Denise Harrington: Saying Farewell To NOAA Ship Pisces and the Pacscagoula Lab, May 12, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 12, 2016


“Is that an eyeball in its stomach?”

“Can I touch it?”


This slideshow requires JavaScript.


I hear the inquiry skills of tomorrow’s scientists develop under the guidance of Fisheries Biologists Lisa Jones and Christian Jones during a recent shark dissection at the Pascagoula, Mississippi Laboratories of NOAA’s Southeast Fisheries Science Center. The NOAA mission of “Science, Service, and Stewardship” is taken very seriously as fishery biologists work with students of all ages to learn about our natural resources and how to understand and manage them wisely. But NOAA Fisheries doesn’t just educate people about science, they do research, provide national data collection, collaborate with other scientists, help make everything from nets to policies to help manage our scarce resources, and even sniff our fish to make sure it is safe to eat.


Developing scientific methods to answer questions that can only be answered by collecting data, science, is the first of NOAA’s three part mission.  Kevin Rademacher, a Fisheries Biologist, uses his understanding of scientific inquiry and standardized data collection to inspire students.  He encourages students to consider characteristics, purpose, and habitat to expand their inquiry when they ask questions like why one shell spiky and the other one is smooth.


Kevin shows students the head of an Atlantic cutlassfish.

Kevin’s deep understanding of the diversity of life in the Gulf of Mexico is obvious as he inspires students from nearby Pascagoula, and as far away as Tillamook, Oregon to learn more about the ocean and its inhabitants.


While Kevin, Christian and Lisa teach science, other students head outside to learn about stewardship. Stewardship, using sound science to protect and manage people and resources, is another component of NOAA’s mission. The Harvesting Systems Unit helps develop and test more efficient and environmentally friendly gear used to catch fish and other seafood.  For example, fishermen are happy to let other marine species like sea turtles escape from nets, leaving more room for the shrimp they are trying to catch and helping sea turtles at the same time.

Provide national fisheries gear engineering support in the development, fishery-dependent assessment and implementation of more efficient and environmentally friendly fishing gear;


Here, Fisheries Methods and Equipment Specialist Warren Brown builds and makes changes to a Turtle Excluder Device using generations of family history in the shrimp trawling industry to guide his work.

By 1978, all five species of sea turtles in the northern Gulf of Mexico were on endangered or threatened species list, in no small part because of shrimp trawling methods.  Sea turtles, who need to take a breath of air at least every 55 minutes, would get caught in the nets and die.  NOAA responded to this problem by designing new equipment and gear meant to decrease the amount of by-catch, or other living things, shrimp trawlers and fisherman pulled up in their nets. A Turtle Excluder Device, or TED, allows sea turtles to escape from shrimp nets. Learn more about sea turtles and what you can do to help them through NOAA’s great educational resources.


This sea turtle is escaping from a bottom opening TED!        Photo Credit: NOAA

Andre DeBose, Fisheries Biologist, educates, inspires, and engages students of all ages as they learn what it feels like to be an endangered sea turtle crawling out of a shrimp net through the TED.


Andre DeBose shows students each component of the TED, how it was designed and how it works.



The three components of NOAAs service, science, and stewardship mission are inseparable. While most scientists work in the field or educate others, the scientists in National Seafood Inspection Laboratory (NSIL) use good science to make sure the seafood we eat is good.


Angela Ruple wears protective glasses to make sure the germs that grow in these petri dishes don’t get in her eyes!

Angela Ruple is the Lead Analyst at NSIL, keeping a close protected eye on any seafood that is tested for hazards like Salmonella and chemical contaminants.  She works with other government agencies and encourages food safety education programs such as the Partnership for Food Safety Education’s FightBac program, which uses fun games and other tools, to educate us about food hazards like bacteria.

Shannara Lynn is one of NOAA’s seafood detectives.  Untrustworthy seafood dealers may sell fish that are easy to catch as more expensive fish.  They will take a piece of less expensive ray or shark and pretend it is a scallop. But each species of fish has DNA and protein markers that make them unique.  Looking at proteins, Shannara can run 72 fish in 1 day to see if they match their label, but only 8 fish in 2 days using DNA analysis.  So, stores like Kroger, with lots of fish to test, might want to screen with protein banding first to make sure they aren’t getting hoodwinked.


This graph I made is similar to the ones Shannara uses on the computer.  A shark (red line) has three characteristic protein peaks above the 500 unit line. The blue line represents a different species of fish. No match!

Cheryl Lassitter, Lead Chemist at NSIL, (pictured below) combined her mathematical, technological, and scientific skills, to make a library that makes the protein identification of each fish easy to find in a computer program.

All senses are used at NOAA’s Seafood Inspection Program (SIP) to test fish.  Susan Linn, Approving Officer for SIP, travels around the nation to teach seafood inspection testers to use the same vocabulary and methods when testing fish with their noses.  If it smells like “dirty socks,” it’s gone bad.

susan sniffing fish

Susan sniffs a salmon for freshness.  Photo courtesy of Kevin Rademacher.

Patience and Tenacity

Patience and tenacity do not start with an “S,” but these two life skills are what fuel the “Science, Service, and Stewardship,” three part mission of NOAA aboard the Pisces.

When told there was a problem that would delay our departure, I asked to “see it.” What I learned over the next ten days is that science requires precision, complex tools, experts working in teams, and lots of money.  Brent Jones, Chief Engineer and Augmenter William Osborn, showed patience and tenacity as they helped me understand some of the unique features of the power system for the Pisces.



For fisheries science, the boat has to be quiet in the water.  A simple diesel engine would have been easy to fix, but would scare away many of the fish that scientists are trying to study. Second graders use their “fox feet” in our outdoor classroom, and Pisces scientists use a stealthy diesel electric engine, to sneak up on their specimens.   The unique ship requires experts capable of finding problems in a maze of technology without major calamity.

Once again, the more questions I asked, the more questions I had.  The problems were in the SCR drives, behind big gray panels.  Diodes convert AC power to DC power and the SCR drives smooth out and clean up the pulses of power.


How fortunate I was to meet Eric Richards, from VT Halter Marine, who built Pisces and  drew this block diagram, and gave me a builder’s perspective on how the ship operates.

Somewhere in a room of grey closets filled with live wires, pulsing with 600 volts of electricity, was the problem that kept Pisces from sailing.  As long as I worked as a Teacher in Port, the problem hid like a second grader after the recess whistle blew.


Here Chief Engineer Brent Jones, “Chief,” sensing my desire to get my hands on the problem, tells me to stay away from the SCR drives. Photo credit: William Osborn

The Reef Fish Survey has four parts or legs.  During the first leg, the motor died a couple times while at sea.  Fortunately, the crew was able to shut down the engine and restart it.  If something like this happened when pulling into a tight space, the ramifications could be scary.


Commanding Officer, Commander William Mowitt, Field Party Chief Scientist Kevin Rademacher, and Junior Officer Nathan Gilliam have one of many brainstorming meetings as they figure out how to tackle mechanical problems and reschedule surveys, so that they can collect the scientific data needed to complete the Reef Fish Survey on time.

Experts took a systematic approach to solving the intermittent problem, complicated by a limited budget, with equanimity. Yet they could not solve the problem fast enough to go on leg two or three of the survey. Now, Kevin Rademacher, the Field Party Chief Scientist has to negotiate other ways to collect the data required for the last two legs of the survey. Junior Officer Nathan Gillman summed it up as follows, “with science, nothing goes according to plan, but it gets done.”

Personal Log

While Pisces ultimately never left port, I imagine that I learned a broader scope of the role NOAA plays in protecting and managing our ocean resources on land than I would have at sea. Thank you, Kevin Rademacher, for showing me the port side of NOAA while juggling a crazy, changing schedule, and teaching me about many intriguing aspects of fisheries science. I also send a big thank you to the scientists in the lab who have inspired me to continue asking curious questions, and to encourage students to embrace science and technology. Thanks to the ship engineers who showed me how the ship works, and sometimes doesn’t. Thank you Keigm and Eric Richards, for showing me the path less traveled.

Thank you to Daeh Kujak, Second Grade Teacher, Karen Thenell, Principal, South Prairie Elementary, and our superintendent Randy Schild for being so flexible and supportive, allowing me to become inspired, ocean literate, and an advocate for our limited natural resources. Thank you TAS administrators for creating a life changing program that inspires teachers and students by getting us out in the field with scientists. It takes the whole team to manage our limited ocean resources, and to educate our leaders of tomorrow.  Thanks to the team, I can see the significant, beneficial difference in how I learn and teach.

Dana Chu: May 17, 2016

NOAA Teacher at Sea
Dana Chu
On Board NOAA Ship Bell M. Shimada
May 13 – 22, 2016

Mission: Applied California Current Ecosystem Studies (ACCESS) is a working partnership between Cordell Bank National Marine Sanctuary, Greater Farallones National Marine Sanctuary, and Point Blue Conservation Science to survey the oceanographic conditions that influence and drive the availability of prey species (i.e., krill) to predators (i.e., marine mammals and sea birds).

Geographic area of cruise: Greater Farallones, Cordell Bank, and Monterey Bay National Marine Sanctuaries

Date: Tuesday, May 17, 2016

Weather Data from the Bridge
Clear skies, light winds at 0600 increased to 18 knots at 0900, 6-8 feet swells

Science and Technology Log

Ahoy from the Bell Shimada! Today, I will explain three of the tools that are deployed from the side deck to obtain samples of the water and the ocean’s prey species.

First off we have the Harmful Algal Bloom Net, also known as the HAB Net, which is basically a 10-inch opening with a 39-inch fine mesh netting attached to a closed end canister. The HAB net is deployed manually by hand to the depth of 30 feet three consecutive times to obtain a water sample. The top fourth of the water collected is decanted and the remaining water (approximately 80ml) is transferred to a bottle which is then sealed and labeled with the location (latitude, longitude), date, time, vertical or horizontal position, and any particular comments. The samples will eventually be mailed off to California Department of Health Services lab for analysis for harmful toxins from algae that can affect shellfish consumers.

Next we have the hoop net, which is pretty much similar in design to the HAB net, except for a larger opening diameter of 3 feet (think hula hoop) and a net length of nine feet. The net tapers off into a closed container with open slits on the sides to allow for water drainage. The purpose of the hoop net to collect organisms that are found at the various depth levels of the deployment. The hoop net is attached to a cable held by the winch. The hoop net is lowered at a specific angle which when calculated with the speed of the vessel equates to a certain depth. The survey crew reports the wire angle sighting throughout the deployment.

Every time the hoop net is brought back up there is a sense of anticipation at what we will find once the canister is open. Coloring is a good indicator. Purple usually indicates a high concentration of doliolids, while a darker color may indicate a significant amount of krill. Phytoplankton usually have a brownish coloring. Many of the hoop net collections from today and yesterday include doliolids and colonial salps, neither are very nutrient dense. Yesterday we also found pyrosomes, which are transparent organisms that resemble a sea cucumber with little bumps and soft thorns along their body. The smallest pyrosome we came upon was two and a half inches with the largest over six inches long. A few small fish of less than one inch in length also showed up sporadically in these collections as well.

The Scientific team is looking for the presence of krill in the samples obtained. The Euphausia pacifica is one of the many species of krill found in these waters. Many tiny krill were found in the various hoop net deployments. On the last hoop net deployment for today and yesterday, larger sized krill of approximately 1 inch) were found. This is good news because krill is the dominant food source for marine mammals such as whales. Ideally it would be even better if the larger krill appeared more frequently in the hoop net samples.

Finally, we have the Tucker Trawl, which is the largest and most complex of the three nets discussed in today’s post. The Tucker Trawl consists of three separate nets, one for sampling at each depth: the top, middle, and bottom of the water column. Like the hoop net, the tucker trawl nets also have a canister with open slits along the side covered with mesh to allow water to drain. All three nets are mounted on the same frame attached to a wire cable held by the winch. As the Tucker Trawl is towed only one net is open at a time for a specific length of time. The net is closed by dropping a weight down along the tow. Once the weight reaches the net opening, it triggers the net to shut and sends a vibration signal up the cable line back to the surface which can be felt by the scientist holding the cable. The net is then towed at the next depth for ten minutes. Once the last net tow has been completed, the Tucker Trawl is brought back up to surface. Similar to the hoop net, the survey tech reads the wire angle throughout the deployment to determine the angle the cable needs to be at in order for the net to reach a certain depth. This is where all the Geometry comes in handy!

As mentioned already, with three nets, the Tucker Trawl yields three separate collections of the nutrients found within the top, middle and bottom of the water column. Once the nets are retrieved, each collection container is poured into a different bucket or tub, and then into a sieve before making it into a collection bottle. If there is a large quantity collected, a subsample is used to fill up a maximum of two bottles before the remainder is discarded back into the ocean. Once the samples are processed, an outside label is attached to the bottle and an interior label is dropped inside the bottle, formalin is added to preserve the sample organisms collected so that they can be analyzed later back in the lab.

Personal Log

It is so good to finally get my sea legs! I am glad I can be of use and actively participate. Cooperative teamwork is essential to getting everything to flow smoothly and on time. The Bell Shimada’s deck crew and NOAA team work hand in hand with the scientists to deploy and retrieve the various instruments and devices.

In the past two days I am getting a lot of hands on experience with deploying the HAB net to assisting with processing samples from the HOOP Net and Tucker Trawl. It’s always exciting to see what we might have collected. I can’t wait to see what the rest of the week may bring. I wonder what interesting finds we will get with the midnight Tucker Trawl samples.

Lesson Learned: Neatness and accuracy are imperative when labeling samples! Pre-planning and preparing labels ahead of time helps streamline the process once the samples are in hand.

Word of the Day:        Thermocline – This is the depth range where the temperature of the water drops steeply. The region above the thermocline has nutrient depleted waters and while the region below has nutrient rich waters.


Spencer Cody: 1,000 Miles or 70 Million Years, Whichever Is Closer – May 16, 2016

NOAA Teacher at Sea

Spencer Cody

Soon To Be Onboard the NOAA Ship Fairweather

May 29 – June 17, 2016


Mission:  Hydrographic Survey

Geographical Area of the Cruise:  Southeast Alaska Survey

Date: May 13, 2016

Personal Log:


Dillion packing for his trip to Alaska with his family.  Credit Suzi Vail for the photo.

Dear Mr. Cody,

I am looking forward to relaxing and having a good time.  Also, I have been on a ship two years ago which was on the Carnival Sunshine.  I’m excited to explore new things on the ship.  I’m looking forward to seeing the glaciers and seeing new things and learning new things!  (Dillion is one of my science students who went on an Alaska cruise with his family in May and will be corresponding with me about his experiences as I blog about my experiences on the Fairweather.)

Dear Dillion,

I hope you enjoy your trip to Alaska with your family. Your cruise sounds very exciting.  We missed you on the geology trip to the Black Hills, but Mrs. Kaiser was able to find a creative way to bring you with us.  I look forward to hearing more about your trip when you get back and your continued correspondence concerning your trip.  I am sure we will have a number of things in common with our trips to Alaska.  Take care.

As I look forward to another mission with the NOAA Teacher at Sea program aboard the NOAA Ship Fairweather and the prospect of again being embedded among NOAA’s ocean research, I cannot help but to think back to our recent geology trip earlier this month and the implications of geology on geography on my next NOAA mission.  The NOAA Ship Fairweather promises to be a very different experience than my experience aboard the NOAA Ship Pisces.


While Dillion was on his Alaska trip with his family, Mrs. Kaiser found a clever way to bring him with us.  Look closely for Dillion on our tour through the Needles of the Black Hills of South Dakota.  Credit Laurel Kaiser for the photo.

The Pisces was a survey ship that usually focused on fisheries missions similar to the Reef Fish Study that I worked on in 2014 while the Fairweather represents another key component of the NOAA fleet, the hydrographic ship.  Yes, this is where geology meets mapping, and when these two come together in the ocean, it is NOAA’s task to ensure that the data needed to manage and safely navigate coastal waters is up to date and accurate.

It can be a challenge to ponder upon an obvious connection to the ocean in a state like South Dakota.  During our geology field trip this May, there were times when we were no more than a few miles from the very center of North America’s landlocked isolation.  It may be quite fitting that North America’s pole of inaccessibility, the point at which one is the farthest from every ocean shore is in the Badlands of South Dakota where 100 miles to each horizon one can look in such a place and easily be led to the conclusion that this is, indeed, an ocean-less planet that stretches endlessly into beautiful desolation.

Badlands II

If you squint you can just make out the sea shore in the distance…just kidding.  The Badlands of South Dakota are as far as one can get from all shores in North America, more than 1,000 miles in every direction.  Credit Laurel Kaiser for the photo.

But, that is the illusion of South Dakota. The reality is that we live on an ocean planet that is dominated ecologically and cyclically and in every conceivable way by a giant reservoir of water far bigger than the vastness of the great North American interior.  The reality is that ocean deposits built much of what South Dakota is today through hundreds of millions of years of deposition.  The reality is that South Dakotans are tied to the ocean in a multitude of ways, yet it slips the grasp of our awareness and often our understanding.  Imagine the challenge with our students in South Dakota who have few, if any, personal experiences to draw upon when science teachers cover oceanography and other ocean sciences in classes throughout the state.  Thankfully, programs such as NOAA’s Teacher at Sea are tremendously helpful in confronting this challenge through this valuable education and research program.

I have two primary goals during my mission:  connecting NOAA’s oceanic and atmospheric work to the classroom and connecting students to the education and vocational pathways that could potentially lead to NOAA careers.  Basically, I am to learn and document as much as I can on my mission and use this experience to enhance the education of my students and to provide access to possible careers in oceanic and atmospheric work through NOAA.  I am greatly thankful and humbled to receive such an opportunity, yet again, through the NOAA Teacher at Sea program.  This is truly another great opportunity for learning for both me and my school.


There was once an ocean here…70 million years ago.  The great North American interior is largely comprised of ocean deposits of varying composition.  Hundreds of vertical feet of this ancient marine mud, Pierre Shale, is exposed through much of West River South Dakota serving as a constant reminder of our ancient watery origins.  Credit Laurel Kaiser for the photo.

As with me I will be starting my eleventh year of teaching in Hoven this August.  I teach 7-12 science:  Earth, Life, Physical, Biology, Biology II, Chemistry, and Physics.  I am also the testing coordinator and student adviser for our school district.  Like most staff members in a small school, one must get accustomed to wearing many hats with many roles.  I enjoy teaching all of the varied sciences.  It keeps my brain entertained and occupied!  Hoven is a very nice town to live and teach in.  It reminds me a lot of growing up in Veblen, another small, rural South Dakota town.  I have always been an advocate for rural education and strongly believe that small schools like Hoven offer an exceptional learning experience for students.

Unfortunately, I will have to leave my wife, Jill, and my daughters, Teagan and Temperance, behind for a few weeks.  I will miss them and did get a little home sick the last time with their absence.

I am counting down the days until I fly out on May 29 to Juneau, Alaska, where the Fairweather will be leaving.  I am to report a week early in order to work with the crew of the Fairweather on tidal gauges.  After my work with gauges, I will embark with the Fairweather on its mission and disembark in Ketchikan, Alaska.  I am very excited about the research involved in my upcoming mission.  I look forward to learning more about the various technological aspects of the mission and will report more on the subject once I am underway.  For more information about the Fairweather, visit the Fairweather homepage.


My family and I and Einstein.

Dana Chu: Introduction, May 12, 2016

NOAA Teacher at Sea
Dana Chu
(Almost) Aboard NOAA Ship Bell M. Shimada
May 13-22, 2016

Mission: Applied California Current Ecosystem Studies (ACCESS) is a working partnership between Cordell Bank National Marine Sanctuary, Greater Farallones National Marine Sanctuary, and Point Blue Conservation Science to survey the oceanographic conditions that influence and drive the availability of prey species (i.e., krill) to predators (i.e., marine mammals and sea birds).

Geographical area of cruise:  Greater Farallones, Cordell Bank, and Monterey Bay National Marine Sanctuaries (all off the coast of California)

Date:  Thursday, May 12, 2016

Personal Log

TAS Dana Chu profile picHello from Sacramento, California! My name is Dana Chu and I am a Math and Science teacher and an Education Specialist at Florin High School.   This year I also teach a class called Multiple Strategies for Academics and Transitions and support a Spanish 1 class.   Florin High School has a diverse population of over 1,400 students that speak nineteen different languages. After school, I serve as an advisor to the Florin High School Watershed Team which is composed of students from all grade levels.

TAS Dana Chu watershed team

Florin HS Watershed Team at the American River Clean Up, September 2015

I am a firm believer that providing students with the opportunity to gain first-hand experience in wildlife areas and natural habitats is the key to inspiring them to become responsible stewards of their environment, both land and water. Our school is within walking distance of several local creeks. The Cosumnes River Preserve and the Yolo Bypass Wildlife Area, both of which serve as protected habitat and crucial feeding ground for migrating birds, are a short drive away.   We are also fortunate to be close to the American River where anadromous fish such as the Chinook salmon and Steelhead trout spawn. Salmon fry raised in the classroom through the Fish in the Classroom Program from Nimbus Fish Hatchery will be released there. Throughout the year, some of our students participate on field trips to these locations.   I can’t wait to share my Teacher at Sea experience with all of my students, especially because the water from our local creek and rivers eventually all feed into the ocean.

TAS Dana Chu watching sandhill cranes

Students from the Watershed Team watch Sandhill Cranes fly in to roost for the evening. This field trip was made possible by the Save Our Sandhill Cranes non-profit organization.

I applied for the NOAA Teacher at Sea program because I am very interested in sea turtles, ocean plastic pollution, and birds. I love being out on water whenever the opportunity arises and taking photographs of nature. I also want to learn from and directly work with scientists in the field. Having never traveled in the ocean for an extended period of time before, this research trip is a unique and exciting learning opportunity and chance for me to engage in many first-hand experiences. With ocean plastic pollution being a serious issue, I wonder what we will come across during the days while I am at sea. I can’t wait to sail out on the NOAA Ship Bell Shimada and to assist with scientific research in the Pacific Ocean! For more specific details on this expedition, please check the links for the Ship and the Mission.

TAS Dana Chu kayaking

This is a photo of me kayaking in Costa Rica in 2014.

In the meantime, I am in the midst of preparing for my upcoming scientific adventure. I am packing the last items needed for this research trip.   At school, the 9th graders are finishing up the Water and Ocean unit with a marine animal research project. I hope to bring back relevant information to share. My 11th graders are working on their career transition portfolios and mock job interviews. I look forward to learning about the different types of scientific and marine careers available from the members of this research cruise so I can inform my students of other potential careers they might have not considered.

When you hear from me next, I will have sailed out of San Francisco, California and experienced my first days of working and living at sea. I look forward to seeing the various pelagic birds plus marine mammals and invertebrates within their natural habitat. I am so excited to be part of this expedition!


Denise Harrington: Big Sharks Bite, Itty Bitty Sharks Intrigue – May 11, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 12, 2016


Date: Saturday, May 11, 2016


Dr. Trey Driggers shares a great white shark jaw with me.  Photo courtesy of Kevin Rademacher

My children sometimes complain when they find a bird in the freezer next to their frozen waffles.  Yet in Pascagoula, Mississippi, relentless digging in the freezer is how discoveries are made.


Mark Grace, in his office.

Mark Grace has been a biologist with NOAA for 30 years.  If he counted all his time at sea, excluding volunteer and international research, he spent “seven solid years floating.” Out of 200 surveys with NOAA, he was the field party chief for 41 of those projects.  In all of those years, he had never discovered a new species, almost no one ever does.   Yet, in 2013, he discovered an extremely rare, tiny species of pocket shark that had been identified only one other time, in 1979 off the coast of Peru.

pocket shark

This photo of the pocket shark shows its remarkable pocket, just behind the pectoral fin, and some skin damage in front of the eye that may have occurred from the pressure of being harvested from the depths.  Credit J. Wicker NOAA/NMFS/SEFSC

Scientists happened to find the 5 ½ inch shark while doing research on sperm whale feeding habits in the Gulf of Mexico in 2010.    The pocket, unnoticed at first, is what makes this shark so unique. Jesse Wicker took this photo in 2010, aboard NOAA Ship Pisces during the whale survey while processing mountains of sea creatures.  Scientists must pay meticulous attention to detail as they document and photograph specimens at sea.  You never know when your photo may prove crucial to scientific discovery.

The Discovery

The specimens collected in 2010 were identified and then placed in freezers to preserve them for further analysis.

freezer of fish

Photo courtesy of Mark Grace

Mark began to work through the specimens, but it took much longer than he had imagined.  He’d undo a bag, and there would be a hundred fish to process. Each bag seemed bottomless.  By the time Mark got to the last bags, the shark had been in the freezer for three years, eight months.  Brrr…..

Yet he knew the fish weren’t worth much if they stayed in the freezer. He was particularly interested in the cookie cutter shark named after the cookie shaped bites they leave in their prey.  He kept on.

cookie bite

NOAA photo The round mark left on the back of this toothed whale is a telltale sign of a cookie cutter shark, such as this one below.

cookie cutter shark

Cookie Cutter Shark, NOAA’s Fisheries Collection, Photo taken aboard NOAA Ship Pisces.

A shark caught his eye. The shark was identified as belonging to the Dalatiidae family (kitefin sharks), many of whom share luminescent features.

pocket shark bottom

Kitefin shark harvested in 2010 aboard Pisces. Credit: J. Wicker NOAA/NMFS/SEFSC 2010

Yet this shark did not look like the other cookie cutter sharks he had studied.  It had a remarkable fold of skin behind the pectoral fin that did not look like an injury or parasite.  Once Mark saw a matching feature behind the other fin, he realized this shark was like no other species he had ever seen.  Looking in his reference books, he could not find this shark, because it did not exist in any book on his shelf.


Photo credit: Mark Grace – The pockets behind the pectoral fin of the 2010 specimen.

pocket shark diagram

Over hundreds of millions of years, shark adaptations have helped them survive.  They have become smoother, faster, and better at sensing out their prey.  Many sharks have the hard, smooth, scales on their skin called denticles that increase their speed and reduce noise, just like my friend’s fast blue Sterling fiberglass kayak compared to my noisy, orange, plastic Avocet kayak.

Just below the snout, this shark had has a translucent denticle, or scale, at the center of surrounding denticles, giving the appearance of a flower.

pocket shark denticle

Magnified photo of modified denticle.

Mark hypothesized that this unique adaptation might be a pit organ, used to sense currents, or prey.  Scientists have many thoughts about the purposes for this organ.  Each unique feature of the shark inspired Mark to research further.

bioluminescent creatures

Composite of images of bio luminescent species collected with pocket shark by Mark Grace.

One adaption many creatures of deep ocean waters is they glow.  Small photophores, or organs on their body, emit light and signals to communicate with other animals.  In this picture, Mark created a composite of several of the other glowing animals that were pulled up in the trawl net with the pocket shark (middle).

In 30 years, he had never seen a species this rare.  A vitelline scar, like the belly button of a human, indicated that the five and a half inch fish was only a few days to no more than a few weeks old when it was born near the place it was harvested. It was a baby. There had to be at least one other fish like it somewhere in the world.

Connections to others

After a little research, Mark connected this pocket shark with the only other pocket shark ever recorded, in 1979 off the coast of Peru and Chile in the east Pacific Ocean.  His research was particularly challenging because Dolganov, the scientist who first identified the new species pocket shark, wrote up his findings in 1984, in Russian.  Mark had to find a Russian scientist to translate the document to English.


Sheiko pocket shark

The only other known pocket shark, harvested in 1974, is not in great condition.  Photo 2013, Boris Sheiko


pocket shark with ruler

Look at those unique photophore clusters on the shark’s underside.  Photo credit: J. Wicher NOAA/NMFS/SEFSC, 2010

The older pocket shark was a female, and probably an adult, at 20 inches long. Between the two sharks, there were many similarities, but also many differences.


In second grade, we like to make Venn Diagrams in situations such as these.  So I drew this one, comparing the shark harvested in 1974 to the shark harvested in 2010.

Once again, I find myself swirling in a sea of questions.  Are these two pocket sharks, which lived far away from each other, of the same species?  Are their morphological (physical) differences enough to make them unable to reproduce with each other?  Scientists ask similar questions to determine if they have found a new species.

What makes a species unique?

Species identification is no easy task.  Mark reached out to experts, as we all do, with his questions.  At the Hollings Marine Laboratory, Gavin Naylor began to collaborate with Mark as part of his global effort to collect DNA of all living things.  He added the pocket shark to the portion of the tree of life he manages at  John Denton, of the American Museum of Natural History, and Michael Doosey and Henry Bart from the Tulane University Biodiversity Research Institute became part of this group of five scientists who would be connected for life through this 5 ½ inch shark. Together they read many books, sliced and diced the shark digitally, and traveled around the world to meet with other biological explorers. They determined that the specimen collected in the Gulf of Mexico, like specimen in the east Pacific, was a pocket shark, Mollisquama.

pocket shark ct

This three dimensional image obtained by Gavin Naylor through a high resolution CT scan at the Hollings Marine Laboratory allows Mark and Gavin to share their research digitally, with scientists around the world, while keeping the baby pocket shark intact.



The American Museum of Natural History in New York used a three dimension printer to obtain a model of the shark from the CT scan.

The most intriguing part of the scientists’ research lies in the title of their work, hidden in Latin: Mollisquama sp., the name for our Gulf of Mexico baby, and Mollisquama parini, its Russian relative. I notice that the second part of their name is different! Yet in order to establish our shark as a new species of Mollisquama, these scientists will have to write a paper that is “strong enough to withstand many layers of peer review,” says Mark. They will need to demonstrate that the physical differences (e.g. teeth and vertebrae) are significant enough to support a new species identification.

If they are successful in proving their pocket shark is different than its eastern Pacific Ocean relative, what should he name this species of shark?  Mark suggests an international competition, as it will take many minds “to be good enough for NOAA.”

Mark reminds us that when we learn about this shark, we realize that the one great interconnected ocean and its inhabitants are a still a place of mystery and discovery.  We have much more to learn about the ocean and its inhabitants than we know.

Personal Log

Often the greatest discoveries come when you least expect them, hiding in expectations dashed, problems, or the path less traveled. While the Pisces was scheduled to depart last week, the crew continues to work on long and short term projects on the ship and in the lab.

me on screen

Photo courtesy of William Osborn

I am being supervised by Engineering Department Chief “Chief” Brent Jones, on one of many cameras around the ship, as I “assist” the engineering crew get through their list of duties.  His words of wisdom? “Hands off!”

Here, Dana Reid, General Vessel Assistant, and I are opening up the aft valve, so that Travis Martin can switch out the strainers in the main water system.  Dirty strainers get hosed out at least every other day.  Today we caught a small eel in the strainer.

righty tighty

Photo Courtesy of William Osborn


cleaning the strainer

Travis Martin, TAS Denise Harrington, and Dana Reid are switching out the strainer, while Farron “Junior” Cornell, Fisherman, photo bombs us.

Acronyms abound at NOAA, and teachers are affectionately referred to, not by our names, but as “TAS,” for Teacher at Sea.  I’d like to name a new species of this family of adventuresome NOAA educators, “TIP” for those Teachers in Port who adapt by learning about all the amazing discoveries that take place on land following successful projects at sea.  I want to extend a big thank you to Mark Grace and the fishery biologists in the lab who did not know they’d be hosting a TIP.

While in port, I have been able to explore the various land based habitats which are much easier to study than their underwater counterparts. Standing on the water’s edge at David Bayou, I wondered how the area would look from a kayak.  I posted a message to the Mississippi Kayak Meetup Group. Both Eric and Keigm Richards and their friends responded, sharing their knowledge and boats, showing me parts of the watershed very few people see. Coincidentally, Eric was one of the talented NOAA Ship Pisces builders, and knows everything from the finest detail of an itty bitty kayak skeg, to the gigantic architecture and versatile features of the Pisces.

Here is a slideshow of the one of the most unspoiled, diverse and scenic estuaries I’ve paddled.

This slideshow requires JavaScript.

Most of the were taken by Eric.  Notice the changes in vegetation as we travel away from mouth of the Pascagoula River, up the estuary.  The decreasing salinity has a remarkable effect on the flora and fauna of the area.  Mississippians are proud of the Pascagoula, “the last unimpeded river system in the continental United States.”


Most, around 80%, of the creatures in the water column are bio-luminescent, or emit light.  They can vomit out the glowing liquid, hold and release it from a pouch, and/or send it out through photophores (organs like eyes which emit light instead of collecting it).


Denise Harrington: Tenacity – May 7, 2016

NOAA Teacher at Sea
Denise Harrington
Aboard NOAA Ship Pisces (In Port)
May 04, 2016 – May 17, 2016

Mission: SEAMAP Reef Fish Survey

Geographical Area of Cruise: Gulf of Mexico

Date: Saturday, May 7, 2016

Tenacity helps NOAA manage our seafood supply.


Tenacity, otherwise known as perseverance or stamina, is a required skill at the National Oceanic and Atmospheric Administration (NOAA). Aboard NOAA Ship Pisces, we are all anxious to head out to collect data about the type and abundance of reef fish along the continental shelf and shelf edge of the Gulf of Mexico.  However, things don’t always go as planned. Much like the animals we study, scientists must rapidly adapt to their changing circumstances. Instead of waiting for a problem to be solved, fisheries biologists of all ages and experience work in the lab, using the newest, most sophisticated technology in the world to meet our demand for seafood.

As I ate dinner tonight in the mess (the area where the crew eats), I stared at the Pisces’ motto on the tablecloth, “patience and tenacity.”


The Pisces is a “quiet” ship; it uses generators to supply power to an electric motor that turns the ship’s propeller. The ship’s motor (or a mysteriously related part) is not working properly, and without a motor, we will not sail. This change of plans provides other opportunities for me, and you, to learn about many fascinating projects developing in the lab. Sound science begins right here at the Southeast Fisheries Science Center Laboratory in Pascagoula, Mississippi.


Kevin Rademacher, a fishery biologist in the Reef Fish Unit, meets me at the lab where he works when he isn’t at sea. As he introduces me to other biologists working in the protected species, plankton, and long line units, I begin to appreciate the great biodiversity of species in the Gulf of Mexico. I get a glimpse of the methods biologists use to conduct research in the field, and in the lab.

While it looks like a regular old office building on the outside, the center of the building is filled with labs where fish are taken to be discovered.  Mark Grace, a fisheries biologist in the lab, made one such discovery of a rare species of pocket shark on a survey in the gulf. The only other specimen of a pocket shark was found coast of Peru in 1979. Mark’s discovery raises more questions in my mind than answers.

When I met Mark, he explained that capability of technology to gather data has outpaced our ability to process it. “Twenty years ago, we used a pencil and a clipboard. Think about the 1980s when they started computerizing data points compared to the present time… maybe in the future when scientists look back on the use of computers in science, it will be considered to be as important as Galileo looking at the stars” he said. It’s important because as Mark also explains,  “This correspondence is a good example.  We can send text, website links, images, etc…and now its a matter of digital records that will carry in to the future.”

How do fishery biologists find fish?


Charlie McVea, a retired NOAA marine biologist, and his trusty assistant Scout, pictured above, learned they may need more sophisticated equipment to locate fish.

Earth has one big connected ocean that covers the many features beneath it. Looking below the surface to the ocean floor, we find a fascinating combination of continental shelves, canyons, reefs, and even tiny bumps that make unique homes for all of the living creatures that live there.  Brandi Noble, one of 30-40 fishery biologists in the lab, uses very complicated sonar (sound) equipment to find “fish hot spots,” the kinds of places fish like to go for food, shelter and safety from predators. Fisheries sonar sends pulses of sound, or pings, into the water.  Fishery biologists are looking for a varied echo sound that indicates they’ve found rocky bottoms, ledges, and reefs that snapper and grouper inhabit.

The sonar can also survey fish in a non-invasive way. Most fish have a swim bladder, or a gas filled chamber, which reflects sonar’s sound waves.  A bigger fish will create a returning echo of greater strength. This way, fisheries biologists can identify and count fish without hurting them.

sonar fish

The circular image shows a three-dimensional map NOAA scientists created from the sonar data they collected about the seafloor and a school of fish.

Ship Pisces uses a scientific methods to survey, determining relative abundance and types of fish in each area. They establish blocks of habitat along the continental shelf to survey and then randomly sample sites that they will survey with video cameras, CTD (measures temperature, salinity, and dissolved oxygen in the water), and fishing. Back in the lab, they spend hours, weeks, and years, analyzing the data they collect at sea. During the 2012 SEAMAP Reef Fish Survey, the most common reef fish caught were 179 red snapper (Lutjanus campechanus), 22 vermillion snapper (Rhomboplites aurorubens), and 10 red porgy (Pagrus pagrus).  Comparing the 2012 data with survey results from 2016 and other years will help policy makers develop fishing regulations to protect the stock of these and other tasty fish.

How do fishery biologists manage all the information they collect during a survey?

Scientists migrate between offices and labs, supporting each other as they identify fish and marine mammals from previous research expeditions.


Kevin Rademacher, at work in the lab.

Our mission, the SEAMAP Reef Fish Survey has been broken into four parts or legs.  The goal is to survey some of the most popular commercially harvested fish in the Gulf of Mexico.  Kevin Rademacher is the Field Party Chief for Leg 1 and Leg 3 of the survey.

Last week, he showed me collections of frozen fish, beetle infested fish, and fish on video. At one point the telephone rang, it was Andrew Paul Felts, another biologist down the hall. “Is it staying in one spot?” Kevin asks. “I bet it’s Chromis. They hang over a spot all the time.”

We head a couple doors down and enter a dark room.  Behind the blue glow of the screen sits Paul, working in the dark, like the deep water inhabitants of the video he watches. Paul observes the physical characteristics of a fish: size, shape, fins, color.  He also watches its behavior. Does it swim in a school or alone?  Does it stay in one spot or move around a lot?  He looks at its habitat, such as a rocky or sandy bottom, and its range, or place on the map.

As you watch the video below, observe how each fish looks, its habitat, and its behavior.

To learn about fisheries, biologists use the same strategies students at South Prairie Elementary use.   Paul is using his “eagle eyes,” or practiced skills of observation, as he identifies and counts fish on the screen.   All the scientists read, re-read and then “read the book a third time” like a “trying lion” to make sense out of their observations.  Finally, Paul calls Kevin, the “wise owl,” to make sure he isn’t making a mistake when he identifies a questionable fish. paul screen

Using Latin terminology such as “Chromis” or “Homo” allows scientists to use the same names for organisms. This makes it easier for scientists worldwide, who speak different languages, to communicate clearly with each other as they classify the living things they study.

I appreciate how each member of the NOAA staff, on land and at sea, look at each situation as a springboard to more challenging inquiry.  They share with each other and with us what they have learned about the diversity of life in the ocean, and how humans are linked to the ocean.  With the knowledge we gain from their hard work and tenacity, we can make better choices to protect our food supply and support the diversity of life on Earth.


This slideshow requires JavaScript.



Spined Pygmy Shark Jaw (Squaliolus laticaudus)

Personal Log

Crew members tell me that every day at sea is a Monday.  In port, they are able to spend time with family and their communities.  I have been able to learn a bit about Pascagoula, kayak with locals, and see many new birds like the least tern, swallow tailed kite, eastern bluebird and clapper rail.  Can you guess what I ate for dinner last night?P1050747





Nichia Huxtable: Time to Make a Map, May 8, 2016

NOAA Teacher at Sea

Nichia Huxtable

Aboard NOAA Ship Bell M. Shimada

April 28 – May 9, 2016

Mission: Mapping CINMS
Geographical area of cruise: Channel Islands, California
Date: May 8, 2016
Weather Data from the Bridge:

Science and Technology Log

Seafloor in CINMS

Seafloor in the CINMS

In previous posts, I’ve discussed the ME70 multibeam sonar on board Shimada. You’d think that I’ve told you all there is to know about the wondrous data this piece of equipment provides, but oh, no, dear readers, I’ve merely scraped the surface of that proverbial iceberg. In this post, I will explain how the raw data from the ME70 is used to create important seafloor maps. Heck, I’ll even throw in a shipwreck! Everyone loves shipwrecks.

Nichia Huxtable, Diana Watters, ME70, and EK60; aboard Shimada

Nichia Huxtable, Diana Watters, ME70, and EK60; aboard Shimada

Back to the multibeam. As you may remember, the ME70 uses many beams of sonar to capture a 60 degree image of the water column. It collects A LOT of data, one survey line at a time. Lots of data are good, right? Well, if you want to map the bottom of the ocean, you don’t need ALL the data collected by the ME70, you just need some of it. Take, for example, fish. You don’t want big balls of fish obscuring your view of the seafloor, you just want the seafloor! Leave the schools of fish for Fabio.

Kayla Johnson aboard NOAA Ship Bell M. Shimada

Mapping maven Kayla Johnson

The person you need to make your seafloor map is Kayla Johnson. First, she sends the raw data to a program called MatLab. This nifty software separates the bottom data from all the other stuff in the water column and packages it in something called a .gsf file. Next, this .gsf file goes to this huge processing program called CARIS HIPS, where it is converted into an something called HDCS data.

You’d think that all you’d need to make an accurate seafloor map would be data from the multibeam, but it is actually much more complicated than that (of course you knew that! just look at how long this blog post is). Think about it: while you’re running your survey lines and collecting data, the ocean and, therefore, the ship are MOVING. The ship is heaving, rolling, and pitching, it’s travelling in different directions depending on the survey line, the tides are coming in and out, the temperature and salinity of the water varies, etc. etc. All of these variables affect the data collected by the ME70 and, hence, must be accounted for in the CARIS software. Remember how I said it was HUGE? This is why.

Cross-section of the topography found in the CINMS

Cross-section of the topography found in the CINMS

Everyone still with me? Ok, let’s continue processing this data so that Kayla can make our beautiful map. Next up, she’s going to have to load data into CARIS from the POS. POSMV (POSition of Marine Vehicles) is a software interface used on the ship that collects real-time data on where we are in relation to the water (heave, pitch, and roll).  She’s also going to load into CARIS the local tide information, since the ship will be closer to the seafloor at low tide than at high. Not including tidal change is a good way to get a messed-up map! Once the POSMV and tide files are loaded into CARIS, they are applied to the survey line.

Completed map around San Miguel Island

Completed map around San Miguel Island

Next, Kayla has to compute the TPU (Total Propagated Uncertainty). I could spend the next four paragraphs explaining what it is and how it’s computed, but I really don’t feel like writing it and you probably wouldn’t want to read it. Let’s just say that nothing in life is 100% certain, so the TPU accounts for those little uncertainties.

Since the data was collected using multiple beams at a wide angle, there will be beams returning bad data, especially at the edges of the collection zone. Sometime a bad data point could be a fish, but most often bad data happens when there is an abrupt change in seafloor elevation and the beams can’t find the bottom. So, Kayla will need to manually clean out these bad data points in order to get a clean picture of the seafloor.

Almost done! Last, Kayla makes the surface. All the data points are gridded to a certain resolution based on depth (lots of explanation skipped here…you’re welcome), with the end result being a pretty, pretty picture of the bottom of the seafloor. Phew, we made it! These seafloor maps are incredibly important and have numerous applications, including fisheries management, nautical charting, and searching for missing airplanes and shipwrecks (see! I told you there would be a shipwreck!). I’ll be getting into the importance of this mapping cruise to the Channel Islands Marine Sanctuary in my final post, so stay tuned.

Endnote: A word about XBTs                                                                                                      

Deploying an XBT off Shimada

Deploying an XBT off Shimada

 Before all your data are processed, you need to know how fast the sound waves are travelling through the water. When sound is moving through water, changes in temperature and salinity can bend the wave, altering your data. An XBT is an expendable bathythermograph that is sent overboard every four hours. It transmits temperature and salinity readings throughout its quick trip to the ocean bottom, allowing the computer to make data adjustments, as needed.



Did You Know?
Hey, you’ve made it to the bottom of this post! If you are interested in seafloor mapping, have I got an institute of higher learning for you. The College of Charleston has a program called BEAMS, which trains future ocean surveyors and includes a course called Bathymetric Mappings. Three of the hip young scientists on board have taken this course and it seems to be pretty amazing. If you love sailing the high seas AND data processing, you might want to check it out.