information that can be used to understand the nature of the different populations of the CPS fish species that are being studied.

 

 

I am home now in southcentral Kansas, but as I am writing this, I can picture the science team beginning preparations for a night of trawling probably just north of Bodega Bay. By now (22:00) it is likely that a bongo tow and the conductivity, temperature and depth (CTD) probe samples have been collected providing data that will be used to calibrate and maximize the effectiveness of the acoustics for the area. Lanora and the rest of the team will have prepped the lab for a night of sampling, weather data will be recorded, and someone (maybe Nina or Austin) will be on mammal watch on the bridge. It all seems so familiar now; I hope the rest of the survey goes as well as the first half of the second leg. I will be thinking about and wondering how the science team of the Reuben Lasker is doing somewhere off the coast of California as I settle in for the night. One thing I am sure of, after spending two weeks aboard the ship, is that the entire crew on the Reuben Lasker is working together, diligently, as a team, using sound scientific practices to produce the best data possible to guide decisions about the fisheries resources in the California Current.

 

 

 

Video Transcription: (Narration by Kip Chambers)

(0:01) Ok, we’re preparing to remove otoliths from a jack mackerel. It’s for the Coastal Pelagic Species survey on the Reuben Lasker, July 27, 2017.
(0:22) We have Phil, from Washington Fish & Game, who’s going to walk us through the procedure. 
(0:30) The otoliths are essentially the fish’s ear bones. They help with orientation and balance, and also have annual rings that be used to age the fish.
(0:48) And so the initial cut is – looks like it’s just in front of the operculum and about a blade-width deep. 
(1:01) And the secondary cut is from the anterior, just above the eyes and kind of right level with the orbital of the eyes, back to the vertical cut.
(1:22) It’s a fairly large jack mackerel. And, once the skull cap has been removed, you can see the brain case, and you have the front brain and kind of the hind brain where it starts to narrow…
(1:42) … and just posterior to the hind brain, there are two small cavities, and that was the right side of the fish’s otolith, 
(1:55) … and that is the left side. And that is very well done. Thank you Phil.

 

I wanted to use a portion of this section of the blog to share some comments that were expressed to me from the members of the science team as I interviewed them before I left last week. The first “interview” was with Dave Griffith, the chief scientist for the survey. Dave was kind enough to provide me with a written response to my questions; his responses can be found below.

Dave Griffith

Chief Scientist Dave Griffith

Q1: Can you tell me a little bit about your background, including education and work history?

Q1: I was born and raised in a small suburb of Los Angeles county called Temple City. Located in the San Gabriel valley at the base of the San Gabriel mountains, it was the perfect place to exercise the love and curiosity of the animals I could find not only in my backyard but also in the local mountains. It wasn’t until I reached high school that I realized I had a knack for sciences especially biology. This interest and appeal was spurred on by my high school teacher, Al Shuey. With little concept of a career, I continued on to a junior college after high school still not sure of my direction. Here I dabbled in welding, art, music and literature but always rising to the surface was my love of sciences. My fate was sealed.

I entered San Diego State’s science program and was able to earn a bachelor’s degree and a master’s degree of science. For my dissertation I studied the re-colonization capabilities of meiofaunal harpacticoid copepods in response to disturbed or de-faunated sediments within Mission Bay. While studying for my masters, I was hired by Hubbs-Sea World Marine Laboratory as the initial group of researchers to begin the OREHAP project which is still operational today. The OREHAP project’s hypothesis was that releasing hatchery reared fish into the wild, in this case white seabass (Atractocion nobilis), would stimulate the natural population to increase recruitment and enhance the population. At the time the white seabass population numbers were at their all time low. During that time of employment at HSWML, I was also teaching zoology at SDSU as a teaching assistant in the graduate program. I was also the laboratory manager and in charge of field studies at Hubbs. My plate was pretty full at the time.

I heard about the opening at the SWFSC through a colleague of mine that I was working with while helping her conduct field work for her Ph.D. at Scripps. I applied and was hired on as the cruise leader in the Ship Operations/CalCOFI group for all field work conducted within CFRD (now FRD) working under Richard Charter. That was 1989. I have now been the supervisor of the Ship Operations/CalCOFI group since 2005.

My main objective on the Coastal Pelagic Fish survey as the cruise leader is to oversee all of the operations conducted by personnel from FRD during the survey. All scientific changes or decisions are made by the cruise leader using science knowledge, logic, common sense and a healthy input from all scientists aboard. I am the liaison between the scientific contingent and the ship’s workforce as well as the contact for the SWFSC laboratory. The expertise I bring out in the field is specific to fish egg identification, fish biology, field sampling techniques, knowledge of the California Current Large Ecosystem and sampling equipment.

Q2: What have you learned from your time on the Reuben Lasker during the 2nd leg of the Pelagic Species Survey?

Q2: First, that you never have preconceived ideas of what you expect to find. You always come out with knowledge of previous studies and a potential of what you might see, but the ocean always will show you and demonstrate just how little you know. When I was beginning in this career I was able to witness the complete dominance of a northern anchovy centric distribution change to a Pacific sardine centric distribution and now possibly back again. It’s mind boggling. I remember one of my colleagues, one of the pre-eminent fish biologists in the field, Paul Smith say to me during these transitions say, “Well, you take everything you’ve learned over the past 40 years, throw it out the window and start over again.” Yeah, the ocean environment will do that to you.

Q3: What advice would you give to a 1st year college student that was interested in pursuing a career in marine science?

Q3: Keep an open mind. Once you enter a four year university you will see areas of study that you never thought or believed existed. Have a concept of where you want to be but don’t ignore the various nuances that you see along the way. Go for the highest degree you feel capable of achieving and do it now because it becomes so much more difficult as you get older or the further away you get from academics if you begin working in a science position.

And last, and I feel most important. Read. Read everything. Journals, magazines, classics, modern novels, anything and everything and never stop. Communication is such an incredibly important part of science and you need to have a command of the language. Not only is reading enjoyable but it will make you a better writer, a better speaker and a better scientist.

 

Personal Log:

I am back home in Kansas now after wrapping up my assignment on the Reuben Lasker and I have started to contemplate my experiences over the last couple of weeks. There are so many facets related to what I have learned during my time on the ship; the technology and mechanics of such a large research vessel are both fascinating and daunting at the same time. There are so many moving parts that all have to come together and work in a very harsh environment in order for the ship to function; it is a testament to the men and women that operate the boat that things operate so smoothly. As impressive as the technology and research is on the Reuben Lasker, it is the people that have made the biggest impact on me.

You can see from Dave’s response above that there are some incredibly talented, dedicated individuals on the ship. I would like to share with you some of my observations about some of those people that I worked with including Dave Griffith. Dave is not only an outstanding scientist that has spent a lifetime making important contributions to fisheries science, he is also an incredibly well rounded person and an encyclopedia of knowledge. I would like to take this opportunity to personally thank Dave for his patience, and willingness to listen and provide insight and advice to me during my time on the ship. In my upcoming blog, I will provide more information about the other members of the science team that I had the pleasure to work with while on board. Until then please enjoy the pictures and video from my last week on the Reuben Lasker.

Christine Webb: Introducing Christine Webb and Pacific Hake Survey, August 8, 2017

NOAA Teacher at Sea

Christine Webb

Aboard NOAA Ship Bell M. Shimada

August 11 – 26, 2017

 

Mission: Summer Hake Survey Leg IV

Geographic Area of Cruise: Pacific Ocean from Newport, OR to Port Angeles, WA

Date: 8/8/2017

Current Location: Kalamazoo, Michigan (home sweet home…not yet on the cruise)

Latitude: 42.297 N

Longitude: 85.5872 W

Wind Speed: 11 mph

Barometric Pressure: 30.14 inHg

Air Temperature: 79 F

Weather Observations: Partly sunny

 

Science and Technology Log

Before I go any further, let me take this opportunity to thank NOAA and Teacher at Sea for such a wonderful opportunity! I can’t wait to learn all about life at sea and to have an up-close view of oceanographic fisheries research. On this cruise, we will be studying Pacific Hake. Because I have not personally had the chance to experience our research yet, let me show you this quote from the NOAA website regarding our project. Click HERE if you’d like to see the full description.

“Pacific whiting, or hake, is a prevalent fish species found off the West Coast of the United States and Canada. There are three stocks of Pacific whiting: a migratory coastal stock, ranging from southern Baja California to Queen Charlotte Sound; a central-south Puget Sound stock; and a Strait of Georgia stock. While the status of the latter stocks has declined considerably, the coastal stock remains large and is the most abundant commercial fish stock on the Pacific Coast.

Setting harvest levels of coastal Pacific whiting is accomplished through a bilateral agreement between the United States and Canada, known as the Pacific Whiting Treaty. Traditionally, domestic commercial fishermen harvested whiting with midwater trawl gear between May and September along northern California, Oregon, and Washington. The Makah Tribe also has an active fishery for whiting entirely within their usual and accustomed fishing grounds off the Olympic coast.”

We’re going to be studying the hake populations off the coast of the US Northwest. It appears I’ll get really used to seeing these!

Pacific-Whiting-Fish-Watch

Pacific Whiting, or Pacific Hake (photo from http://www.fishwatch.gov)

I’ll be aboard the Bell M. Shimada, which was built to do acoustic trawls along the west coast (exactly what we’re doing). It was commissioned in 2010 and is named after Bell Shimada, a fisheries specialist who is known for his study of tuna populations.

NOAA-Ship-Bell-M.-Shimada-underway_Photo-courtesy-NOAA

NOAA Ship Bell M. Shimada (photo credit: NOAA)

I’m excited to get started!

Personal Log

I’ll be honest – I’m a little nervous to be on this voyage with such experienced scientists! While I do love science, I do not teach it during the school year. I teach math and English. I always tell my students that “math and science are married,” and I try to do as many cross-curricular connections as possible. One of the things I’m excited about for this trip is to get pictures and recordings of the many ways math is used in our research. I can’t wait to integrate that into my units next year and take my math students on a “virtual voyage” with me. Putting math into practical contexts makes it a lot more fun.

When I’m not teaching, I spend a lot of time with my family. My family includes my husband, my awesome dogs, my evil cat, and, well, I guess I’ll include my husband’s best friend who’s been living with us on and off for the past year. He’s sort of in our family now. Living with two men and a bunch of animals feels a little like a sitcom at times, but I laugh a lot.

Here’s my husband, me, and one of our dogs:

familypic

My newfound favorite hobby is cycling. My husband and I did a bike trip across Ireland earlier this summer, so I spent quite a few months training up for that. It was an absolute blast, and I recommend it to everyone. You should do it!

irelandpic

The one thing that people ask me when they hear I’m going on this voyage is, “Do you get seasick?” My answer is always the same: “We’re about to find out.” I’ve never spent the night on a boat before, so sixteen in a row is going to be quite the experience. I’ve packed four different types of seasickness medications, so hopefully something works!

Did You Know?

Bell Shimada died in 1958 in a plane crash while on his way to conduct research in Mexico. At the time, it was Mexico’s deadliest aviation crash to date. Even though he only lived to be thirty-six, his legacy has stood the test of time.

Anna Levy: Fish Rules, July 17, 2017


NOAA Teacher at Sea

Anna Levy

Aboard NOAA Ship Oregon II

July 10-20, 2017

Mission: Groundfish Survey

Geographic Area of Cruise: Gulf of Mexico

Date: July 17, 2017

Weather Data from the Bridge

Warm weather and blue skies are making it easy to spend a lot of time out on deck, looking for wildlife! In addition to the lazy seagulls who keep hitching a ride on the ship’s trawling gear, we continue to spot dolphins, flying fish, and even a shark feeding frenzy!

IMG_1191

Lazy sea gulls hitch a ride on our trawling gear

Latitude: 28 24.13 N
Longitude: 83 57.32 W
Air temp: 27.7 C
Water temp: 31.3 C
Wind direction: light and variable
Wind speed: light and variable
Wave height: 0.3 meter
Sky: 50% cloud cover, no rain

 

Science and Technology Log

The organisms in each catch provide a snap shot of the marine life in one location in one moment in time. It’s interesting to see what we catch, but there are not many scientific conclusions that we can draw based on what we see in just 10 days. However, this survey has been completed twice per year (once in the summer and once in the fall) for over 35 years. It is looking at trends, or changes and patterns over time, that allows scientists to draw conclusions about the health and ecology of the Gulf of Mexico.

One of the major practical applications of this research is to prevent overfishing, the removal of too many individuals from a population causing that population to become unstable. Continued overfishing can lead to the extinction of a species because it leaves too few mature individuals to reproduce and replace those that are removed.

Cod Graph

Graph Created by Boston Globe

One famous example of overfishing and its consequences occurred in the late 1980’s off the Atlantic coast of Canada. Cod was a major food source and commercial industry in the provinces of Newfoundland and Labrodor. However, unregulated overfishing depleted the cod population and, between 1988 and 1992 the cod population crashed, losing more than 99% of its biomass – they were essentially gone. This destroyed the industry, putting over 40,000 people out of work. In 1992, the government finally imposed a complete ban on cod fishing in hopes that the cod population could still recover. The fishing ban is still in place today, though just last year, Canadian scientists released a report stating that there are some signs of hope!

When NOAA scientists notice overfishing occurring in US waters, they can recommend that protective regulations, or rules, are put in place to limit or even stop fishing in an area until the species has had a chance to recover.

Here are a few examples of the types of regulations that have been created in the Gulf of Mexico in response to the data from the Groundfish Survey.

Texas Shrimping Closure

To prevent overfishing of shrimp in the western Gulf of Mexico, NOAA and the Texas Department of Wildlife collaborated to implement an annual closure of state and federal waters off the coast of Texas to shrimping. This is called the “Texas Closure.”

The Texas closure runs each year from about May 15 to July 15, though the exact dates vary depending on the health of the shrimp population that year. This break allows the shrimp time to mature to an age at which they can reproduce, and to migrate out to deeper waters, which is where females spawn. It also allows the shrimp to grow to a size that is more commercially valuable.

IMG_1177

A shrimp we caught off the coast of Florida.

We saw quite a few shrimp in our recent catches. Because this species is being more intensively monitored, we collected more detailed data about the individuals we caught, including the length, mass, and sex of a sample of least 200 individual shrimp (instead of a the smaller sample size of 20 that we used for most other species.)

In addition to sending out an annual notice to fisherman of the dates of the Texas Closure, NOAA also makes all of the shrimp survey data available. This can help fishermen to target the best fishing locations and work efficiently. For example, this is a plot showing the amount of brown shrimp found at various locations, created using this year’s survey data.

Shrimp Map

Plot Created By NOAA

Red Snapper Regulation

Another species that is currently under regulation is the red snapper, which has been a popular seafood in the US since the 1840s. As fishing technology improved and recreational fishing expanded in the 1950’s, the number of red snapper captured each year increased dramatically. The shrimp industry was also expanding rapidly at this time, and juvenile red snapper were often accidentally caught and killed in shrimp trawls. As a result of these three pressures, the red snapper population began to decline dramatically.

Red Snapper SP

Graph created by NOAA

By 1990, the spawning potential, or the number of eggs produced by the population each year, was only 2% of what it would have been naturally, without any fishing. This was far below the target spawning potential level of 26% that is necessary to sustain the species.

 

Several types of regulations were implemented to protect the snapper. These included:

  • Limiting the number of commercial and recreational fishing licenses issued each year
  • Restricting the size and number of fish that a fisherman could collect on a fishing trip
  • Reducing the amount of time each year that fishermen could fish for red snapper
  • Regulating the type of fishing gear that could be used
  • Requiring commercial shrimp fishermen to install devices on their trawls to reduce the by-catch of juvenile red snapper
  • Requiring fishermen to avoid areas where red snapper spawn

Survey results in the last 5 years show that these regulations are working and that the red snapper population is growing. This is good news. However, the red snapper is not out of the woods yet. It is important to understand that, as a species with a long life span (they can live over 50 years!), it will take time for the population to regain

Red Snapper Productivity

Graphic created by NOAA

its normal age structure. Currently, the majority of red snapper found in the Gulf are less than 10 years old. These fish are still juveniles capable of producing only a fraction of the offspring a fully mature individual would produce. It is important to continue to closely monitor and regulate the fishing of snapper until both the number and age of individuals has been restored to a sustainable level.

We were fortunate to catch members of three different species of red snapper during my leg of the survey. I did notice that most of them were relatively small – less than 10 inches – which is consistent with the concern that the population is still disproportionately young.

As with the shrimp, we collected more detailed information about these individuals. We also removed the stomachs of a sample of snappers. As I discussed in my last blog (“What Tummies Tell Us”), scientists back on land will examine the contents of their stomachs as part of a diet study to better understand what snapper are eating. Because the invasive lionfish has a competitive relationship with red snapper, meaning that it eats many of the same foods that red snapper eat, fisheries biologists are concerned that red snapper may be forced to settle for alternative and/or reduced food sources and that this could also slow their recovery.

IMG_1235

A typical red snapper from our catch. Note that each mark on the ruler is one centimeter.

IMG_0045

Red snapper from one catch.

 

Hypoxia Watch

CTD

Getting ready to deploy the CTD sensors.

In addition to collecting data about the fish and other organisms we find, remember that we also use a group of instruments called a CTD to collect information about the quality of the water at each survey station. (For more about CTDs, please see my previous blog “First Day of Fishing.”)

One of the measurements the CTD takes is the amount of oxygen that is dissolved in the water. This is important because, just like you and me, fish need to take in oxygen to survive. (The difference is that you and I use our lungs to remove oxygen from the air, whereas fish use gills to remove oxygen from the water!) When dissolved oxygen concentrations in the water drop below 2 mg/L, a condition called hypoxia, most marine organisms cannot survive.

When waters become hypoxic, organisms that are able to migrate (like some fishes) will leave the area. Organisms that cannot migrate (like corals or crabs) will die from lack of oxygen. This creates large areas of ocean, called dead zones, that are devoid of typical marine life. Often anaerobic microorganisms, some of which are toxic to humans, will then grow out of control in these areas. Not only is this stressful for the marine populations, it hampers regular fishing activities, and can even pose a threat to human health.

The Gulf of Mexico is home to the largest hypoxic zone in US waters. Nitrogen-rich fertilizers and animal waste from farming activities throughoAnnual Hypoxic Zone Graphut the Midwest United States all collect in the Mississippi River, which drains into the Gulf. Though nitrogen is a nutrient that organisms need in order to grow and be healthy, excess nitrogen causes an imbalance in the normal nitrogen cycle, and stimulates high levels of algae plant growth called an algal bloom. Once the algae use up the excess nitrogen, they begin to die. This causes the population of decomposers like fungi and bacteria to spike. Like most animals, these decomposers consume oxygen. Because there are more decomposers than usual, they begin to use up oxygen faster than it can be replenished.

This hypoxic zone is largest in the summer, when farming activities are at their peak. In the winter, there is less farming, and therefore less nitrogen. As the hypoxic water continues to mix with normal ocean water, the levels of oxygen begin to return to normal. (When there are tropical storms or hurricanes in the Gulf, this mixing effect is more significant, helping to reduce the impact of the hypoxia. This is often the primary cause of low-hypoxia years like 2000.) Unfortunately, the average size of the annual dead zone remains at nearly 15,000 square kilometers, three times the goal of 5,000 square kilometers.

The data collected from this year’s Groundfish Survey was used to create this map of hypoxic areas. How might this map be different if tropical storm Cindy had not occurred this summer?

This Years Hypoxic Zone

A plot of dissolved oxygen levels created from this year’s survey data.

The data we collect on the Groundfish survey is combined with data gathered during other NOAA missions and by other organizations, like NASA (the National Aeronautics and Space Administration) and USGS (the United States Geologic Survey). By collaborating and sharing data, scientists are able to develop a more complete and detailed understanding of hypoxia levels.

In response to the levels of hypoxia seen in the data, the federal Environmental Protection Agency (EPA) has required Midwestern states to develop and implement plans that will allow them to make greater progress in reducing the nutrient pollution that flows into the Mississippi. Specifically, the EPA wants states to do things like:

  • Identify areas of land that have the largest impact on pollution in the Mississippi
  • Set caps on how much nitrogen and other nutrients can be used in these areas
  • Develop new agricultural practices and technologies that will reduce the amount of these pollutants that are used or that will flow into the water
  • Ensure that the permitting process that states use to grant permission to use potential pollutants is effective at limiting pollutants to reasonable levels
  • Develop a plan for monitoring how much nutrient pollution is being released into waters

These EPA regulations were only recently implemented, so it is still unclear what, if any, impact they will have on the hypoxic zone in the Gulf. It will be interesting to keep an eye on the data from the Groundfish survey in coming years to help answer that question!

In the mean time, though, things still seem to be moving in the wrong direction. In fact, NOAA just announced that this summer’s dead zone is the largest ever recorded.

summer-dead-zone.adapt.885.1

Photo credit: Goddard SVS, NASA

Personal Log

Getting a PhD in your chosen field of science is an awesome accomplishment and is necessary if your goal is to design and carry out your own research projects. However, I’ve noticed that the PhD is often presented to students as the only path into a career in science. I think this is unfortunate, since this often discourages students who know they do not want to pursue a graduate degree from entering the field.

I’ve noticed that most of the scientists I’ve met while on board the Oregon II and in the NOAA lab at Pascagoula do not hold PhDs, but are still deeply involved in field work, lab work, and data analysis every day.

I asked Andre DeBose, a senior NOAA fishery biologist and the Field Party Chief for this mission, if he feels a PhD is necessary for those interested in fishery biology. Andre agreed that a graduate degree is not necessary, but he cautioned that it is a very competitive field and that education is one way to set yourself apart – “if you have the opportunity to get an advanced degree, take the opportunity.”

However, he continued, “the MOST important thing you can do is take the opportunity to do internships, volunteering, and fellowships. Those open a lot of doors for you in the world of biology.” Andre himself holds a bachelors degree in biology, but it was his years of experience working in aquaculture and as a contractor with NOAA that were most helpful in paving the way to the permanent position he holds today. “When I graduated from college, I took a low-paying job in aquaculture, just to start learning everything I could about fish. When contract [or short-term] positions became available at the NOAA lab, I applied and tried to make myself as useful as possible. It took time and I had to be really persistent – I would literally call the lab all the time and asked if they had anything they needed help with – but when a full time position finally became available, everyone knew who I was and knew that I had the right skills for the job.”

Now, Andre tries to help others navigate the tricky career path into marine biology. In addition to his responsibilities as a biologist, he is also the Outreach and Education Coordinator for the NOAA lab, which allows him to mentors all of interns (and Teachers at Sea like me!) and to talk with students at schools in the community.

If you’re interested in pursuing a career in marine biology, it’s never to early to start looking for some of those volunteer opportunities! There are lots of scientists out there like Andre who are excited to share their knowledge and experience.

IMG_0092

The Day-Shift Science Team as we head back in to port.  From left to right:  TAS Anna Levy, NOAA Summer Intern Jessica Pantone, NOAA Biologist & Field Party Chief Andre DeBose, NOAA Fellow Dedi Vernetti Duarte, NOAA Volunteer Elijah Ramsey.

Did You Know?

In the Gulf of Mexico, each state has the authority to regulate the waters that are within about 9 miles of the coast. (This includes making rules about fishing.) Beyond that, the federal government, with the help of federal agencies like NOAA, make the rules!

 

Questions to Consider:

Research:  This article discussed the political side of the Snapper situation. Research other news articles about this issue to ensure that you have a balanced perspective.

Reflect: To what extent do you believe this issue should be governed by science? To what extent do you believe this issue should be governed by politics?

Take action: Propose some specific ways that fisherman, scientists, and policy-makers could work together to address issues like the overfishing of red snapper fairly and effectively.

Review: Examine the graph showing the size of the hypoxic zone in the Gulf each summer. There are unusually small zones in 1988 and 2000. How do you explain this?

Research: Two other reoccurring hypoxic zones in the US are found in Chesapeake Bay and Lake Erie. What is the cause of each of these zones?

 

 

 

 

Staci DeSchryver: Super Bonus Spiritual History Blog! July 29, 2017

NOAA Teacher At Sea

Staci DeSchryver

Aboard NOAA Ship Oscar Elton Sette

July 6 – August 2, 2017

 

Mission:  HICEAS Cetacean Study

Geographic Area:  Papahānaumokuākea National Marine Sanctuary  

Date:  July 29, 2017


Location:  
20 deg, 20.0 min N, 156 deg, 08.6 min W

Weather Data from the Bridge:

Scattered Clouds

Visibility: 10 nmi

Wind @ 23 kts from 65 degrees

Pressure: 1015.1 mb

Waves: 4 – 5 feet

Swell:  7-8 feet at 70 deg

Temp: 26.5 deg

Wet bulb:  23.5 deg

Dewpoint: 25 deg

Bonus Spiritual History Blog

On July 23, we briefly suspended our operations to help out fellow scientists camped out on the French Frigate Shoals (Lalo), located along the Northwest Hawaiian Island chain – about halfway between the northernmost main islands and Midway (Kuaihelani).  The trip was brief, and we never set foot on terra firma, but with the help of the Big Eyes we could see something that we had not seen up close in 3 days – land.

Two nights prior, we finally crossed over to the Northwest Hawaiian Islands – a sacred and certainly mysterious (at least to me)  area for the Hawaiian People.  I was waiting with some anticipation for the moment we would cross into these waters.  The entire Northwest Hawaiian Island chain and its surrounding seas are limited-access for the vast majority of seafarers; the waters are protected by a proclamation signed by President George W. Bush in 2006, and expanded by President Barack Obama in 2016. This Marine Sanctuary’s designated area begins near the start of the Northwest Hawaiian Island chain, and stretches all the way to the Kure Atoll (Hōlanikū), just past Midway Island (Kuaihelani).  We were not permitted to cross into these waters until we had a permit, part of which included a component requirement of a briefing on the history of the area before we entered.  ers Native Hawaiian Program Specialist Kalani Quiocho introduced us to this sacred ground during our pre-cruise training with this briefing on this Marine National Monument, Papahānaumokuākea.  His presentation was so moving that I felt it necessary that the story of these waters (through my limited experience) must be told.

Mr. Quiocho’s presentation began with the name song for Papahānaumokuākea.  His voice bellowed out in an ethereal chant – one in a smooth and haunting language with sound combinations like nothing I had ever heard before.  His song was punctuated with ‘okinas and kahakōs, and accented with stunning photographs of ocean life, ritual, and artifact.  The music moved me to a tear, though I couldn’t quite pinpoint the emotion that was supposed to accompany it.

name song for papahanamoukuakea

The Name song for Papahānaumokuākea, reprinted with permission from Kalani Quiocho.

I realize now that I have traveled to this sacred place that it was one of simple reverence for the culture and its people who belong so fully to it.  It was at that moment that I realized that this trip would be a whole other ball game – one that is sacred, cosmic, and mysterious.

Papahānaumokuākea (pronounced Papa-hah-now-mow-coo-ah-kay-a) is the first officially designated Mixed Cultural and Heritage site, and is the largest fully protected conservation area in the United States.   Its name commemorates the union of two Hawaiian ancestors – Papahānaumoku and Wākea, who according to Hawaiian ancestry gave rise to the Hawaiian archipelago, the taro plant and the Hawaiian people.  These two ancestors provide a part of the Genesis story for Hawaiʻi – land to live on, food to eat, and people to cultivate, commune, and thrive as one with the gifts of their ancestors. The namesake alone of this marine sanctuary highlights the importance of its existence and its need for protection.  Many of the islands are ancient ceremonial sites, two of which we passed on the way to the Shoals (Lalo).

Crossing over to the Northwest Hawaiian Islands also marks a celestially significant line in the Hawaiian archipelago – the Tropic of Cancer.  The Tropic of Cancer is the furthest north that the sun will reach a direct overhead path during the solar year – you might know this as the summer solstice.  Right on the Tropic of Cancer lies the island Mokumanamana, a sacred place of cultural distinction for the Hawaiian people.  The Tropic of Cancer divides the entire Hawaiian archipelago into two distinct sections, Pō and Ao – the Ao represents the more southern islands and spiritual daylight, and the Pō representing the Northwest Hawaiian Islands and spiritual twilight.

ao and po

This diagram shows the separation between the NWHI and the main Hawaiian Islands. The horizontal line through the center divides day (Ao) from night (Pō) and lines up with the Tropic of Cancer. The Island Mokumanamana lies directly on the boundary between the living and spiritual realms. Our destination was Lalo, or French Frigate Shoals, though our travels took us much further northwest than that. (Diagram Credit: Kalani Quiocho)

The crossing over as we passed Mokumanamana is significant in that we entered a different spiritual zone of the Hawaiian Islands.   The Papahānaumokuākea Marine National Monument’s website (click here to read much more about it) describes the Northwest Hawaiian Islands as “a region of primordial darkness from which life springs and spirits return after death.”  In this sense, transiting past Mokumanamana represented a “crossing over” into a different realm of ancient history.  Mokumanamana is known for its high density of ancient ceremonial sites and is considered a center of Hawaiian religion and ideology.  Mr. Quiocho expands on the geographical importance of the area to the Hawaiian people in his commentary stating that,

“Papahānaumokuākea encompasses the Northwestern Hawaiian Islands which is ¾ of the Hawaiian archipelago and includes high basalt islands and low-lying atolls, and surrounding marine environments. It stretches nearly 2,000 kilometers and straddles the Tropic of Cancer also known to Hawaiʻi as Ke Ala Polohiwa a Kāne – The sacred black glistening path of Kāne, the patron god of the sun. It is believed that the Hawaiian Archipelago is divided into two regions called Pō and Ao, which essentially means night and day. Most of the NWHI is within Pō, a place of creation and origin where ancestors return to after death. The region known as Ao includes the main Hawaiian Islands where man resides. The entire Hawaiian Archipelago represents the dualisms and cycles of the Hawaiian universe. From the east where the sun rises and the islands are volcanically birthed from the oceanic womb to the west where the sun sets and the islands return to the sea. And all of the extraordinary biology that is found in the Northwestern and main Hawaiian Islands are accounted for in our oral traditions. The Kumulipo, a creation chant with more than 2,000 lines expresses the cosmology of the Hawaiian Islands, beginning with the birthing of the coral polyp and eventually the Hawaiian people. Naturally this is an inspiring place that is the framework of our worldview and the knowledge systems that tell us we are people of place. Which is why many refer to this area as the kūpuna islands, kūpuna meaning elder or grandparent.”

Today, Native Hawaiians will travel by double-hulled canoes from the main islands all the way up to Nihoa and Mokumanamana during times of ritual importance and follow in the footsteps of their ancestors to honor the tradition and the spiritual practice.  I’m sure the journey is both treacherous and fulfilling, one that would rival other more commonly known great expeditions, especially considering its spiritual significance.

rainbow

Papahānaumokuākea is rich with history – both ancient and recent, and full of its own surprises!

Mr. Quiocho continues by expanding on the importance of the navigation of these waters to the Hawaiian people and how it honors their homeland connections:

“Native Hawaiians believe that the vast region that makes up the NWHI is an incredibly sacred place and is regarded as the construct of their cosmological genealogy. This region is rooted in creation and origin as a place where all life began and to which ancestors return after death. Native Hawaiians have historical connections to all parts of their homeland, which encompass all the islands, atolls, shoals, coral reefs, submerged seamounts and ocean waters that connect them. While the islands themselves are focal destinations for traditional voyages, the vast ocean is equally important. It is a cultural seascape that is imbued with immense value. The ocean is more than an unknown empty space that isolates islands, but rather a pathway for movement and potential.

orca

A rare sighting of Tropical Pacific Orca – one of the first Cetaceans to welcome us to the Monument. What a gift!

Long-distance voyaging and wayfinding is one of the most unique and valuable traditional practices that Native Hawaiians have developed and continue to advance. It is an ancient way of interacting with the ocean that continues to inspire and create social change. The ocean region surrounding the NWHI is the only cultural voyaging seascape within the Hawaiian Archipelago. The main Hawaiian Islands are large enough for any novice navigator to find, but the ocean region throughout and surrounding Papahānaumokuākea provides challenging opportunities for apprentice navigators to excel. This expansive ocean environment was the setting for ancient Hawaiian chiefs to voyage back and forth between the main Hawaiian Islands and the NWHI over the course of 400 years.”

On our journey, we slipped passed Mokumanamana in the cover of night – through the invisible gates and into this ancient ancestral realm.  Although we had been in the monument since the previous day, for some reason this crossing marked a distinction for me personally in an indescribable way.  Since arriving on Oahu and in my travels since, I’ve known there was something special and different about this place, and I’ve known that part of the “different” was me.  Walking through Ala Moana Park on the 4th of July revealed threads of a culture that formed a beautiful tapestry of family, community, and heritage as I strolled past hundreds of families camped out in anticipation of the upcoming fireworks over the ocean.

volcanic neck

A volcanic neck stands high above the waters surrounding the shoals.

There was something communal and sacred about it, even though the time and event was modern.  There was an “old” feeling of togetherness that buzzed through the park amongst strangers and friends.  I knew I was an outsider to this energy, but I didn’t feel entirely left out of it.  It’s one thing to feel like a foreigner on the “day” side of the Tropic of Cancer, but the “night” side held a spiritual distinction, as though I was trespassing in a dimension to which I did not belong. Knowing that the only passage of ships through this area would come with permits and regulations left a feeling of emptiness in an already vast ocean.  Knowing the ocean is full beneath with life both current and past – fish and whale and ancient Hawaiian spirit alike gave back some reassurance that we were not entirely alone.  For the first time I didn’t want to just know about Papahānaumokuākea, I wanted the ocean to tell me the story herself.

Nestled in the middle of Papahānaumokuākea was our target destination – French Frigate Shoals (Lalo).  On this tiny island a small team of scientists have been camped out for a little over six weeks studying the endangered Hawaiian Monk Seal.  We were tasked with delivering critical supplies to the scientific team – fuel, replacements of scientific gear, and a small care package with a few creature comforts they had not had access to in quite some time.  (I mean, seriously.  Who drops off fuel without dropping off chocolate? Not us!)   We also picked up some specimens from them to take back to the lab in Honolulu. The Shoals are a special place – a World War II military outpost slowly decays on the far side of the island, providing some cover for the scientists as they work. The island hosts thousands upon thousands of terns, flying en masse around the island in huge swarms.

FFS

A closer view of the island. The dots in the air above the island are all birds.

The terns were in preparation of fledging, and in anticipation of that day, tiger sharks stalked the surrounding waters, waiting for their next meal. On the opposite side of the island a few hundred meters away from shore, a lone sandbar (formerly dredged up for use as a military runway) rose to the surface providing a quiet place for a monk seal and her two pups to lounge in the sand.  One seal pup practiced swimming in the shallows as the mother casually glanced in its direction.  The other pup would hobble a few feet away down the beach, only to run back to its mother and lie next to her for a time.  It was a little reminiscent of a Norman Rockwell beach vacation painting, had Rockwell chosen an animal personification route as his medium.  A turtle dotted the far edge of the landscape on the main island, basking in the rising sun as the waves gently rolled on to the beach behind him.

runway

This flat strip of land is a dredged up runway, slowly returning back to the ocean after years of abandonment from use. A mother seal and two pups lounge on the sand, enjoying the sun.

The structures on the land from afar looked like a distant movie set for an apocalyptic storyline. The wind howled as we approached the atoll, and birds fought against the invisible currents in frantic circles around the island.  Two boats lay destitute along the far side of the island while waves crashed merciless against the sea wall built to hold the atoll in place during the time the island was volunteered to serve in a wartime capacity. The island itself is a surreal duplicity – serving both as a protector of life and a vessel of war.  I found myself taking stock of this history;  watching from far away to learn the eternal evolution of this strange place – first a volcano, sunk beneath the surface, then to a primordial breeding ground for coral, fish, and shark – onto a pristine landscape, possibly used by ancestral Hawaiians for ceremony and stopover en route to Kure (Hōlanikū) – a military base as a refueling station and an outpost – and finally a protected home for hundreds of species, some hanging desperately onto the last strings of life but finally thriving under the care of a dedicated research team.

As much as I desperately wanted to go on to the island to have a look at this former military operations base-turned-endangered-animal-sanctuary, none of us could go on shore – even those who shuttled supplies to the scientists.  French Frigate Shoals marked the first time I had ever seen a coral atoll in anything other than a picture, and it seemed a natural part of my inner explorer to want to pop on to shore to have a look about, even for just a few minutes.  Everything in French Frigate Shoals is protected under the Papahānaumokuākea permitting restrictions.

pulley system

Supplies were hauled ashore by the small pulley system jutting up from the shoreline – visible on the left-middle portion of the island.

Had we wanted to explore the land, we would have needed to quarantine our clothing and ourselves for a minimum of 72 hours to protect the landscape from anything foreign taking foot on shore. Our ship couldn’t make it much closer than a mile or two from the island so as not to put it in danger of running aground. So, a team of four people shuttled supplies in the small boat, navigating the shallows and hauling the supplies on shore through a pulley system.  Two quick trips out to the island, and we were soon on our way again in our search for cetaceans.

When Mr. Quiocho parted ways with us after our training, he made a casual but powerful statement in closing.  He told us the whale dives deeply to commune with ancient wisdom commissioned to the deep ocean, bringing this deep knowledge from the ancestral depths to the surface so that it can become part our collective consciousness. Our trip, then, is a not merely a collection of data or a series of samples.  Each time we interact with the whales, they are bringing us the knowledge of the ancients in hope that we will continue to pass that information on to anyone at the surface willing to listen. The responsibility of our work when described in this light brought a new reverence to the study – one that is not just a story for the present in hopes of preserving for the future, but that weaves ancient knowledge from the past into our work, as well.

Did you know?

  •         Each day at noon, the ship’s alarms are tested to ensure they will work in an emergency situation.  Guess who got to test the alarms?

    fire alarm

    Yup! I got to test the alarm. Thanks Lieutenant Commander Rose!

  •         Ship safety is the height of the focus of everyone on board.  Each Friday, we complete drills to make sure we are ready in the event of an emergency.  Of the many dangers at sea, a fire can prove to be most catastrophic.  It’s not like the fire department can come out to the middle of the Pacific at the first sign of burning bacon (which may or may not have happened to me two days before I left for Oahu).  The entire Sette crew acts as the fire department, so it is important for them to practice in the event of an emergency.  This week we simulated a live-fire scenario, complete with a fog machine.  I got to call the drill up to the bridge!  It was a little extra fun built into a very serious situation.
  •         Classes are still continuing each afternoon on the bridge, Monday through Friday. 
    amanda and hexacopters

    Dr. Amanda Bradford gives the Wardroom a lesson on Hexacopter Operations (see blog #5 for more!)

    tim and msds

    ENS Tim Holland gives a lesson on MSDS chemical safety sheets.

  •         Officers are in a friendly competition to see who is on watch when the most sightings occur, among other friendly battles.  It is the topic of lively discussion at most meal times.  

    The tallys

    Officers can make a competition out of ANYTHING!  Here are the tallys for the past 25 days.