Amy Orchard: Day 1, 2 and 3 – Cool Scientists, Multibeam, Setting Traps, Cetaceans, September 16, 2014

NOAA Teacher At Sea
Amy Orchard
Aboard NOAA Ship Nancy Foster
September 14 – 27, 2014

Mission: Fish Tagging
Geographical area of cruise: Riley’s Hump: Tortugas Ecological Reserve South
Date: September 14, 15, 16, 2014

Weather: September 16, 2014 20:00 hours
Latitude 24° 30’ 30’’N Longitude 83° 09’ 9’’W
Few clouds, clear.  Humidity 10%.
Wind speed 7 knots.
Air Temperature: 28° Celsius (83° Fahrenheit)
Sea Water Temperature: 30.4° Celsius (86.7°Fahrenheit)

SUNDAY:

Getting to Know the Nancy Foster

Scott Donahue, Science Coordinator for Florida Keys National Marine Sanctuary and Chief Scientist for this cruise, brought me aboard and gave me a tour of the Nancy Foster early in the day.  Also there was Tim Olsen, Chief Engineer, who I had met on the plane from Atlanta to Key West.  I was overwhelmed with the capacity of the ship.  It is huge and fully equipped for a wide variety of scientific endeavors, diving, mapping, surveying, launching large equipment etc.  I feel lucky to be a part of what is going on.

Click on these two photos for more information

Short Jaunt into Key West

After taking some time to see Key West, I headed back to the ship where I met Cammy Clark from the Miami Herald who will be with us for one week reporting on our experience. Cammy and I spent the night on the ship awaiting the science team to arrive early tomorrow morning.  The ship is in dock so I can’t yet be sure if I will suffer from sea sickness.  However, I hear that there is 100% survival rate if it does occur!

Click on these two photos for more information

MONDAY:

Meeting the Scientists

During the two weeks aboard, I will be working with 10 scientists from the Florida Fish and Wildlife Conservation Commission (FWC), 7 NOAA Florida Keys National Marine Sanctuary scientists and 2 ROV pilots from the University of North Carolina at Wilmington.  I am excited to be a part this interagency collaboration.  Seems like an efficient way to communicate and share experiences.

Guess which photo shows the scientists I will be working with…

Answer:  PHOTO ON THE RIGHT.  FWC scientists from left to right: Mike McCallister, Jeff Renchen,Danielle Morley, Ariel Tobin (in front), Ben Binder, Paul Barbera.  Not as reserved or stodgy as you might picture a group of scientists, but they are incredibly knowledgeable and dedicated to their work.  They are unbelievably cool people!  They have amazing stories to tell, are easy-going and love to have a good time.  I want to be like them when I grow up!

Preparing to Do Science

One of the many things we will do this week is tagging fish.  To do this, we will travel away from the ship on small boats to set fish traps.  Once the right fish are contained, the dive team will surgically insert an acoustic tag which will allow them to monitor the fish’s movements throughout different reaches of the sanctuary.  This information is important to see the effectiveness of protected areas vs. non-protected areas.

The divers perform this surgery underwater (usually at depths of 95-110 feet) in order to reduce stress on the fish and to avoid air bladder expansion.

Today the divers went out to practice their diving skills before the intense work begins.  I got to travel with them in the small boat.  Even though I am certified to SCUBA dive, only American Academy of Underwater Sciences divers and other divers with official reciprocity are allowed to dive off NOAA ships.  (reciprocity is the word of the day – look it up!)  The diving these scientists do is much more technical than the recreational diving I do in Mexico, but they enjoy it just as much.

Best note of the day:  No sea sickness!  (yet)

dive boat being lowered
The 4 small boats sit on the back deck of the ship and are lowered over the side with a large crane. Once the boat is on the water, we climb down a rope ladder (which is swinging ferociously in the waves!)
me on the small dive boat
The Nancy Foster has four small boats. Three for dive operations and one reserved as a rescue boat. It was exciting to have a different perspective and to see the Nancy Foster out at sea from the small boat. Photo by Linh Nugyen

TUESDAY:

Multibeam Sonar

Last night was the first night I slept on the ship while it was out to sea.  I had a really hard time sleeping as I would awaken every half hour feeling as if I were going to roll over and fall out of my top bunk!  This movement was due to the fact that science is being done aboard the Nancy Foster 24 hours a day.  During the night time, Nick Mitchell and Samantha Martin, the Survey Technicians, are running the Multibeam Sonar which determines ocean depth and creates a map of the sea floor contours.  Using 512  sonic beams, sound is emitted, bounces off the sea bed, then returns to the ship.

See these videos for more information:  http://www.nauticalcharts.noaa.gov/staff/education_animations.htm

The ship would travel out about 3 miles, then turn 180° to make the next pass.  Cruising at about 1 mile every 10 minutes (walking speed) we were turning about every 30 minutes, explaining my rockn’ night!

More on MSB in upcoming posts.

Click on these two photos for more information

Setting Fish Traps

I joined the divers on the small boat to set out the first two traps.  We used cooked and peeled shrimp as bait.  The traps were still empty late afternoon.  Let’s hope they take the shrimp so the tagging can begin!

modified chevron trap
Here sits the modified chevron trap Ben and I will be deploying from our small boat. Divers on a second small boat will follow us, dive down and be sure the trap sits on the ocean floor upright and will set the bait.
trap over board
I am making sure the rope which attaches the float buoys to the trap doesn’t get caught on the boat as the fish trap is deployed into the water. Photo by Nick Mitchell
Here Ben Binder & Survey Technician, Nick Mitchell, record the exact Latitude and Longitude where the trap was set.  Can you figure out the general GPS coordinates for the Tortuga South Ecological Reserve?
Here Ben Binder & Survey Technician, Nick Mitchell, record the exact Latitude and Longitude where the trap was set. Can you figure out the general GPS coordinates for the Tortuga South Ecological Reserve? Need help? Go to http://shiptracker.noaa.gov/

We are focusing on two species during this trip: the Black Grouper and the Cubera Snapper.  These two were selected because they are commercially and recreationally important species.  The FWC’s aim is to monitor the seasonal movement of these species to better understand how the fishes are utilizing the protected areas, as well as those outside of the reserve, so they can make the best management decisions.

I will attach photos of each species that will be taken from the Remotely Operated Vehicle (ROV) in my next blog since this one is getting long…

Challenge Your Understanding

Identify this animal.

I took this photo and video on day 1.  We have seen them each day since!

cetaceans jumping
Am I a porpoise, dolphin or vaquita?

The species in my photo/video is part of the Order Cetacea and the suborder Odontoceti (or toothed whales) which includes the porpoises , dolphins, vaquitas, narwhals and killer whales (to name only a few – there are 67 species in this suborder.)

Go to this website to help you find the correct answer

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/

 

Bonus Points – make a COMMENT and share some information you have found about the VAQUITA.

Cool fact – all members of Odontoceti can echolocate.

Junior Docents – add that to your bat interpretations!

The question from my last post about the relationship between Tucson and the Sea of Cortez could be answered with all of the first four answers.  Glad NO ONE chose the last answer!  The sea is an integral part of our lives no matter how far we live from it.

Sue Zupko, Diversity, September 13, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 13, 2014

Weather Data from the Bridge
Lat 35°38.1’N     Lon 074°50’W                    

Present Weather PC       
Visibility 10 nm
Wind 220° 5kts

Sea Level Pressure 1016.6
Sea Wave Height 1-2 ft
Temperature: Sea Water 27.2°C
Air 28.4°

Science and Technology Log

If you want to learn about biodiversity, come on a NOAA Fisheries Cruise. We hear about the numerous fish in the ocean, but nothing really makes it come alive as does seeing it. There are pockets of animals in each of the strata. Different depths have different temperatures, bottom type, plants, etc. Let me explain a bit about my watch and what we are doing.

I was amazed by the diverse sounds. A crow. A jaguar screaming. A frog croak. Sloshing. Thumps. “Fine”. A ringing telephone. A whip cracking. A waterfall. Thunder. A pinball machine. Music playing. Some people singing along. Laughter. Chatter. The list is seemingly endless.

There are platforms we each stand on along the conveyor belt which brings the fish in to be processed from the checker on the deck. The first person in line and pulls out fish which might be harmful such as electric rays and large sharks. Hope she gets the Lionfish as well. Don’t want to be stuck by those spines. As the animals come down the line we sort them based on the instructions of the watch chief who has been outside to see the catch, comparing what we have.

Heath, our watch chief, programming our catch
Heath, our watch chief, programming our catch

Heath is my watch chief. So, he suits up in his PFD (life jacket–personal flotation device) and hardhat(helmet) to see what was put in the catcher and then tells us what to leave on the conveyor belt as it goes by. That is usually what is most numerous. Sometimes it’s trash, such as starfish and jellies , other times it’s Loligo squid One night we had a huge amount of scallops so a seemingly endless stream of scallops passed us by. I love eating scallops. It is amazing to view them up close. They have numerous eyes lining the inside of the shell.

Containers Small, Gallon, 10 Gallon, 1.47 Cubic Feet Baskets
Containers Small, Gallon, 10 Gallon, 1.47 Cubic Feet Baskets

Once the animals are sorted by species into containers, they then make their way down the conveyor to Heath. Heath scans the container which makes a telephone ringing sound. He enters/selects the name of the animal on his monitor (crow caws–actually except for animal id every time he does something his “ok” sound is a crow), checks our work to be sure the animals in the container are all the same, weighs the catch of that entire species, and sends the container on its way down the conveyor belt.

There are three processing stations along the conveyor. I have mostly worked with Nicole this week so far. She is a fabulous teacher. Very patient with my inexperience and points out when I do something correctly. That way I will repeat things the correct way. She also suggests better ways when I struggle. Heath explained that we process the containers with the most organisms in them first so no one is stuck at the end of the line doing a large container of animals when others are cleaning up. Some containers might just have one animal. This system works pretty well since everyone seems to finish at the same time.

1 Gallon Container
1 Gallon Container

There are two people at each of the three stations. One person is the fish processor and the other is the recorder. First, the processor scans the container. It buzzes and identifies the container and what the animal is. I was very proud of myself today. I have been assigned to work with Larry now. He left me on my own to process (though he was watching from across the conveyor). When I checked to see how to measure the fish I was working with, it said to measure the width of the carapace. Carapaces are found on turtles or crabs. It is their hard shell. I had a tiny fish. On a rocking ship, it is easy to push a wrong button on a screen and this container had the wrong name on it. Easy fix. Sent it back for reassigning a species and I picked it up when it came by again. “Nice catch on that,” Larry said. Made me feel proud that I recognized how to use the equipment, recognize certain species, and fix the problem. Nicole said if we make a mistake, it can always be fixed. Remember, we learn from mistakes. That’s what we stress in my classroom. Try it. If you fail, learn from the mistake and redo. That works with adults as well.

My favorite sound is the pinball machine that says the weight has been recorded. If the animal needs more processing than just being weighed, there is a sound (a jaguar scream or a whip cracking) to tell the team what to do. Sometimes we need to put the animal in a jar to be preserved. )

Other times we need to take a photograph, or it will ask what the animal’s sex is. We have had a lot of requests for fish to be frozen for study back in the lab. These are bagged and put into a large freezer  for the requesting scientist. The most common seems to be getting the otolith, the part of a fish that aids it in orientation, balance, and sound detection. These are tiny in most fish and require a little manila envelope that we put a sticker on identifying it. These special requests from the computer are all preset requests from scientists working in a scientific area back on shore.

 

The sound of the waterfall is the constant stream of salt water running down a shoot onto the floor. This picks up animals and trash that have dropped and washes them down drains or out the scuppers (small rectangular openings on the bottom of the wall at the floor which opens to the outside) on the sides of the room. The water is very warm and I’ve noticed that the sea water has been warmer than the air temperature. Another sound is the water sloshing around, similar to the sound in a bathtub when you move the water.

Saltwater helps keep the floor clean in the wet lab.
Saltwater helps keep the floor clean in the wet lab.

When I began this blog I was sitting on the O2 deck at a small table under the stairs. We kept changing direction at relatively slow speeds. I have learned that we were using the multi-beam sonar to look at the bottom to find an acceptable spot to trawl. I was excited to sit outside to work and gaze out over the ocean. During that time I spotted three pods of dolphins swimming. John Galbraith, our chief scientist, and I discussed last night how if you aren’t spending time observing something you will miss many things. So true. If I wasn’t observing the ocean frequently, what are the odds I would see a whale?

Meet Scientist Nicole Charriere 

Nicole with Slender Snipe Eel
Nicole with Slender Snipe Eel

Nicole has been my mentor for the past week. She is a sea-going biological technician, sailing about 130 days out of a year. She usually is on scallop surveys, but seems pretty expert in fish, shrimp, and clams as well. Her job on this cruise is to help provide leadership. There are several volunteers on this cruise, me included, and some are novices just learning about fish. She explains about the protocols (a formal set of rules and procedures to be followed during a particular research experiment).

What Nicole likes about her job is she isn’t in an office all the time. Trawls are different every day. No two tows are the same, and there are a huge variety of species. She really enjoys the diversity of people she gets to work with. There are different scientists and crew members to meet each time. She is a scuba diver and knew she wanted a career with NOAA when she graduated college. She had a job on a commercial fishing vessel and was contacted by NOAA. Someone probably noticed her great work and let someone hiring at NOAA know.

There is something very ironic about Nicole working on a fishing vessel. She doesn’t like sea food. She recognizes its importance and that it is important for the world to have a reliable food source, but it isn’t her favorite.

Nicole’s advice to my students is to talk to everyone and learn. Make connections about what you learn. Work hard, since working hard and getting along with people on a team gets you noticed and when a job comes available, guess who gets hired? Not the person who is difficult to work with and is late constantly.

Nicole has an active lifestyle. In addition to scuba diving, she roller blades, plays guitar and keyboard, and plays soft ball and soccer. She knows a lot of people who are still looking for the perfect career for them. Nicole is thrilled to have found her dream job so early in her life. I am grateful to have had the opportunity to work with this eloquent, interesting, and fun scientist.

Personal Log

Yeah! The captain put out an all-call and said there were pilot whales off the port side. We had just finished our watch and I headed out to the port side. There they were. I said, “They look like dolphins.” Both are cetaceans, both hunt fish, both are smart, both have a dorsal fin that sticks up out of the water. I believe I saw some earlier. One remained in one place with a huge fin sticking up. I hadn’t seen a dolphin do that before. They might swim in a circle going after a fish, but this behavior was a bit unusual.  At the time I just thought how big that dolphin was. Now, upon reflection, I believe that was a Pilot Whale.   That was so kind of the captain to announce the whales’ presence. The XO, Chad Cary, told me that Pilot Whales got their name since they are indicators of where the fish were. The fisherman just piloted their boats to where those whales were. Interesting way to get a name. Obviously, I’m pretty excited. Did you say I would see a whale on that poll?

Did You Know?

Deploying CTD
Deploying CTD

CTD stands for conductivity, sea water temperature, and depth (of where measurements are taken).

According to NOAA, salinity measurements can be used to determine seawater density which is a primary driving force for major ocean currents which help drive the Earth’s climates. This seems analogous (similar) to the causes of wind when air moves from warm air to cold and back again.

Question of the Day

The CTD protocol states that it must stop 5 meters from the bottom to take its measurements. If the CTD descends at 37 m/s, how long will it take for the CTD to get in position to measure its readings and return to the surface if the bottom is 338 m from the surface?

Vocabulary

Salinity: The percentage of salt in the water. Think of it as if you had 1000 grams of water and mixed one gram of salt into it. This would be 1 ppt salinity. Our ocean averages about 35 ppt salinity. Our CTD found that the ocean’s salinity where we tested today was 34 ppt.

Something to Think About

We actually let out 361 m of wire with the CTD, but the bottom was only 338 m. Why did we let out more wire than the distance to the bottom when we dropped the CTD?

Animals Seen Today

Janelle Harrier-Wilson: T-8 Days and Counting – It’s Almost Time to Set Sail! September 14, 2014

NOAA Teacher at Sea
Janelle Harrier-Wilson
(Soon to Be) 
Onboard NOAA Ship Henry B. Bigelow
September 23 – October 3, 2014 

Mission: Autumn Bottom Trawl Survey Leg II
Geographical area of cruise: Atlantic Ocean from the Mid-Atlantic Coast to S New England
Date: September 15, 2014

Personal Log

Janelle Harrier-Wilson with husband, Neil, and golden retriever, Devon, as a puppy.
With my husband, Neil Wilson, and my dog, Devon. He was a puppy at the time and graduating from training classes.

Hello and welcome! I am so excited to be a part of the NOAA Teacher at Sea experience. I currently teach chemistry, engineering, and technology at Lanier High School in Sugar Hill, GA (outside of Atlanta). I am part of an awesome project based learning (PBL) program called CDAT (Center for Design and Technology), which focuses on science, technology, engineering, and math (STEM). Lanier High School opened in 2010, so this is our fifth year as a school; however, this is my first year teaching here. Before transferring to Lanier High School, I taught sixth grade Earth science at Lanier Middle School for eight years. Now, I have the awesome privilege of teaching many of my students a second time. It’s really fun to see how much they have grown up and matured since they were sixth graders.

I am looking forward to sharing what I learn with my students as I think my engineering students will gain insight into shipboard careers they may have never considered, especially as it relates to engineering. I think my technology students will get a chance to see how scientists collect and organize data using technology tools.

Although I teach chemistry and this research cruise is focusing on fisheries, I know my students will gain a new understanding of our oceans. Sampling the health, age, and quantity of different fish species with the NOAA scientists help us to measure the health of the oceans. Some of the big issues with the health of our oceans concern overfishing, human pollution, and ocean acidification. Ocean acidification refers to how the oceans take some of the extra carbon dioxide from the air and dissolve it into the water. This lowers the pH of the water making it more acidic, which can affect the health of the ocean’s inhabitants.

I applied to be a NOAA Teacher at Sea so I could learn more about our oceans in order to share this knowledge with my students. I have always been a hugely passionate about space and space exploration. I’ve had so many cool space opportunities like seeing shuttles and rocket launches, going to Space Camp, floating in microgravity, and most recently, helping our students talk to Reid Wiseman on the International Space Station via amateur radio.

Space is awesome and amazing, but we have an equally amazing frontier right here on own planet, our oceans. I want to be able to share with my students about the oceans with as much confidence and enthusiasm as I do about space, so I am extremely happy to be a Teacher at Sea so I can begin to glimpse all the science our oceans entail. I was also inspired to apply after hearing the stories from two Teacher at Sea Alumni Jennifer Goldner and Kaci Heins, who I met at Advanced Space Camp and now call dear friends.

Experimenting in microgravity with Kaci Heins photo from NASA
Experimenting in microgravity with Kaci Heins photo from NASA
Janelle Harr-er-Wilson on the water in Florida as a child
Me as a child in Florida

I grew up on the west coast of Florida near the Gulf of Mexico. Just two miles from my house was a tiny commercial fishing village, Cortez. My childhood best friend lived in Cortez, so I spent many days running up and down the docks and sampling the fresh caught seafood. (Fresh smoked mullet was my absolute favorite!) This gave me a unique look at the importance of fishing to a community. I even had a chance to go out on a small boat with a commercial fisherman and a few of my friends one night and catch fish via nets. So even though space has always been my passion, I feel a connection to the ocean as well.

Teacher at Sea goodies
Teacher at Sea goodies

My cruise is on the Henry B. Bigelow, a NOAA ship outfitted for fisheries research. You can take a virtual tour of the Henry B. Bigelow including the science labs, and track the ship here.

I am part of Leg II of the Autumn Bottom Trawl. We will be taking samples of fish and other species of marine animals from the Mid-Atlantic to Southern New England to measure the abundance, health, and age of certain fish species. As part of the science team, I will work a twelve hour shift everyday – either from noon to midnight (day shift) or from midnight to noon (nigh shift). I will find out my assigned shift when I arrive to the ship.

Right now I am working on getting everything I need ready and thinking about packing. Since space on the ship is very valuable, I am trying to pack as lightly as possible. Some of the things I plan to bring with me are earplugs (I hear the engines are loud so it’s good to have these while sleeping), anti-nausea aids so I don’t get seasick, and cameras to document my trip. A couple of weeks ago, I received this cool package of items from the Teacher at Sea program. I’ll definitely be bringing the water bottle, shirt, and hat with me. The good thing is there are laundry facilities on board, so I don’t have to pack too many outfits. I also plan to bring a companion along with me. At my school, we are the Lanier Longhorns, so I will be bringing one of the plush longhorns along with me for this adventure. My question for you is which one? Toro or Tyson? You get to decide!

Who should join me at sea: Toro or Tyson?
Who should join me at sea: Toro or Tyson?

 

At Lanier, our motto is Learn.Lead.Succeed. I cannot wait to learn new things on this trip and share them all with you! What things to you hope I will learn and share with you? Please leave your ideas in the comments. Until next time!

Laura Guertin: TJ at the Connecticut Maritime Heritage Festival, September 15, 2014

NOAA Teacher at Sea
Laura Guertin
Onboard NOAA Ship Thomas Jefferson
September 2 – September 19, 2014

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic Ocean
Date: September 15, 2014
Location of ship (at Fort Trumbull Coast Guard pier): 41o 20.698′ N, 72o 05.432’W

There is no Science and Technology Log for this blog post, as the ship made a detour for a special event – the Connecticut Maritime Heritage Festival in New London, CT. This annual festival was happening for its second year, and the organizers asked NOAA if they would have a ship in the area to participate. Fortunately for them (and for NOAA), we were able to have our ship docked for the weekend activities but still send out our launch (HSL 3101) to continue with the hydrographic surveys.

The weekend had quite a schedule of events for the fan of maritime history. Connecticut TV stations Channel 3 and Channel 8 came and recorded a promo of the event (you can see a brief interview with my Commanding Officer in the Channel 3 video!). On Thursday evening, myself and others from the ship went and listened to sea shanty singing (you can listen to examples of sea shanties on the Smithsonian Folkways website). The evening concluded with a screening of a film titled Connecticut & The Sea, a look at how Connecticut’s identity has been shaped by its maritime heritage.

On Friday, there was an official welcoming ceremony for the festival with Lt. Governor Wyman, Senator Blumenthal, the mayor of New London, Mayor Finizio, and other state officials. There were many speeches, including a reading of a proclamation from last year that annually establishes the second week of September as the Connecticut Maritime History and Heritage Week.  I was pleased to hear that this annual celebration has a strong education mission written in the proclamation, focusing on using schooners as learning tools for youth. Senator Blumenthal specifically mentioned that, “more importantly than the money going in to this [festival] will be what people will learn, especially about our heritage. We are rooted in the sea.” I also learned about a maritime heritage history guide being developed for elementary grades in Connecticut, and another social studies and science guide for middle/high school students on maritime history, transportation, and maritime technology. Sounds like fun topics to teach, and so relevant to students and their geographic location.

Then, we started with ship tours! For two hours, we allowed visitors to come on board for a guided 15-minute tour of the Thomas Jefferson. Below are images of what the visitors were shown.  Images from other areas, such as the mess deck and lounge, can be viewed at my Life on the Thomas Jefferson post.

This slideshow requires JavaScript.

Friday evening was the lighted boat parade, with the judges coming on board our ship to view and judge the boats that went by. (Personal commentary… UConn Avery Point – your boat should have won! Any boat with a college mascot on it is a winner in my book!)

UCONN - Avery Point R/V
The UCONN – Avery Point research vessel, filled with lights for the lighted boat festival!

On Saturday, we opened the ship for five hours, having as many as four tour groups on board at once! It was a huge effort in coordination, but as always, I am amazed by this amazing team on the Thomas Jefferson that was able to educate visitors on NOAA, its mission, and hydrographic surveying. The comments when the people came off the ship were so positive and wonderful to hear, and the smiles on the kids’ faces really summed up their experience.

We were pretty much all exhausted on Saturday evening – after all, we hosted 514 visitors on board during the festival! But there was little time to sit back and relax, as we had to be ready to set off our launch at 0800 and pull out of City Pier by 0900 the next morning.

Tour line for TJ
The line was long at times, but as many visitors told us, the tour was well worth the wait!

Personal Log

As an educator heavily involved in outreach, I was thrilled to be able to participate as a NOAA Teacher at Sea in this event. I proudly wore my TAS t-shirt and hat, and when I went over to the Education Exhibits at the festival, I was able to speak to some educators about this NOAA program and the wonderful opportunity it offers. I can’t wait to continue sharing my TAS experiences after this cruise, with my students, other K-12 teachers I work with, and the general public.

And it was fascinating for me to see everything involved in getting ready for the ship’s participation in the festival. The crew worked incredibly hard for several days, generating the posters for displays, cleaning the ship from top to bottom, and painting everything from the handrails to the decks. While at dock, we “dressed the ship” with signal flags – we looked good!

Another personal note is the delight I had being able to reconnect with my Connecticut roots!  I grew up in Plainville, CT, and we made several trips down to Mystic to visit Mystic Seaport and the Mystic Aquarium.  It was interesting to see this pride in Connecticut’s maritime history extend beyond Mystic, especially in New London with the Custom House Maritime Museum and current docking location of the recreated ship Amistad.

I would have to say that the most-unexpected-yet-equally exciting part of the weekend was seeing more than one submarine heading up the Thames River towards the Naval Submarine Base in New London (at least I believe that is where they were heading!). Each submarine is escorted by three smaller U.S. Navy boats with lots of protection on board. When a submarine comes through, all boat traffic stops in the immediate area. The submarines move very slow during transit in the river, so I was able to watch them for quite some time. Even though I recently toured the U.S.S. Bowfin submarine (a WWII sub), these submarines seemed much longer and more impressive in the water!

This slideshow requires JavaScript.


OK GEOSC 040 students at Penn State Brandywine, here is your next round of questions. Please answer these TWO questions online in ANGEL in the folder “Dr. G at Sea” in the link for Post #8. Only enter responses in the boxes for Question #1 and Question #2. You can refer to the NOAA Education Strategic Plan 2009-2029 for additional background information.  I also encourage you to think back to some of the previous questions you have answered about the role and purpose of hydrographic surveying…

1)  Please read NOAA’s Education Mission below. Why was it important for NOAA to participate in the CT Maritime Heritage Festival (in the context of NOAA’s education mission)? How did the Thomas Jefferson help support this mission statement?

NOAA’s Education Mission — To advance environmental literacy and promote a diverse workforce in ocean, coastal, Great Lakes, weather, and climate sciences, encouraging stewardship and increasing informed decision making for the Nation.

2)  Please read NOAA’s Education Vision below. Why was it important for NOAA to participate in the CT Maritime Heritage Festival (in the context of NOAA’s vision)? How did the Thomas Jefferson help support this vision statement?

NOAA’s Vision — An informed society that uses a comprehensive understanding of the role of the ocean, coasts, and atmosphere in the global ecosystem to make the best social and economic decisions.


Random Ship Fact!

While NOAA Ship Thomas Jefferson does not have the historic record of the ships docked in New London this past weekend, the Thomas Jefferson has certainly made some significant contributions that will go down in this ship’s history. Here are some of the impressive activities of the TJ, beyond its day-to-day hydrographic survey activities:

  • When Hurricane Sandy hit the northeast in 2012 and New York Harbor was closed to ship traffic, the U.S. Coast Guard requested assistance from NOAA for immediate assistance with charting. It was the Thomas Jefferson that was sent in to survey the waterways. The Thomas Jefferson and her two launches charted approximately 20 square nautical miles with side scan sonar and multibeam echo sounder, mapping shipping lanes and channels, identifying numerous hazards to navigation, and locating many lost containers throughout New York Harbor and the approaches” (see NOAA PDF). In essence, it was the work of the TJ that deemed the area safe and reopened the Harbor. See NOAA’s summary Response to Hurricane Sandy and read about the Updates to the New York Harbor nautical chart.
  • The Thomas Jefferson was involved in a search and rescue of two divers on August 26, 2012. The TJ was off of Block Island conducting its hydrographic survey work, and responded to an emergency call broadcast by the U.S. Coast Guard. The crew of the TJ spotted the divers and were able to direct a Coast Guard rescue vessel to their location (see NOAA article).
  • When a plane crashed in the ocean near Key West on August 14, 2010, the Thomas Jefferson was the first on site to respond. Within five minutes, and in the dark, the TJ crew rescued the pilot from the plane (see NOAA article).
  • On June 3, 2010, the Thomas Jefferson embarked on a research mission to investigate the area around the Deepwater Horizon/BP spill site. Specifically, the TJ utilized sophisticated acoustic and water chemistry monitoring instruments to detect and map submerged oil in coastal areas and in the deep water surrounding the BP well head. See the following NOAA articles:
    • NOAA/NOS Deepwater Horizon Incident (website)
    • Initial observations from the NOAA Ship Thomas Jefferson (NOAA News)
    • NOAA Ship Thomas Jefferson Continues Deepwater Horizon Spill Study Mission (NOAA News)
    • Deepwater Horizon Response Mission Report (PDF)
  • From April-June 2004, the Thomas Jefferson conducted a joint hydrographic survey with Mexico along the approaches to the Mexican ports of Altamira and Tampico as part of a cooperative charting agreement under the International Hydrographic Organization / Meso-American-Caribbean Sea Hydrographic Commission.
  • And let’s not forget the other contributions the Thomas Jefferson has made to marine archaeological surveys (Virginia Capes Wrecks, USCS Robert J. Walker, etc.)

One final point I’ll mention is from May 2007, when the Thomas Jefferson was recognized with the U.S. Department of Commerce Bronze Medal Award “for superior federal service for mapping efforts which identified areas of shoaling and obstructions caused by Hurricanes Katrina and Rita and allowed for nautical charts to be quickly updated and used by deep draft vessels entering ports.”  This ship will certainly go down in the history books of the NOAA fleet!

TJ with flags
The NOAA Ship Thomas Jefferson, with her flags out for the Connecticut Maritime Heritage Festival

Sue Zupko, Sing it, Willie–On the Road Again, September 10, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographical Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 10, 2014

Weather Data from the Bridge
Lat 37°38’N
Lon 075°15.8W
Present Weather CL
Visibility 10 +nm
Wind 025° 10kts

Sea Level Pressure 1016.2
Sea Wave Height 3-4 ft
Temperature: Sea Water 26.6°C
Air 24.8° C

Science and Technology Log

 

We are now “on the road again” trawling. The nets were lowered at about 7:30 am. I was surprised by how small our catch has been. The scientists are not at all surprised. They said because of the time of year, many fish are in the estuaries spawning (reproducing). Today we have been on the edge of the continental shelf off the coast of Delaware and Virginia. When we get in closer, the scientists say we will have a lot more fish in our net.

It is fascinating how they are selecting sites for sampling.The sea floor needs to be fairly flat to pull a net across. We learn what the bottom is like using sonar. A multi-beam sonar on the bottom of the hull is in the center of the ship. There is also a single-beam sonar there. They serve two different purposes. The single-beam looks straight down the water column. It is like a really bright penlight. This shows what is in the water column such as fish and plankton. It also can reach greater depths since its light is stronger. The multi-beam is more like a floodlight. It spreads out over the bottom revealing all the different levels of the ground. These sonar beams bounce off the bottom and send the ship information. The crew  watches the sonar information and scouts for a good area to drop our nets. Of course, there are certain areas where samples need to be taken. They are trying to repeat a tow at the same time every year within a strata area. “So what is a strata?” I asked.

Geoff Shook, our survey technician, reads the information on the display
Geoff Shook, our survey technician, reads the information on the display

Strata lines are like lines on a topographic map on land. It is called a bathymetric map underwater. The lines on a bathymetric map are called strata lines. These are based on the different depths. The net needs to be pulled within the same strata at the same time each year. As long as a tow is within the strata the habitat is about the same. In order to get accurate population information, they must make at least two tows within a strata. Some of the strata are hundreds of square miles. Strata are the same depth range and habitat. Closer to the continental shelf, the strata are much narrower. Closer to shore, they are much wider. For example, strata 70 is 281 square nautical miles (nm). It is 55-110 m deep and is next to the shelf. However, strata 73 is closer to shore, is 2145 sq. nm, and is 27-55 m deep. Their habitats are different so random samples need to be taken within each.

So, I think of it like a chess board within a strata. If we want a random sample, we could drop a piece of soft clay from about a 1/2 m above the board. Where it hits is where we tow in that strata. Our first tow is at D5. The second piece of clay could fall on H2. So, there is where we would sample.

Then, when the ship is over top of the strata we will sample, it must find a safe area to tow which won’t tangle or break the net. You can’t get a sample with a broken net.

Notice the wires on the spools which haul the nets. On the first one the wire is tightly wrapped. On the second one the wire has a gap. This could lead it to break or more easily tangle. We are doing a deep tow tonight outside of the “normal” range of 366 m deep. However, it will not only give us new information, but will, hopefully, help rewrap the wire on the second spool so it will be tight. Have you ever tangled a loose fishing line on your reel? It is somewhat similar to that so we are trying to prevent this from happening later.

So, what have I been doing while waiting for a tow to complete? It depends. One time I told jokes with the scientists. Another I had a snack. Once I ate dinner. Right now, I’m working on my blog. Nap is not an option. I’ll explain that later.

It was a Win-Win Wednesday. We got some great fish by going deep, we explored some very deep water, the wire was rewound properly onto the spool, and we will have a shrimp fest tomorrow.

Meet the Crew

Luke Staiger, 2nd Cook
Luke Staiger, 2nd Cook

The old adage “an army runs on its stomach” holds true for a research vessel. Meet Luke Staiger, our 2nd cook. Luke is with the Bigelow on temporary assignment from the Reuben Lasker  in San Diego. NOAA members get moved around short term as needed. Luke has been with NOAA for 12 years. He has been cooking since he was a kid. His most important tool is an 8″ all purpose knife. It must be sharp and long-handled. If he could invent the perfect tool for the job, what do you suppose it would be? That’s right, a knife that is comfortable to hold all day.

Luke worked in a buffet restaurant so this is the perfect situation for him since it’s all buffet. He worked his way up to cook after doing other jobs at the restaurant. I’m looking forward to a breakfast that he prepares since cooking breakfast is his favorite.

Luke recognizes how important the work is that NOAA does. We need to preserve our resources, such as water, he says. NOAA keeps an eye on things so we don’t lose sight of what matters. When not on a boat, Luke enjoys fixing up cars, especially adding stereo systems. Luke has an easy going personality and a ready smile, making it pleasant to work with him.

How did he find NOAA? Similar to others that I have interviewed, he looked online. NOAA has good benefits, you get to travel, and the experience is good. His advice to my students is to gain lots of experience in your field, even if it’s just volunteering. You will find work if you do a good job and have a lot of experience.

Personal Log

Remember I said I won’t get a nap during my 20 minutes between tows? It is interesting how our stateroom (cabin/bedroom) works. There are four of us in our stateroom. When I leave to go to work, I cannot go back until the end of my watch. I carry everything with me so it is like the private room for two other women. Then I only have one room mate. We get the room for 12 hours. There are curtains around our beds and we wear earplugs. I hardly know that the other scientist on my watch, Lacey, is even there. All I do is check to see if her curtain is closed. That means, “I’m asleep.”

Did You Know?

Did you know that there is an anchor-cleaning device onboard the ship? It sprays salt water at 150 psi (pounds per square inch). The anchor gets pretty dirty sitting on the ocean floor when we are at anchor. They don’t want all that dirt on the ship in the anchor locker, so it gets cleaned. A clean ship is a happy ship.

Question of the Day

Why would different depths affect which fish live there?

Vocabulary Word

Sonoluminescence. This is short bursts of light from imploding bubbles in water (or in a liquid) when excited (moved around) by sound. A mantis shrimp is capable of sonoluminescence because the high speed of its front legs is capable of creating and rapidly shrinking air bubbles. The bubble looks like a spark underwater with no fire.

Something to Think About

If we don’t preserve our fisheries, which is what NOAA is researching, soon there won’t be any fish.

Challenge Yourself

We used a deep-water protocol, which is between 183 and 366 m. If you are fishing in a strata that is 200 feet deep, would you fall in the deep-water protocol?

Animals Seen Today

Here are pictures of what we saw today in our really deep water trawl.

 

 

Laura Guertin: Pre- and post-hydrographic surveys on the Thomas Jefferson, September 12, 2014

NOAA Teacher at Sea
Laura Guertin
Onboard NOAA Ship Thomas Jefferson
September 2 – September 19, 2014

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic Ocean
Date: September 12, 2014
Location of ship: 41o 21.217′ N, 72o 05.508′ W (docked at City Pier in New Haven, CT)

That's me, getting ready to handle the bow line for the HSL 3101 launch
That’s me, getting ready to handle the bow line for the HSL 3101 deployment. (photo taken by R. Bayliss)

This post will summarize some of what happens before hydrographic research vessels such as the Thomas Jefferson head out to collect data; a little more information and some history on the tools utilized to collect the data; and then where the data are used once the ship has accomplished its mission.


Science and Technology Log

You may recall in my third post that there are three questions the NOAA’s Office of Coast Survey asks and answers several years in advance to prioritize survey plans:

  • Is it considered a critical area? If so, how old are the most current survey data?
  • Have local pilots or port authorities submitted reports of shoaling, obstructions or other concerns?
  • Does the U.S. Coast Guard or other stakeholders from the maritime community (e.g., fisheries, energy, pipelines) need surveys for economic development or ecological protection?

Once the NOAA Coast Survey tells the ships in their hydrographic fleet where to survey, an initial chart is created to break down the region into pieces (termed polygons) for mapping.

Boat sheet for Long Island Sound survey (provided by T. Walsh)
Boat sheet for Long Island Sound survey (provided by T. Walsh)

Once the region is set and defined, it is now time to get the equipment ready to generate an image and/or record the depth of the ocean floor. The technology for collecting this data has certainly come a long way over time!  The image below shows the “technologies” over time. You may also want to review the History of Hydrographic Surveying and Using Lead Lines to Collect Hydrographic Data.  Remember that you can go back and visit NOAA’s site to review What is sonar? and the different hydrographic survey equipment NOAA uses, specifically side scan sonar and the multibeam echo sounder.  Remember that side scan sonar is good for getting an overview of features on the seafloor, while multibeam data are needed to obtain an absolute depth measurement at a location.

Over 50 percent of the depth information found on NOAA charts is based on hydrographic surveys conducted before 1940. Surveys conducted with lead lines or single-beam echo sounders sampled a small percentage of the ocean bottom. Due to technological constraints, hydrographers were unable to see between the sounding lines. Depending on the water depth, these lines may have been spaced at 50, 100, 200 or 400 meters. Today, as NOAA and its contractors re-survey areas and obtain full-bottom coverage, uncharted features (some that are dangers to navigation) are routinely discovered. These features were either: 1) not detected on prior surveys, 2) manmade objects, like wrecks and obstructions, that have appeared on the ocean bottom since the prior survey or 3) the result of natural changes that have occurred since the prior survey.
Over 50 percent of the depth information found on NOAA charts is based on hydrographic surveys conducted before 1940. Surveys conducted with lead lines or single-beam echo sounders sampled a small percentage of the ocean bottom. Due to technological constraints, hydrographers were unable to see between the sounding lines. Depending on the water depth, these lines may have been spaced at 50, 100, 200 or 400 meters. Today, as NOAA and its contractors re-survey areas and obtain full-bottom coverage, uncharted features (some that are dangers to navigation) are routinely discovered. These features were either: 1) not detected on prior surveys, 2) manmade objects, like wrecks and obstructions, that have appeared on the ocean bottom since the prior survey or 3) the result of natural changes that have occurred since the prior survey. (Text for this caption from NOAA Hydrographic Survey Techniques webpage)

Here is a photo of the side scan sonar device from the Thomas Jefferson launch HSL 3101.

Side scan sonar recording device being removed from the HSL 3101, as the launch was going to be surveying in shallow/rocky waters that could damage the instrument.
Side scan sonar recording device being removed from the HSL 3101, as the launch was going to be surveying in shallow/rocky waters that could damage the instrument.

Here is a photo from underside of the Thomas Jefferson of the dual-frequency projector to capture multibeam data.

This slideshow requires JavaScript.

If we go back to the map above that shows the regions to be charted, NOAA’s hydrographic crew will first run some multibeam lines to get a general overview of what to expect in terms of depth variations across the survey area.

Boat sheet with initial lines of multibeam data (provided by T. Walsh)
Boat sheet with initial lines of multibeam data (provided by T. Walsh)

Finally, the multibeam data are collected to produce a detailed map (red is for shallow depths, purple is for the deepest depths).

Initial multibeam data for a region, collected by one of the launches of the Thomas Jefferson (provided by T. Walsh)
Initial multibeam data for a region, collected by one of the launches of the Thomas Jefferson (provided by T. Walsh)

But collecting the side scan and multibeam data is just one half of the story – the other half includes knowing where you are when you collect the data.  Please listen to this important audio file from NOAA’s Diving Deeper podcast series, titled Accurate Positions: Know Your Location (from August 2012, 14:01 minutes, transcript).  If the audio player does not appear for you below, click here.


Personal Log

So we have the data collected on the water so we can add the water depths to the nautical charts.  And we have the locations where we collected that data.  But we still have a missing piece…  I have added the next part of this story to my Personal Log, as this information I can provide from my prior experiences during two summer internships while I was an undergraduate student.  The coast itself must be mapped with land surveys, aerial photographs, and remote sensing (see What is remote sensing?).  In addition to the shoreline, NOAA’s cartographers must plot any manmade structures such as docks and jetties that would be an obstruction to navigation, and any objects along the shoreline that would be visible to boaters such as radio and water towers.


Back to the Science and Technology Log

Finally, we have all the pieces to our puzzle, now it is time to put together the nautical chart!  I know I have been throwing around the term “nautical chart,” but let’s make sure you have this in your vocabulary. Please listen to this audio file from NOAA’s podcast series Diving Deeper, titled What is a Nautical Chart? (from March 2009, 15:04 minutes, transcript).  If the audio player does not appear for you below, click here.

Wondering how long it takes to create a nautical chart?  View NOAA’s page on The time needed to make a new nautical chart depends on how many pieces of the puzzle are in the box.


OK GEOSC 040 students at Penn State Brandywine, here is your next round of questions.  Please answer these questions online in ANGEL in the folder “Dr. G at Sea” in the link for Post #7.

  1. Why might hydrographers use side scan sonar rather than multibeam echo sounding?  Give two examples.
  2. For oceanographers, especially for a hydrographic survey, why is it important to get accurate positions while collecting survey data?
  3. How and why are nautical charts updated?

Random Ship Fact!

The NOAA Ship Thomas Jefferson started its life as the US Naval Ship Littlehales.  From January 1992 to January 2003, the Littlehales recorded 85,018 hydrographic survey miles along the coast of Africa and in the Red Sea and Mediterranean Sea.  The Littlehales even assisted local authorities in halting a piracy incident against another ship at a West African port in 2001 (see article).  At the end of her Navy career, the number of survey operations personnel reached 660.  The Littlehales ended its time with the Navy but then became the Thomas Jefferson and officially entered the NOAA fleet on July 8, 2003 (see article).  It is pretty amazing to be on a ship that has traveled and contributed so much to ocean navigation and safety.

US Navy Ship LIttlehales
US Navy Ship Littlehales. (image from Navsource)
NOAA Ship Thomas Jefferson (image from NOAA)
NOAA Ship Thomas Jefferson (image from NOAA)

Laura Guertin: Life on the Thomas Jefferson, September 11, 2014

NOAA Teacher at Sea
Laura Guertin
Onboard NOAA Ship Thomas Jefferson
September 2 – September 19, 2014

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic Ocean
Date: September 11, 2014
Location of ship: 41o 20.698′ N, 72o 05.432′ W (docked at US Coast Guard Station at Fort Trumbull State Park, CT)

During the first week of classes, one of my students said, “I’d like to learn about life on a ship.” Now that I have been on the ship for 11 days, let’s see if I can attempt to capture “life on a ship” in this post.


Science and Technology Log

First Aid on the Thomas Jefferson
The bag on the door of the First Aid station has handy items, such as meclizine (motion sickness medication!)

I don’t know if there is a “science” to living and working on a ship. During this leg of the cruise, we have 35 people on board – a captive (or captured?) audience that has to function professionally and socially. You learned in my second post that the NOAA ships have NOAA Corps Officers and wage mariners on board, supplemented with occasional scientists and guests such as myself. Everyone on board the Thomas Jefferson falls in to one of the following categories: wardroom (NOAA Corps Officers), engineering officers, engineering and deck crew, steward department, electronic technician, survey technician, and scientists/guests. Several people are also trained as medical technicians, and everyone is certified in First Aid and CPR. The shifts that people work vary, from 4 hours on to 8 hours off for watch, to working all day or spending all evening processing hydrographic data collected earlier that day. When we are “at sea,” we are working every day of the week – no weekends off. Needless to say, there is always work to be done on the ship!

Each day, we follow a Plan of the Day (POD) that is distributed the prior afternoon. Below is the POD from Sunday, September 7.

0000 Ship anchored at Gardiners Bay
0600 Start M/E
0700 Haul anchor
0730 Safety briefing HSL 3101
0800 Deploy HSL 3101
~0900 Docking stations
~0915 Moored in New London, CT
1230 All hands meeting – Mess Deck
~1400 Depart New London, CT
~1600 Ship anchored Gardiners Bay
1730 Recover HSL 3101
2400 Ship anchored Gardiners Bay

We never have this detailed of a schedule more than 24 hours in advance – and even during the day, the schedule may change. This is very different for me. I come from a world where in August, I have to make out a syllabus that has every lecture topic and every assignment through December. Not knowing what the ship is doing more than a day in advance is certainly a different way of keeping a schedule, but appropriate for how a ship operates.


Personal Log

Time to address the topics I know my students are most interested in – eating and sleeping!

There are three people on board dedicated to providing our meals (we don’t cook for ourselves on the ship). Breakfast is served from 0700 to 0800, lunch is from 1130 to 1230, and dinner starts at 1630 (notice all times are reported on 24 hour clock, otherwise referred to as military time). If you cannot get to a meal because you are on watch or will be sleeping, you can request that a plate be put together and stored in the refrigerator for you to grab and heat up later. Those going out on the launch for the day can also get a lunch packed to bring out with them during their surveying. Breakfast always includes eggs any way you want them, pancakes, sausage/bacon, cereal, fresh fruit, and the occasional special foods like biscuits and gravy. Lunch ranges from grilled cheese and tomato to corn dogs (burger and taco days seem to be a group favorite), with soup and a salad bar every day. Dinner has had a wide range of options, from roasted duck to lamb chops, to roast beef to curry chicken. There are always vegetarian options, such as eggplant parmesan and vegetable lo mein. Desserts are provided every day, as well as snacks ranging from the healthy to the unhealthy. And did I mention the never-ending supply of ice cream bars and half-gallons available 24/7? There’s even a vending machine on board for soda and snack foods.

This slideshow requires JavaScript.

For sleeping arrangements, most people on board share a stateroom. Think of a stateroom as a dorm room – it has bunk beds, a closet and dresser for each person. The room also has a sink, a small refrigerator for food, and a TV connected to DirecTV. Each room shares a bathroom with the room next to it, which has only a toilet and shower. Fortunately, with everyone working at different times, showering has not been a problem (except for standing up in it when the ship is moving!). For privacy while you are sleeping, there is a thick curtain that you can pull across your bed. The curtain does an excellent job keeping the light out of your sleeping area, but if you are one that likes to read in bed at night, each bunk also has a reading light and outlet. Besides sleeping and going in to grab warmer clothing when the wind kicks up and/or the temperature drops when we are on the water, I have spent very little time in my room. I’m sharing the stateroom with ENS Diane Perry, who has been an excellent mentor and friend during my time here.

This slideshow requires JavaScript.

When crew members get some down time, there are a range of activities to do – reading, watching TV, exercise, laundry, or just going outside on deck to enjoy the view and watch the beautiful sunsets in the evenings. Time on the internet is limited, and I have not seen anyone “surf the web” or spend time on social media on the two public computers in the lounge. The internet connectivity we have is primarily used by the hydrography lab so they can access current tide tables and other data needed for data gathering and processing (which is why the postings on this blog are rather choppy – when we get close enough to land for me to use my cell phone as an internet hub, I take advantage of the connection time!).

This slideshow requires JavaScript.

I admire how hard everyone on this ship works, and I also enjoy how much they laugh! The ship’s lounge has been a popular place to gather for watching movies and football games, and everyone on the ship swaps stories with one another, from the NOAA Corps officers to the deck crew to the technicians. You might think that everyone would want to “get away” from each other and have some space and time to themselves at the end of the day, but instead, I see a close group of colleagues not only working but living together as a tight-knit group. I don’t know if this crew is quite ready to match the JOIDES Resolution Exp. 351 flash mob, but I bet they would be tough competitors!

In the end, what I thought would be most informative would be to ask the crew themselves about life at sea. I asked as many crew members as I could to provide me three words to describe life at sea. Below is the collection of words I received, listed in alphabetical order. The numbers next to the words indicate how many people said that particular word.

Adventure (3), astounding, beautiful, boring, busy (2), challenging (3), close, close-knit, coffee, communal, community, computers, dedication, desolation, draining, ever-changing (2), exciting (2), exigent, exhausting, experience, family, fatigue, food, fun (2), funhouse, goals, isolated, lonely, new, non-routine, relaxing (2), rewarding, sacrifice, self-gratifying, shipmates, skill, sleeping, standing, stressful, sunsets, travel, unique, watch, unpredictable

Other multi-word phrases people volunteered worth sharing include “strange sleeping habits,” “limited privacy,” “look out the window,” and “no bill collectors.”

That's me, getting ready for us to drop anchor in Gardiners Bay at sunset
That’s me, getting ready for us to drop anchor in Gardiners Bay at sunset.  I think you can see why “sunsets” made the list of “life at sea”! (photo taken by R. Bayliss)

OK GEOSC 040 students at Penn State Brandywine, here are just TWO QUESTIONS for this post! Please answer these questions online in ANGEL in the folder “Dr. G at Sea” in the link for Post #6. Note that you will see three empty response forms in ANGEL for Post #6. You only need to respond to these two questions.

  1. “Life at sea” is not part of the Ocean Literacy Principles. Please go back and read the full Ocean Literacy document, linked in ANGEL and on our course website. This front material that I did not print out and provide on paper gives more of a background about the principles and their purpose. Your question to answer… should “life at sea” be a part of the Ocean Literacy Principles? Why/why not?
  2. Whether you think “Life at Sea” should or should not be a principle, I would like you to write Ocean Literacy Principle #8 and call it “Life at Sea.”  Define what you would put in there for your subcategories and why.

Random Ship Fact!

I know I told my students in my Introduction to Oceanography course at the beginning of this semester that there was a new vocabulary they would be learning. Little did I know that there was an entire vocabulary I would be learning on the ship! I finally had to write down the terms so I could remember them and start using them correctly. For example, it is not a floor, it is a deck. It is not a hallway, it is a passage or passageway. The dining area is the mess deck, and a stairway is a ladderwell, or stairtower. A wall is a bulkhead, and a window is a porthole. And then there are the direction/location terms for the ship – port (left) and starboard (right), and the bow (forward) and stern (rear). And don’t confuse Deck 2 with Deck 02 – those are two different decks! The “main deck” is Deck 1, and the next deck up is Deck 01, then Deck 02, and then the bridge. Going down from Deck 1 is Deck 2 (with staterooms, where I am staying), and Deck 3 with the exercise room and laundry facilities. But this is just the first number you see on the door signs! There is an entire address system for the ship. My room is 2-25-1, which means it’s located on the second deck (one deck down from Deck 1), at frame 25 of the ship, on the starboard side.  The first number is the deck, the second number indicates which frame the space is at, and the third shows which side of the ship (1 = starboard, 2 = port, 0 = midship). Everything on the ship has an address, including rooms, offices, stairtowers, fire stations, first aid kits, smoke alarms, power panels, and lights.

Someone needs to write a dictionary for life on a ship!

This slideshow requires JavaScript.

Sue Zupko, Destination: Calibration, September 7, 2014

NOAA Teacher at Sea
Sue Zupko
Aboard NOAA Ship Henry B. Bigelow
September 7-19, 2014

Mission: Autumn Bottom Trawl Leg I
Geographic Area of Cruise: Atlantic Ocean from Cape May, NJ to Cape Hatteras, NC
Date: September 7, 2014

Weather Data from the Bridge
Lat 41°31.3’N     Lon 071°20.8W
Present Weather PC
Visibility 10 nm
Wind 010° 9kts
Sea Level Pressure 1019.8
Sea Wave Height 1-2 ft
Temperature: Sea Water 22°C  Air 28°

Science and Technology Log

Flexibility is the key. Our sail date was changed several times due to mechanical issues. I’m ok with that. It beats getting out in the middle of the ocean and not having things work properly. We weren’t sure exactly when the Bigelow would sail as of Thursday, but were pretty sure it would be today at 10:00 am. NOAA had me fly out to get onboard.

Arrival at airport
Arrival at airport

 

What a blessing that was. I was able to get acclimated (used to) to the ship, meet some crew members, and organize my belongings.

Mrs. Zupko beside the Henry B. Bigelow.
Mrs. Zupko beside the Henry B. Bigelow.

That is a big deal since when docked, nothing is moving. Once we got underway, the ship rocks and rolls. Pencils loose in a drawer aren’t a good idea. Where to store the flashlight? Can I find my necklace in the morning? It’s about routine. The locker (my closet) is noisy to open and close and must be kept closed when underway. Try not to forget things since you have to open that door again–and you have to hold the door since it swings and will bang. Someone is always sleeping. Right now my roommate is sleeping so I am thankful I have a quiet keyboard. She has earplugs in and told me I wouldn’t bother her. I also got to pick my berth (bed), which is on the bottom. There will be four of us in the room when everyone arrives tonight–all scientists.

So far I have had no “duties” other than blogging. When we start trawling, I will work noon-midnight. One of the scientists on my watch, Nicole, gave me a tour today and explained what I will be doing. My foul weather gear consists of heavy orange bib coveralls, a heavy yellow jacket with super long sleeves, and big rubber boots which come up to my knees. I brought inserts to go in the boots since I’ll be standing–a lot. Bought some new shoes that are slip-ons so I can get out of my foul weather gear as soon as we are done processing the fish. I learned that we probably will have over 100 trawls on this leg of the Autumn Trawl Survey and we will climb in and out of our gear often.

Let me explain a bit about how things will happen. Over the ship’s intercom, which will be heard everywhere except our staterooms, the galley, and the lounge, there is a (Bing….Bong….) “Attention on the Bigelow. Streaming….” This means the nets are being let out and will be at the bottom about 20 minutes. What can I do for 20 minutes? Help me out and vote on my poll.

The blue trawl doors on the deck will be added to the net.
The blue trawl doors on the deck will be added to the net.

As the net is let out, blue “trawl doors” attached to the net sink to the bottom, holding the net down and keeping the mouth of the net open. Now, the amount of time it takes to bring the net up varies. The net could have been 24 m down or 350 m down. When they start bringing in the net, the NOAA crew will make an announcement (Bing….Bong….)”Haul back.” They will show me how to find the depth on the equipment so I will be able to judge when to be ready. When the net comes up, the fish will be dumped on a table called a checker. If there are too many, they get dumped on the deck (called a deck tow). I hope it fits in the checker since it will be less work. Imagine picking up all those fish from the deck and putting them in containers.

Once in the checker, they will be fed to a conveyor belt which takes them into the wet lab for processing. We will sort the critters and organic “trash” into buckets by species. (I cringed at the word trash being used for wonderful creatures such as sponges and corals. However, Nicole explained that these are just not our main animals of interest. It is similar to weeds. A weed is any plant you don’t want in a specific flower bed. I love wildflowers, but they don’t always work well in my garden.)

The person in charge (called the “watch” chief) will weigh and label the fish and send the container on. Some fish will be selected for extra information. Others will be released into the sea. Animals that we keep will be for further research.

The work we are doing is very important to monitor the ocean’s health. Health to the ocean, means health to us. If the ocean isn’t healthy, we had better find out why and correct it. It’s like a nurse takes your temperature and looks at your symptoms when you are sick. We are the nurses checking on the sea. Others will analyze the symptoms and come up with a plan to correct any problems. I will give more information on our work later.

Meet the NOAA Crew

Ensign Erick Estela Gomez is originally from Puerto Rico. Most of my dealings when I boarded the ship were with him since he was the OOD, Officer of the Deck, for the weekend. In between his filling in reports and checking on the ship’s systems, we had a chance to talk. He is very personable and has a brilliant smile. Maybe his smile is infectious since he just got engaged to be married and is very happy. Added to his many abilities, he speaks four languages. He explained that he received an Environmental Science degree from the University of Puerto Rico. Most NOAA officers have a science or engineering degree or 60 credit hours in math and science. I need to check my records and see if I have that much. Maybe I could be a NOAA Corps officer.

Ensign Estela’s favorite part of his job is steering the ship. I enjoyed doing that when aboard the Pisces. It is a challenge. While he was off doing a chore, I sat in one of the two tall chairs on the bridge (operations center of ship). When he was done, he explained, very politely, that it is ship’s custom that no one except the captain sit in those chairs. He has been an ensign 1.5 years and said he will not sit in one of those as a sign of respect until he has earned it himself by being appointed to be a captain of a ship. I guess I always figured it was like Captain Kirk leaving Scotty or Spock in charge and they would sit in his chair to give orders. But, Ensign Estela has a lot of respect for earning one’s rank and will sit there when appropriate. So, no cool chair for me on the bridge now.

Ensign Estela paused to really consider what tool he couldn’t live without when doing his job since he uses a lot of important tools. He decided on radar. It can be very foggy and this tool helps avoid collisions (crashes). If he invented a tool, it would be a fog-clearing machine to be able to see smaller vessels (boats) or obstructions.

There are collateral (other) duties for him. He is responsible for inventorying all the equipment on board. Every computer. Every pillow. He also needs to make sure things are in working order. If boots wear out, he needs to order more. That means managing a lot of paper so he needs organization skills. His main duty, however, is navigation officer. He checks the tides and currents and posts all that information on a white board on the bridge. Maintaining charts, ship’s routes, and flags indicating our status are part of his job.  I enjoyed learning a bit more from Ensign Estela on plotting the course using triangles. Triangles provide a nice straight edge.

His advice to my students, and any young person, is to keep up your math and science. Don’t sit in front of the TV or computer, get outside and do things. It’s obvious he does since he bicycles, fishes, and enjoys salsa dancing for relaxation. We call this Sharpening the Saw.

Personal Log

This is the ships call sign.
This is the ships call sign.

This week my students are studying how to communicate across distances on the ocean. How do ships communicate, for example? A ship might not have a radio. Flags work. There is a flag which states what country you are from. There are flags that say you have a net or a diver in the water. There are flags which tell your call sign if you want to speak by radio. There is even a flag for every letter of the alphabet. All these flags are up on the flying bridge, the highest deck on the ship.

Did You Know?

The ship usually uses true north for navigation. However, if that system fails, it uses magnetic north. North is 0°. That is like 90° on a coordinate grid. That is a bit confusing. We use degrees on maps all the time. Just remember that 0°N is used for navigation and wind direction.

Question of the Day 

Something to Think About

A tradition on board a ship is to remove one’s hat in the mess hall (dining area) and to not wear foul weather gear there. The mess hall was used during war as the hospital. People died on those tables and it is a sign of respect to remove one’s hat. Hats are often used to show respect. People remove their hats at a ball game to sing the national anthem. Men tip their hats to acknowledge a woman’s presence. People remove their hats in eating establishments. It is good to learn a country’s or culture’s (such as a ship) customs so as not to offend someone. That is also a sign of respect. When visiting churches while a tourist in Russia, I covered my head and wore a skirt, as is their custom. On board ship, once I leave my room for my watch, I shouldn’t return until my watch is over. That means carrying my computer, cameras, notes, jacket, phone, cup, water bottle, etc. with me so I don’t disturb those asleep. It’s just like being quiet in the halls at school. Guess what? They don’t want us talking in these halls either since someone is always sleeping. It is rude to disturb others, whether it be their sleep or learning.

Cassie Kautzer: Reflections… September 7, 2014

NOAA Teacher at Sea
Cassie Kautzer
Aboard NOAA Ship Rainier
August 16 – September 5, 2014

Mission: Spread the word about NOAA’s Mission and Vision to the next generation of scientists!
Geographical Area: Monitor Elementary – Springdale, AR
Date: September 7, 2014

Temperature & Weather: 80° F, Mostly Sunny  (Maybe the coolest day Arkansas has had in weeks!)

Science & Technology Log

In college, Professor Susan Foster, taught me about being a lifelong learner.  I had heard this term before – but never took to heart what it meant.  She talked about my learning inspiring my students learning.  She made me think about how I got my students attention, and planning where I wanted that attention to go.  I am a LIFE LONG LEARNER, and my biggest hope would be to inspire the same yearn for learning in my students!

I want my students to be as excited and enthralled by this experience as I was.  They were the forethought in all of my blogs: what would interest them? What would make an impact? What would create more inquiries and questions?

Monitor Mallard at the helm - driving the ship and inspiring the students of his school to think of a career at sea.
Monitor Mallard at the helm – driving the ship and inspiring the students of his school to think of a career at sea.

I know that I have learned a lot more about NOAA and their goals and responsibilities as sea!  The Teacher at Sea Program, in particular, aims to support NOAA related environmental literacy, outreach, and educational initiatives.   The TAS program also wants to support workforce retention within NOAA, and has a goal to recruit and retain a highly adaptable, technically competent and diverse workforce.

My personal goals from experiences aboard Rainier are to inspire students to want to learn more about SCIENCE!!!  Specifically, I want to interest them more in: the Ocean, Marine Ecosystems, Technology, Hydrography, or NOAA and NOAA Corps.  My students will not be limited by the location in which they live.  I want them to see the ample opportunities available if their interests lie in marine life: NOAA Corps, Engineering, Vessel Assisting, Hydrography (Oceanography, Geography, Geology, GIS, etc), Food Sciences, Technology, etc.

My experiences working and living with the crew of NOAA ship Rainier have inspired me to “spread the word”.

I would like to thank:

  • CO EJ Van Den Ameele, XO Holly Jablonski, and all the NOAA Corps Officers for making me feel welcome and guiding me through my adventure.
  • The Survey Techs for answering my never ending questions about hydrography, the necessary computer technology, and the constant processing of data.
  • The Engineers for keeping the ship going while I was living aboard J, asking questions about my students (the next generation of engineers!), and trying to help me understand the innerworkings of the ship.
  • The Coxwains for bravely attempting to (safely) teach me a little bit about driving a boat, and keeping me apprised of wildlife sightings in the area.
  • The Vessel Assistants, Stewards, and all other crew for being friendly, making me feel welcome, keeping me well fed, keeping me safe, and letting me/ showing me how to help throughout our time at sea.

Personal Log

I write this last entry, as the first, from my couch in Northwest Arkansas – this time, with a whole new perspective.

My puppy, Bella, attacks her new Kodiak Bear as I reflect on my time in and around Kodiak, aboard the Rainier.
My puppy, Bella, attacks her new Kodiak Bear as I reflect on my time in and around Kodiak, aboard the Rainier.

Almost three and a half weeks ago, I boarded an airplane (three actually) from Northwest Arkansas to Kodiak, Alaska.  As I was stepping aboard the NOAA ship Rainier, 112 ten-year-olds were preparing to step into my science classroom for the first time.  What were they feeling?  What were they thinking?  I felt much like I expect new students do on the first day of school, and wondered the same types of questions: Would people be nice to me?  Who would I sit by?  Would I be smart enough?  Would I miss my home and my family?  Would I make friends?  Would I UNDERSTAND?

That last question is the one that almost bit me… because the first few days aboard the Rainier, it was as if everyone was speaking a foreign language.  Everyone was speaking English, of course, but it was the language of Science… the language of NOAA… the language of Ships… the language of the Sea!  There were acronyms, abbreviations, and generally dissimilar words from my usual daily vernacular.  Suddenly rack means bed, mess means cafeteria, port means left, aft means back, FOO is the Field Operations Officer, DTON is a Danger to Navigation, C-deck somehow describes the location of my room, and the man in charge is “CDR EJ Van Den Ameele – Commanding Officer” – so I should address him as…??? I had NO Idea!  All the while, inside my head I am wondering “What am I supposed to be doing right now?”

After a day or two all of my nerves began to ease, as I began to figure things out.  I also found that asking a quick question would often get me not only the information I needed, but the introduction to a new person.  And I say all I did above, not because the Rainier and its crew didn’t take good care of me: they took excellent care of me!  They introduced me all around, they gave me tours, gave me several days on each assignment, talked me through things, checked on me, fed me really well, and answered, answered, and re-answered all of my questions!

However, I say all I did above because of my students.  It is not often I get the chance to walk in their shoes.  As their teacher, I feel like I know them- and understand them- because I have been teaching for years, have had many of their siblings, and of course, once went to elementary school myself.  I never walked in their shoes though.  I never experienced everyone speaking to me in a language I am not very familiar with.  I never experienced an organizational (family) structure I was not familiar with.   I never had so many tools and systems of information that I didn’t know what to do with.  My biggest take away from this experience is UNDERSTANDING – the understanding that I do not truly understand what each student feels when they are: new to the school or class, don’t speak any of the language, haven’t been to a school like Monitor or a district like Springdale before.  It is with this realization that I will approach my students tomorrow – with an even more open heart and mind, more patience, and more tools and strategies in my belt – just in case I need them!

My homeroom students, "bubbling" over with excitement  (I hope)!  I can't wait to meet them tomorrow - and only hope they are as inspired by me as I am by them!
My homeroom students, “bubbling” over with excitement (I hope)! I can’t wait to meet them tomorrow – and only hope they are as inspired by me as I am by them and their questions/comments/emails throughout my journey.

Laura Guertin: The launches of the Thomas Jefferson, September 8, 2014

NOAA Teacher at Sea
Laura Guertin
Onboard NOAA Ship Thomas Jefferson
September 2 – September 19, 2014

Mission: Hydrographic Survey
Geographical area of cruise: North Atlantic Ocean
Date: September 8, 2014
Location of ship: 41o 07.936′ N  72o 11.011′ W

 

During the first week of the semester, one of my students asked what types of ships do oceanographic research. Here is a little more information on the types of ships we are using during this hydrographic survey. Remember that you can always revisit the websites for An Overview – Hydrographic surveying and Hydrographic survey equipment for more detailed information.

 


 

Science and Technology Log

The Thomas Jefferson is an impressive hydrographic research vessel that is out on the water capturing data for its surveys from March to November each year, but it cannot do the job alone. The ship has two smaller types of boats that it carries on board to help with the survey work.  Not only was I able to see these boats in action, but Chief Boatswain (or bosun) Bernard Pooser provided me with copies of the NOAA Small Boat Program Annual Evaluation Checklist to learn facts down to the smallest details of these important ships.  These boats are inspected annually.

 

Fast Rescue Boat
The Thomas Jefferson’s fast rescue boat (FRB)

FRB – Fast Rescue Boat

The fast rescue boat is used for rescue if we ever have to address a man overboard situation. It is also used if someone needs to be brought from ship to shore, or vice-versa. The boat can accommodate three crew, five passengers, and one stretcher. The boat is not used for surveying but plays an important role in the overall operations during our time at sea. The boat itself is 22 feet in length, has a 9 foot beam, and a draft of 14 inches. Its NOAA Hull ID number is 2204 (yes, the first two numbers in the Hull ID are the same as the length of the boat). The hull material is glass reinforced plastic/polyurethane.

Check out this video of the fast rescue boat being raised out of the water from the starboard side of the Thomas Jefferson.

Video of the fast rescue boat in use on the NOAA Ship Thomas Jefferson on September 4, 2014 (recorded by L. Guertin)

 

The TJ's launch HSL 3101
The TJ’s launch HSL 3101

HSL 3101 – “The Launch”

A ship needs a certain amount of water in order to float and not touch the ocean floor. This water depth is called the ship’s “draft” (learn more at NOAA’s An Inch of Water: What’s It Worth?).  The Thomas Jefferson has a draft of 14 feet, but is obligated to survey to 12 feet of water depth. And with the survey instrumentation (side scan and multibeam sonars) mounted on the bottom of the Thomas Jefferson, this ship cannot navigate in very shallow waters to collect the hydrographic data required for surveys. In comes… the launch! The launch is a smaller vessel than the TJ, only 31 feet in length, with a 10 foot beam and draft of 4 feet 8 inches.  The NOAA Hull ID number is HSL 3101, and the hull is made of aluminum.  The launch is equipped with side scan and mutibeam sonar capabilities. The TJ normally carries two launches on its deck. Unfortunately, one of the launches is currently under repair, so we have been working with just one launch during this cruise.

TJ launch, at NOAA's MOC-Atlantic
The second launch of the Thomas Jefferson, HSL 3102, at NOAA’s Marine Operations Center – Atlantic, undergoing repairs
HSL 3102 cradle on the TJ
An empty cradle on the TJ, waiting for the second launch, HSL 3102, to join the ship

The launch weighs approximately 18,000 pounds and takes a very coordinated effort to raise and lower this boat from the Thomas Jefferson. Check out this video to see how the launch is lowered in to the water with a hydraulic-powered davit.

Video of the launch boat in use on the NOAA Ship Thomas Jefferson on September 6, 2014 (recorded by L. Guertin)

When you viewed this video, did you hear those seven dings that occurred periodically?  We were at anchor with limited visibility (a very foggy morning, as you saw when the launch pulled away), and according to the International Regulations for Preventing Collisions at Sea and the Inland Navigation Rules (available online!), “A vessel at anchor shall at intervals of not more than one minute ring the bell rapidly for about 5 seconds. In a vessel of 100 meters or more in length the bell shall be sounded in the forepart of the vessel and immediately after the ringing of the bell the gong shall be sounded rapidly for about 5 seconds in the after part of the vessel.” As the TJ is 63 meters, we were sounding the bell for 5 seconds, once every minute.

The ships are required to sound a signal. The signal you hear would vary ship-to-ship, as the length of the signal upon the length of the ship. Once the fog lifted, we were able to silence the bell.

 


 

Personal Log

Although it appears like fun, being out and zipping around the ocean on these vessels, I am hoping you notice in these videos the safety precautions taken. I also want to point out one of the impacts of going out on the small vessels you don’t see in the videos – the exhaustion at the end of the day felt by the people on the vessels! Getting bounced around on top of the water in the smaller boats, and staying focused the entire time on acquiring the survey data is physically and mentally exhausting. For my first few days on the Thomas Jefferson, I experienced that same exhaustion! Although the ship’s crew doesn’t feel the motion on the TJ as much as the crew on the launches moving across the water, I certainly feel the ship moving, whether it is in transit or at anchor. Eating and showering were the biggest adjustments for me. But I got my sea legs pretty quickly – let’s hope my land legs come back when I return to the classroom!

 


 

OK GEOSC 040 students at Penn State Brandywine, here is your next round of questions. Please answer these questions online in ANGEL in the folder “Dr. G at Sea” in the link for Post #5.

  1. From the video clips above, what safety precautions did you notice by the people on deck and the people on the HSL and FRB? What other precautions before/during/after the launch of these two vessels do you think were taken that you did not see in the video?
  2. Why is it important for NOAA to collect water depth data, even in shallow water? (*hint – use information from the article linked above titled An Inch of Water: What’s it Worth?)
  3. Which Ocean Literacy Principle(s) would learning/knowing about these launches apply to, and how? (please identify with the number(s) and letter(s) of the principles you are discussing)

 


 

xxx
Comfortable chairs are important for the hours and hours spent on computers processing in the hydrography lab – but no rolling across the floor

Random Ship Fact!

Certainly, there is movement felt on each deck on of the ship when we are underway. In addition, the Thomas Jefferson “bobs” up and down on the water and can swing with the ocean current when it is at anchor, like how a seagull moves up and down with the waves that pass beneath (not as a significant of a motion, but you can visualize this). So how do we stop objects from moving around on a moving ship? Chairs with wheels are not safe, so the wheels and all chair legs are covered with… tennis balls! The tennis balls prevent the chairs from sliding and rolling across the decks of the ship. Note that in the mess deck (dining area), the tables are also attached to the floor with cement posts underneath.  The tennis balls also help prevent the floors from being scuffed.

tables and chairs
These tables and chairs aren’t going anywhere!