Marian Wagner: My Final Words and Hurricane Irene’s in Charge, August 23, 2011

NOAA Teacher at Sea
Marian Wagner
Aboard R/V Savannah
August 16 — 26, 2011

Mission: Reef Fish Survey
Geographical Area: Atlantic Ocean (Off the Georgia and Florida Coasts)
Date: Tuesday, August 23, 2011

A Fine Bunch to Live with at Sea: Front: Katie Rowe (Scientist), Sarah Goldman (Scientist Watch Chief, Night), Stephen Long (Scientist), Warren Mitchell (Lead Scientist). Middle: Marian Wagner (Teacher-at-Sea), Shelly Falk (Scientist), Christina Schobernd (Scientist, Video). Back: John Bichy (Marine Technician), Richard Huguley (Engineer), Harry Carter (2nd Mate), Raymond Sweatte (Captain), Michael Richter (1st Mate), David Berrane (Scientist Watch Chief, Day), Mike Burton (Scientist). Missing: Joel Formby (Master of the Galley)

Weather Data from the Bridge (the wheelhouse, where the controls of the ship are)

E-NE Wind at 10 knots  (This means wind is travelling 10 nautical miles per hour,
1.15 statute miles = 1 nautical mile)

Sea depth where we traveled today ranged from 33 meters to 74 meters

Seas 2-4 feet (measure of the height of the back of the waves, lower the number = calmer seas and steadier boat)

Science and Technology Log

IRENE: On Tuesday evening, we discussed the impact of Hurricane Irene on our cruise plans, and scientists and crew needed to make a decision about when we should return to dock. Originally, the plan was to return in the morning on Friday, August 26, but due to projections of Irene, they predicted that the seas would be too rough for us to lay traps beyond Wednesday (8/24).  When the seas are too rough, the traps bounce around and cameras do not pick up a steady, reliable picture.  When seas get to be 6-7 feet+ on a boat the size of the R/V Savannah (92 feet long), it also makes our work (and life) on the boat very difficult. Additionally, with Irene’s landfall projected in North Carolina, where half of the scientists live, they would need to get home in time to secure their homes and potentially evacuate.  Not in the case of Irene, but if a hurricane was expected to hit Savannah/Skidaway, where the boat moors, the ship’s crew would need to prepare for a hurricane-mooring.  To do this, they would run the ship up the Savannah River and put on a navy anchor that weighs 3,000 pounds.  Even with the use of the electric crane, it’s not an easy task to pull a 3,000 pound anchor onboard.  This would not be done unless a direct hit to the area was expected.  It has been done once before to the Savannah in the 10 years of her existence.  The forecast did not project Savannah to be affected by Irene, so we did not need to prepare for a hurricane mooring.

After difficult deliberation on Tuesday night about hurricane Irene’s potential Category (see how hurricanes are ranked here), and considering the success of the research accomplished on the trip already, scientists decided the most practical and reasonable decision was to dock Tuesday night, unpack Wednesday morning, and allow North Carolina scientists to return to their homes by Wednesday night.  (From reports I received post-Irene, there was landfall of the hurricane eye over their houses, but the storm weakened between Wednesday night and Saturday and was Category 1 when it came ashore.  None of them sustained significant loss.  Many downed trees and three days without power, but no floods or structure damage. Phew!)

NOAA’s National Weather Service is the sole official voice of the U.S. government for issuing warnings during life-threatening weather situations.  Follow Seattle’s “Weather Story” at NOAA’s National Weather Service.


Here on my final blog entry, I want to finish the story of our research process.  Here’s the story I’ve told so far, in outline form:

  1. research begins with baiting fish traps and attaching cameras, and we stand-by on deck
  2. when we arrive at a research location with reef fish habitat (as observed via depth sounder and GPS), we drop the trap to the bottom and it sits for 90 minutes; buoys float above each trap so we can find and retrieve them near where traps were deployed, we run the Conductivity, Temperature, and Depth Profiler (CTD) to get information about abiotic conditions at each sampling site. The CTD takes vertical water column profiles, measuring: Pressure, Temperature, Conductivity/Salinity, Chlorophyll fluorometer, Color dissolved organic matter fluorometer (CDOM), Photosynthetic Active Radiation (PAR), Backscatter, Dissolved oxygen, and Transmissometer -10 and 25 cm path lengths
  3. after 90 minutes have passed, we return to the traps and pick them up, and secure the fish caught
  4. we identify each fish, measure length, weight, and frequency (how many fish were      caught), and then keep the fish that our research is targeting
  5. in the wet lab, we dissect target fish, removing parts of fish that are sent back to the lab for further research

AT THIS POINT, WE ARE DONE with our research with the bodies of the fish, but we have 99% OF THE FISH’S BODY LEFT! What should we do?

I was very impressed with the compassionate and humane action the scientists do with the fish after research.  Scientific research guidelines don’t dictate what a research study should do with edible fish flesh. We could have just discarded fish back into the ocean. However, scientists see an opportunity to provide food to people in need of  nutritional support in our communities, and they coordinated with a regional food bank in Savannah to do just that. Despite the work and time it takes to process the fish for donation, it did not seem to be considered a burden at all by any of the scientists.

I am perfecting my fillet!

Fresh fish fillets ready for food bank distribution

To process the fish for donation, we cut fish into fillets, wrap the fillets in butcher paper, and freeze them onboard the ship.

When we reached land, Warren
contacted the regional food bank, who came out to the dock with a refrigerated truck to pick up fish.  Within a few days the fish was distributed through charitable organizations in the region to people who were most in need.

These scientists are not just natural scientists but social scientists too! (just as I fancy myself!)

Personal Log

Captain Raymond Sweatte and First Mate Michael Richter

Interview with Raymond Sweatte, captain of R/V Savannah

Marian: What  makes a good crew?

Raymond: A crew that sees things that need to be done and does them because they know it all goes smoother when they do.


M: Have you ever run into or had a close call running into another ship?

Raymond: No, but the closest I came was when I was passing under the bridge at the Skidaway when a barge was coming through at the same time. Because it was easier for me to maneuver, I pulled over to side to let the barge use the majority of the channel. But the barge stayed on my side of the channel and was coming right at me. My boat was leaning upon the bank so there was no where for me to go.  I got him on the horn and asked, “What’s going on?”  He pulled over right away. He was new and very apologetic. 

M: Have you ever been in a terrible storm before?

Raymond: A few times we’ve had 15-16 foot seas coming back from the Gulf. When you have a north wind at 35 knots [strong wind coming from the North] and north-going current opposing the wind, the seas get very rough. Waves were coming up over the ship. [picture Marian’s eyes VERY wide at this point in the conversation] When seas are really rough, you get lifted up out of bed and down again. I remember trying to sleep one night in rough seas when my head kept hitting against the wall, so I turned around so my feet were up hitting against the wall.

M: What were things like before radar, satellite, and so many electronic navigation tools
you use today?

Raymond: Things were not as accurate. Communication was on a single sideband, navigation was with Loran-C, though VHF radio was somewhat the same as now.  To follow ships and determine their speed we had radar on dash but we had to use an eye cup we looked into to correlate with the radar, and then go over to the chart to plot them.  Then, we did it again six minutes later and multiplied by 10 to find their speed.  Now we have an automatic identification system [we can click on a ship on the radar] that tells us where they are, who they are, where they came from, where they are going, and what they are doing.  

M: What are the right-of-ways when vessels are crossing paths; who moves when two vessels are in course to collide?

Raymond: [On ships, aircraft and piloted spacecraft] a red light is on the left or port side of the craft and a green is on the right or starboard side. When two vessels have crossing paths, each will see a red or green light. If you’re looking at another vessel’s port side you see red, and it’s his right-of-way. If you are on their starboard side, you see the green light, and the right is yours.

Also, right-of-way rules give priority to vessels with the most difficulty maneuvering. The ranks in right-of-way, starting with the highest are:

1)Not under command

2)Restricted in ability to maneuver

3)Constrained by draft (stay away from shallower water to avoid running aground)




7)Sea Plane

Remember this mnemonic: New Reels Catch Fish So Purchase Some.

M: Who’s easier to talk to, a Navy Sub Captain or a Coast Guard Helicopter Pilot?

Raymond: I don’t have a problem talking with any of them. Coast Guard generally would call you first. Navy sub pilots I’ve found to be very cordial. They have changed their course when we had traps out.

M: What message would you say to students interested in being a captain?

Raymond: All kids have to follow their own heart. If they like water and this environment, they should follow their heart and become a captain.

Thank you Captain Raymond! It was a genuine pleasure to talk to you and experience life at sea under your command and with such a stellar crew. It is no wonder you are revered by everyone you work with.  Read more about Captain Raymond Sweatte in the Savannah Morning News!

The powerful significance of this trip for me was that I did not just study a science lesson from a book or lab, but I was essentially given a chance to live a different life, that of a fisheries field biologist.  I did not dabble in the work; it was a full explosion into the curiosities, reasonings, and daily routines of working with live fish and fish guts while sharing friendship, humor and stories with scientists and crew aboard a boat that was a small bounded island of rich human culture within a vast ocean of life and scientific questions waiting to be answered.  I loved it.  If only I didn’t love teaching more…I could definitely live that life.  Thanks NOAA, thanks NC SEFIS folks, thanks SC DNR folks, and thanks Skidaway Institute of Oceanography folks.  You are all in my heart and in my classroom!


Flying fish!

At night especially, when looking out at the seascape, I noticed flying, bug-looking specimens scurrying out of and into the ocean’s surface.  WHAT WERE THEY?! I wondered. So I asked and learned they were FLYING FISH! A few of them flew right up on the vessel’s work deck.  Their wings are modifications of the pectoral fins.  They are so fascinating and their coloring was greenish/blue iridescence, a stunningly beautiful color!


“The Gulf and South Atlantic red snapper populations are currently at very low levels (overfished), and both red snapper populations are being harvested at too high a rate (overfishing).” See more where this quote came from at Fish Watch: US Seafood Facts.

It was clear to me how significant the concern for the red snapper population was when I learned that funding for this fisheries survey was drastically increased following the recent determination that red snapper were overfished and overfishing was occurring.  Fisheries managers, field biologists and members of the general public all want to see the red snapper population improve.  This cruise provided scientific data that will be useful when the status of the U.S. South Atlantic red snapper population is assessed again.

The lionfish's spines are so poisonous the only way to hold them is placing fingers in their mouths.

History of measuring speed in NAUTICAL MILES:

Wonder how a vessel’s speed was measured hundreds of years ago? Log Lines, knotted ropes with a log tied to one end and knots every nautical mile and one-tenth of a nautical mile, were tossed off the end of the ship while the knotted rope unraveled behind it. When the sand on a minute sand glass ran out, the rope was reeled back in and the knots counted to determine ship’s speed in knots-per-minute.


In its native waters of the Indian and Pacific Oceans, the lionfish population is not a problem. There it has natural predators and natural parasites to keep it from overpopulating, yet it can survive well enough to maintain a healthy sustainable population. However, in the Caribbean waters and along the Eastern Coast of the United States, the lionfish has recently been introduced, and the effects are alarming. “Lionfish have the potential to become the most disastrous marine invasion in history by drastically reducing the abundance of coral reef fishes and leaving behind a devastated ecosystem.”  See more where this quote came from at NOAA’s research on invasive lionfish here. In the U.S. south Atlantic, they consume large quantities of reef fish and have no natural predators or parasites. Their population is thriving in large numbers, and it is devastating other fish species.  Mark Hixon, Oregon State University zoology professor, co-authored a study in 2008 with Mark Albins that showed “a lionfish can kill three-quarters of a reef’s fish population in just five weeks.” Read NPR story here. This is a cool way to view an environmental problem: see this animated map of the lionfish invasion! Red Snapper

Kaci Heins: Shoreline Verification and Auroras, September 27-29, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Heading Back to the Rainier After Shoreline Verification

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Thursday, September 29, 2011

Weather Data from the Bridge

Clouds: Overcast/Drizzle/Rain
Visibility: 2 Nautical Miles
Wind: 15 knots
Dry Bulb: 8.2 degrees Celsius
Barometer: 1001.1 millibars
Latitude: 55.42 degrees North
Longitude: -133.45 degrees West

Science and Technology

Waterfall on Shore

When we are out on a launch acquiring data there are so many beautiful shorelines to see.  From far away they look inviting, but in reality there are usually numerous boat hazards lurking below or on the shoreline.  I have written a lot about the hydrographic survey aspect of this mission and how it is important to ships so that they can navigate safely.

However, when we are out on a survey launch the first priority is safety of the crew, the boat, and the technology.  This means that we normally do not go anywhere that is shallower than about eight meters.   Consequently, this leaves areas near the shore that is not surveyed and leaves holes in the chart data.  This is where shoreline verification comes in using single beam sonar.  However, since the launch with the single beam is not operational at this time we have been using the multibeam instead.  The Marine Chart Division (MCD) gives the Rainier specific items that need to be identified because they are considered Dangers to Navigation,  or they need to be noted that they do not exist.  The MCD compiles a priority list of features that come from numerous sources such as cruise ships, aircraft pilots, and other boats that have noted that there may be a danger to navigation in a certain area.  Many of these charts have not been updated since they were created in the early 1900’s or never charted at all!

Before we leave the Sheet Manager and the Field Operations Officer (FOO) come up with a plan for what shoreline they want to verify for the day.  A plan must be made because there is a small window to acquire the information needed to satisfy the requests of the Marine Chart Division.  The shoreline verifications must be done at Mean Low or Low Water.  This means that it has to be done when the average low tide of each day comes around, which has been in the early morning and afternoon for us.

Shoreline 4 Meter Curve

Using the launches we head up to what is called the four meter curve.  This curve is the limit to where we can go during meal low or low water.  If we get any shallower or move closer to the shore then we will put everyone and everything in danger on the boat.  We bring with us  a camera to document the features, a clinometer, which allows us to document headings and angles, a laser range finder, charts that they can draw and note features on, and their computer software.   Once we get underway and arrive to our first rock that we have to document, the officers make sure they maintain good communication with the coxswain, or boat driver.  We make sure we circle everything in a counterclockwise motion so that he can see everything off to his starboard, or right side as we move.  We can see the rock become exposed as the waves move over it, but the tricky part is getting as close to it as possible without hitting it.  This is so we can get a precise location as possible for the chart.  Our coxswain was very experienced so we were able to get right next to it for photos, the heading, and to drop a target, or the location, in the software.

Notes Documenting Various Features

The rest of our shoreline verification was a lot less intense as we confirmed that there was a lot of kelp around the rocks, the shoreline, and specific rocks were in the correct place.  LT Gonsalves, the Hydrographer-in-Charge (HIC),  showed me how he draws some of the features on his chart and makes notes about whether the features are there or not.  I took photos and noted the photo numbers for the chart, as well as the range and height of various features.  Shoreline verification is very important for nautical charts so that ships and their passengers know exactly where dangers to navigation lie.  It takes 120 days from the final sounding for all the data to get submitted to the Hydrographic Survey Division.  From there the information gets looked over by numerous agencies until about 2 years later the updated chart is available.  This is quite a long time to wait for changes in dangers to navigation.  To be safe, the chart stays the same even if there is not a dangerous rock lurking around at mean low or low water.  It is best to just avoid the area and err on the side of caution.  There is still a lot of work to be done in Alaska that will take many, many years to complete.  However, it is thanks to hydrographic ships like the Rainier and its crew that get the job done.

Personal Log

NASA SOHO Image of Solar Wind and the Magnetic Field

Tonight was very special because we could actually see an aurora, or the northern lights,  in the night sky.  An aurora is a natural light display in the arctic and antarctic, which is caused by the collision of charged particles in the upper atmosphere.  Auroras start way back about 93 million miles (or 1 astronomical unit– AU) at the sun.  When the sun is active, usually due to coronal mass ejections, it releases energetic  particles into space with the very hot solar wind.  These particles travel very quickly over those 93 million miles until they reach the Earth’s magnetic field.   Most of these energetic particles are deflected around the Earth, but some get trapped in the magnetic field and are moved along towards the polar regions until they strike the atmosphere.  We knew there were possibilities to see an aurora while we were anchored, but usually it has been cloudy at night so we couldn’t see the stars.  However, on the 27th Officer Manda came through saying he had seen the lights.  Low and behold there was a green glow in the sky behind some clouds and a couple of times some of the energized particles made bands across the sky.  If there hadn’t been so many clouds I think it would have been even more spectacular, but I was so glad I did get to see them.  Very quickly, more clouds moved in and it was just a green glow on the horizon.  I also was able to see the milky way in all its glory and the brightest shooting star I have ever seen.  These amazing photos of the aurora were taken by Ensign Manda and I am very grateful he was willing to share.

Aurora and Shooting Star Courtesy of Ensign Manda

Aurora in Alaska Courtesy of Ensign Manda

Click HERE for a link to a neat animation of how an aurora is formed.

Student Questions Answered

Animals Spotted!

Seal On a Rock We Were Documenting

Seals – species unknown









Question of the Day

Kaci Heins: September 24-26, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mrs. Heins Acquiring Data For The Hydrographic Survey

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Tuesday, September 27, 2011

Weather Data from the Bridge

Clouds: Overcast
Visibility: 10 Nautical Miles
Wind: 10.40 knots
Dry Bulb: 11.3 degrees Celsius
Barometer: 1000.1 millibars
Latitude: 55.28 degrees North
Longitude: -133.68 degrees West

Science and Technology

I have received many questions from students asking “What is hydrography?”.  According to the International Hydrographic Organization,  hydrography is “the branch of applied science which deals with the measurement and description of the physical features of the navigable portion of the earth’s surface [seas] and adjoining coastal areas, with special reference to their use for the purpose of navigation.” Lets break that word down to find the meanings of the prefixes and suffixes using

hydro – means water,

graph – means to write or chart

graphy – means the science or process of recording

Another question I have received is what is a hydrographic survey?  Most of the surveys that you may have heard of are used on land.  For example, construction workers may survey a site before they start construction, or you may take a survey at school about what types of food you would like in the cafeteria.  Any kind of survey is the acquiring of information that is used for various purposes.  In the case of a hydrographic survey, the technicians acquire and chart information about the sea floor.  I was fortunate enough to go out on a survey launch to see that a hydrographic survey is conducted using sonar to look through the water to see what the sea floor actually looks like.

Launch Boat

The boat that NOAA uses to conduct the surveys is called a launch.  This means we use a large motorboat to get to where we need to go.  It costs tens of thousands of dollars a day to operate the Rainier, her launches, and the technology.  It is the technology that allows scientists to be able to “see” through the water to map what the ocean floor actually looks like.  The first, and most important, piece of technology on the launch that enables us to “see” the sea floor is the sonarSonar (SOund NAvigation and Ranging) is the process of using sound waves to bounce off objects we cannot see and then acquiring the return sound to create an image.  However, it does get a little more complicated than that.  There are two different types of sonar that the NOAA National Ocean Service (NOS) goes into detail about.

1) Active Sonar – Transmits a pulse or acoustic sound into the water. If the sound pulse hits an object in its path, such as the sea floor, then the sound bounces off  and returns an “echo” to the sonar receiver.  By determining the round-trip travel time between the emission of the sound pulse and its reception, the transducer can determine the range (how far away) and orientation (location) of the object.  The formula for this is

Distance = (two way travel time x speed of sound through water) / 2

2) Passive Sonar – Is a sonar system that does not emit its own signal, but listens to sound waves coming towards it.

Multibeam Sonar

Both the Rainier and the smaller launches have  both active sonar called multibeam sonar. Multibeam sonar sends out numerous sound waves from directly beneath the ship on the boat’s hull that fans out its coverage over the seafloor.  This coverage is called a “swath”.  Before we leave the ship to head out on the launches we have a briefing to go over the weather, safety, and any other important information for the coxswains, scientists, or crew.  We also get a plan for the day for what polygons, or areas we have to survey.  On our way we turn on some of the expensive (and top secret!) technology called the Position and Attitude System (POS).  This technology collects the vessels motion data (roll, pitch, and yaw), that later will be incorporated into the Caris software that produces the final chart. The multibeam transmits around 512

Polygon Coverage Area for the Day

beams each second.  The frequency of the sound waves depends on the depths that we are working in.  We worked in waters that were around 50 meters deep so we used the 400 kilohertz frequency.  However, if we would have been working in deeper water we would have gone to 200 kilohertz.  By lengthening the wavelength the beams can travel into deeper water with less error or scattering.

Before we start acquiring data we make sure to have good communication with the coxswain, or driver, of the boat.  It is extremely important that there is good communication and that the coxswain can maintain their heading and speed throughout the polygon so that the data can be collected without too many errors.

Conductivity, Temperature, and Depth Cast

We want to make sure we only go about 6-8 knots so that the sonar echo has time to make it back up to the receiver and we can collect good data.  The scientists also conduct a CTD cast before we start and every four hours while they collect data.  CTD stands for Conductivity (or salinity), Temperature, and Depth (pressure).  The data from the CTD can be used to calculate the speed of sound through water.  All of these factors can cause errors in the survey data so scientists need to collect this information so that the finished product has fewer errors and depths can be corrected from the sonar.  Other features that can cause errors in the data are bubbles, vegetation such as kelp, schools of fish, and the type of material that is on the sea floor.  For example, if the sea floor consists of a softer material it won’t reflect the sonar beams back as well.

To collect the survey data we basically drive the launch back and forth over our assigned polygons with the multibeam sonar.  This is sometimes called “mowing the lawn” or “painting the bottom”.  When we get to one edge of the polygon we stop logging data, turn around, and make a new swath as close as we can to the previous one and continue collecting data.  We cover around 50 nautical miles each day collecting data with the overall goal to collect the best data quality that we can during our acquisition.

As we head back to the Rainier all the computer data is downloaded from the day and is later transferred to the plot room.  This is where survey technicians add all the other information and make corrections to the data such as tides, vessel motion (POS), GPS, sound velocity from the CTD, and other programs so that the data is as accurate as possible.  Technicians still must go through and clean out “noise” which is scattering of some of the data.  The finished survey chart is sent to the Pacific Hydrographic Branch for post processing and quality assurance.

What We Surveyed Today!

Personal Log

In my last blog I wrote about how math skills are very important not only as a strong skill needed on a NOAA ship, but also as a life-long skill.  As I continue learning more about hydrography I have also found that computer skills are extremely valuable in this work environment.  Most people have basic computer skills to check email and run office programs, but out here it takes a little more.  There is quite a bit of training that the survey technicians and the NOAA Corps officers must go through to learn about all the different software that collects data and then using more software to combine them to make the finished hydro chart.  Numerous hours of collecting data, combining data, cleaning data and finishing projects all have a significant amount of work done by or at a computer.  Everyone from the captain to the junior officers must know how to use it and how to troubleshoot when things don’t work right.  It is not as easy as picking up the phone and calling customer service.  Minds among the ship must come together to solve problems when they arise.

Using the Computer to Collect Survey Data

While underway whether it is on the ship or on one of the launches the high seas are always around.  At first they made me nervous because I was afraid I would get sick.  However, it has turned out to be quite the opposite!  Whenever the seas get rough I actually start to get sleepy as we sway back and forth!  Usually, we are so busy that there isn’t time to take a nap so I’m learning to work through it.  Going along those lines of being busy, there are usually no breaks during the weekends.  In most people’s lives the weekend is time to take a break, hang out with family and friends, and sometimes do absolutely nothing at all.  Out here on a working ship this is not the case.  The NOAA ships have to meet certain deadlines and with some of their past major repairs, time has been ticking away with not much work being done.  This means when Saturdays and Sundays roll around at the end of the week we keep on working like a regular day.  I have the utmost respect for all of the crew, scientists, and officers that spend their time out here working for weeks straight.  It is not an easy lifestyle, but they are committed to it and I admire them and their strength.

Student Questions Answered

Wildlife Spotted!

Sea Otters

Humpback Whale

Sea Otter

Sea stars

Sea Urchins

Question of the day

Kaci Heins: September 21-23, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

NOAA Ship Rainier

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Friday, September 23, 2011

Weather Data from the Bridge

Clouds: Overcast
Visibility: 10 Nautical Miles
Wind: 25 kts
Waves: 1- 2 feet
Dry Bulb: 10.3 degrees Celsius
Barometer: 1002.6 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology

Rainier Skiff Boat

Now that there is a small window of clear weather I am able to go out on one of the small boats called a skiff.  This boat holds about 8 people max and is mainly being used to move people and equipment around to the different stations.  The night before I was scheduled to leave I learned that my task on this outing was going to be reading the tide staff every six minutes for 3 hours.  I know the initial reaction might be, “Why would you want to do that?”  Well, it is actually really important for the data that we are collecting.  When the equipment (primary benchmark, tide gauge, tide staff, orifice, etc.) was placed on Block Island this allowed the scientists to be able to know what the actual water levels would be for the launches when they head out. This in turn, is important because the height of the water levels will affect the data that is being collected on the launches (survey boats).  The first few hours started giving us pretty good data, but then we stopped getting anything at all.  We had been hit by a storm so numerous scenarios were being brainstormed so we could be prepared for anything that we might find when we got there to fix the problem.

Garmin Route to Block Island Courtesy of Todd Walsh

We traveled from the Rainier to Block Island, which was about 19 miles away.  When we got there the tide staff was in good shape and even the antennas and GPS looked good.  However, upon further inspection they found that there were glitches in the software files that had made it stop collecting data.  Once they got it going again, my partner Starla, and I went straight to work collecting the high and low wave of the tide.  We then used this data to calculate the mean (average) of the two.  We had to collect this data every six minutes for three hours because that is the same data that the tide gauge is collecting.

Tide staff at Block Island

We had to use GPS time–which was the same as the tide gauge–and not our own watches. This is because we needed the same time stamp for the data, which allows the scientists to see that the data was collected at exactly the same time.  Scientists can then look to see if the data we collected and the data the tide gauge collected are the same or if there are errors.  Then, they can see if it was human error or if something is still wrong with the tide gauge.  These first three hours were very important for the data collection, but the scientists will continue to monitor the station every three to four days for one hour throughout the month to make sure it is collecting data properly.

Mrs. Heins Taking Tide Staff Measurements

As we collected the data, one of us would watch the clock while the other would very intently watch the tide staff.  Once it would come to the time we would have to collect the data she would say “Mark!” and that would be my cue to note the high and low of the wave against the tide staff.  I would tell her my observations up to four digits, such as 1.967 meters.  However, because we would use quick observations to collect our data, our precision would probably be only to three significant figures. Significant figures are digits of a number that carry meaning and factor  into its precision. Starla would record the data and then we would wait six minutes until the next time to make our observations. When we were done, we downloaded the data from the tide gauge, packed up the skiff, and head back to the Rainier. Overall, it was a really great day being able to collect this important data and contribute to the mission of the ship.

Heading Back to the Rainier

Personal Log

Calculating Radar Ranges on a Nautical Chart

Math, math everywhere!!  Since the first day I have been on the Rainier I have seen math being used all day, every day.  Even though I don’t specifically teach math I do integrate it within science and social studies.  However, I have heard from students, “Why do I have to learn this?” in regards to their math homework.  There isn’t always enough time in the day to give a thorough explanation of how different math skills are used in the real world.  However, from my past NASA experiences and now with NOAA on the Rainier, I am here to tell you that once you enter the real world, especially if you enter a science, math or engineering field, then you will be immersed in math.  It will become a part of your daily routine without you really realizing it.  One place where math is used constantly, and is also one of my favorite places on the ship, is the bridge.

Math is used in navigation, such as setting a course, calculating distances, speeds, and times.  I also got some practice with calculating radar ranges, which can give the officers their location based off of 3-4 points of land nearby.  GPS is being used all day, every day and there are multiple GPS systems in case one fails.  Again, the officers use this information in their calculations throughout the day while we are at sea.  When I have been collecting weather data on the bridge math is being used to calculate the wind speed and direction.

Finding an Azimuth

Then there are conversions being calculated because some of the charts are in meters, some are in feet, and some are in fathoms.  A fathom is used more for deeper water because 1 fathom equals 6 feet.  Because these are dealing with depths it is very important to make sure the conversions are correct so that the ship stays safe.  Then of course there is math used in other ways on the ship.  For example, the Executive Officer (XO) has to work with the ship’s budget, the cooks work with measurements in the galley, and the scientists work with math formulas as they process the data in their projects.

Overall, I highly encourage my students and any other young minds that are reading this to do your best in math and ask for help if you need it.  It can be an intimidating subject area at times, but if you want to work for NOAA, be a scientist, or engineer then it will be an important part of your job.  Once you have an idea of what kind of job you want to have when you get older, try to find out what kind of skills you need to have and start early.  See how the math is used in the real world, the job you are interested in, and learn how to have fun with it!

Student Questions Answered!

Animals Seen

Sea Lion

Whales (not sure of the species)

California Sea Lion

Moon Jellyfish

Question of the Day

Jennifer Goldner In the News

NOAA Teacher at Sea Jennifer Goldner is interviewed by NewsOn6.

NOAA Teacher at Sea Jennifer Goldner was interviewed by about her cruise.

Read this article and this article and this article about Jennifer’s cruise in the Grand Lake News.

Read this article and this article about Jennifer as well as this interview with Jennifer on

Lindsay Knippenberg: Women are taking over the Dyson! September 15, 2011

NOAA Teacher at Sea
Lindsay Knippenberg
Aboard NOAA Ship Oscar Dyson
September 4 – 16, 2011

Mission: Bering-Aleutian Salmon International Survey (BASIS)
Geographical Area: Bering Sea
Date: September 15, 2011

Weather Data from the Bridge

Latitude: 55.41 N
Longitude: -167.98
Wind Speed: 25.86 kts
Wave Height: 10 – 13ft with some larger wind-blown waves
Surface Water Temperature: 8.7 C
Air Temperature: 8.7 C

Science and Technology Log

Real women aren't afraid of piles of jellyfish.

Real women aren't afraid of piles of jellyfish.

I will admit that before I met the scientists and crew onboard the Dyson I had imagined that the majority of the people on the boat would be men. I had wrongly gone along with the stereotypical view that scientists, engineers, fishermen, and the crew onboard ships were mostly men. Therefore when I finally met the people who I would be sailing with for the next two weeks, I was surprised and very happy to see that women had taken over the Dyson. For example, of the 12 scientists onboard the Dyson for this cruise, 9 are women including the Chief Scientist who is in charge of us all.

The seabird observers looking for birds.

The seabird observers looking for birds.

On the ship there are also NOAA Corps officers. The NOAA Commissioned Officer Corps is one of the seven uniformed services of the United States. Officers can be found operating one of NOAA’s 18 ships or 12 aircraft to provide support to meet NOAA’s missions. Their duties and areas of operations can range from launching a weather balloon at the South Pole, conducting fishery surveys in Alaska, maintaining buoys in the tropical Pacific, to flying P-3 Hurricane Hunter airplanes into hurricanes. I have met several NOAA Corps officers while I have been at NOAA and they have mostly been men. I was excited to see that of the six officers onboard the Dyson three are women.

NOAA Corps Officers - Rene, Sarah, and Amber taking a break from their duties to pose for a picture.

NOAA Corps Officers - Rene, Sarah, and Amber taking a break from their duties to pose for a picture.

There are also several other women onboard the Dyson and my mission today was to meet some of these amazing women and interview them to see what they do onboard the Dyson and what motivated them to choose this as their career. Let’s meet them:

Name: Ellen Martinson

Hometown: Juneau, AK

Position: Research Fisheries Biologist and Chief Scientist for Leg 2 of BASIS

Ellen showing off a tiny squid that she was measuring on the scale.

Ellen showing off a tiny squid that she was measuring on the scale.

Ellen has always loved solving puzzles and has had a curiosity for nature and how it works. That love of nature and problem solving led her to become a fisheries biologist. She has worked at NOAA since 1995 and she does research to support the management of federally-controlled commercial fisheries. She is currently a Ph.D. candidate and is doing her research and dissertation on developing indexes of ecosystem health in the Bering Sea that includes climate and fish growth factors. Pollock is her species of choice and she is looking at the success rate of Age 0 (zero) pollock surviving their first year to become Age 1 pollock as a prediction of the future health of the commercial pollock fishery.

What does she like the best about her job? She gets to work with a variety of people ranging from scientists and fisheries managers to fishermen and even teachers like me. She listens to their problems and ideas and then looks for the important questions to address all of those viewpoints. She also gets to travel to a lot of cool places, learn new things from a variety of topics, and her job is often an adventure. How did she get such a cool job? Going to college is the first step. Ellen has a bachelor’s degree in Marine Biology and a master’s degree in Fisheries Resources. She is currently finishing up her Ph.D. at the University of Alaska Fairbanks and then she will be Dr. Martinson.

Name: Kerri Curtin

Hometown: Chicago, IL

Position: Able-Bodied Seawoman

Kerri tying up the trawl net after pulling in a big haul of salmon.

Kerri tying up the trawl net after pulling in a big haul of salmon.

Kerri is one tough cookie. All week I have been amazed by her as she shuffled around the back deck pulling in fishing nets, lifting heavy science equipment, and tying all different types of knots. She is the only able-bodied seawoman onboard and her responsibilities include various deck maintenance jobs, setting up the nets for fishing and bringing in the catch, tying and untying the boat when we are at port, serving time on the bridge as an observer, and helping to launch the small boats. Her favorite part about her job is that she gets to go to work at sea and be outside in the fresh air. She also gets to travel to unique places and see the world. So far her favorite place that she has been to are the Greek Isles. How do you get a job like this? Kerri went to school in Maryland at Seafarers International and did an apprenticeship program. Through that program she gained the basic training necessary to get an entry-level position on a boat. Since then, she has continued her training and has taken several other Coast Guard certification tests. All her time at sea and trainings have paid off because she just received her 3rd Mates license.

Name: Amber Payne

Hometown: Fenton, MI

Position: Navigation Officer

Amber is in control of the Oscar Dyson as the trawl net is being brought in.

Amber is in control of the Oscar Dyson as the trawl net is being brought in.

Amber is a NOAA Corps officer onboard the Dyson. Her job as the Navigation Officer is to plot all the routes that the ship takes on paper and electronically. She also updates all the charting publications and she gets to stand watch on the bridge every day for eight hours. When she is on watch she is responsible for driving the ship and is in charge of all the operations. Amber has been onboard the Dyson for a year and a half and has several favorite things about her job. She likes that being on a ship in the Bering Sea is an adventure that many people may not get experience. She also likes the authority and trust that she is given to correctly navigate and drive the ship when she is all alone on the bridge. How did Amber get from Michigan to navigating a ship through the Bering Sea? Amber went to a four-year college in St. Petersburg, FL and studied Marine Biology. While in college she joined the search and rescue team and learned a lot about driving small boats. She knew that she wanted to go into a career that included both boats and science and her college advisor told her about the NOAA Corps. She applied to the NOAA Corps after graduation, was accepted, spent 4 months in basic trainings with the NOAA Corps, and then was placed on a ship. She loves that she gets to be a part of scientific research going on in the Bering Sea and she gets to drive boats all as a part of her job.

Name: Wendy Fellows

Hometown: Liberty Lake, WA

Position: Junior Engineer

Wendy has a lot of screens and buttons to monitor when she is on watch.

Wendy has a lot of screens and buttons to monitor when she is on watch.

When I first met Wendy she was sitting in the galley with the other engineers wearing her cover-ups from working in the engine room and I thought to myself, this girl is pretty cool. There aren’t too many female marine engineers and Wendy has a great story. When she graduated from high school she didn’t know what to do. She wanted to see the world so she took a job working in the kitchen of an oil tanker. She traveled all over the world and learned a lot about the different jobs on the ship throughout her journey. Her dad had been a marine engineer and she liked the work that the engineers did, so she went to school at the Seattle Maritime Academy to learn the trade. As a part of a year-long program she became a qualified member of the engineering department and did an internship onboard the Oscar Dyson. She liked it so much that she decided to stay on the Dyson as a Junior Engineer. Her job on board the Dyson is to basically make sure the ship is working properly. She tests emergency batteries, monitors the generators and pumps, services the small boats, fuels the ship when it is in port, fixes random things that break around the ship, and tests the drinking water. Her favorite part about her job is when she gets to use the welding skills she learned onboard the Dyson to fabricate things for the ship or scientists.

Name: Kathy Hough

Hometown: Kodiak, AK

Position: Senior Survey Technician

Kathy is busy on the hero deck connecting plankton nets to be lowered over the side.

Kathy is busy on the hero deck connecting plankton nets to be lowered over the side.

As the senior survey technician onboard the Dyson, Kathy has the responsibility of working with the scientists to insure that the collection of their data goes smoothly. She helps the scientists to collect their data by lowering and monitoring the CTD, helping with the various nets, and making sure that all of the equipment in the labs are functioning properly. She also collects data of her own. As the Dyson cruises around the Bering Sea, Kathy is in charge of collecting the weather and oceanographic data that is sent to scientists and posted on the NOAA Ship Tracker website. What does she like best about her job? Kathy likes the diversity of operations that she gets to be a part of. The science teams that are doing research onboard the Dyson only stay for 2 – 4 weeks and then another team gets on and might be doing a completely different project. As the science teams constantly rotate, Kathy stays on and helps with a variety of projects and different types of scientists. Does this job sound cool to you? To get an entry-level position as a survey technician you need a bachelor’s degree in science or mathematics. Kathy’s background is in ecology/biology, but a background in engineering, mathematics, or chemistry can be helpful too. If you want to move up to be a senior survey technician like Kathy, you need time and experience working on boats and with the instruments the scientists use for their research.

Name: Rachelle Sloss

Hometown: Juneau, AK

Position: Lab/Research Technician

Rachelle with a huge king salmon from one of our hauls.

Rachelle and I have gotten to know each other pretty well these last couple of weeks as we sorted through piles of fish and did a lot of counting to fifty. Rachelle just graduated from college in May and for the past two summers she has worked in the NOAA labs in Juneau as a lab/research technician. She works in a lab that is studying bioenergetics. While onboard the Dyson, she has been collecting and sorting zooplankton and looking for specific species of krill that will be used for bioenergetic experiments back in Juneau. She has also been collecting juvenile fish species like pollock and herring for similar experiments. While at the lab back in Juneau, Rachelle does lipid class analyses of fish to look at the energy content of their lipids by season. Does this sound like a cool summer job? Rachelle thinks that it is because she gets to work with some really cool people, she is gaining great experience for the future, and she got to spend two weeks on the Bering Sea seeing tons of species of fish. What lies ahead for Rachelle? She got a degree in Biochemistry, Biophysics, and Molecular Biology from Whitman College and is thinking about becoming a high school science teacher. For now she is headed to a much warmer South America and will be traveling around for the next couple of months on her next adventure.

Personal Log

We finally made it back to land and now we are all heading off in opposite directions towards home.

We finally made it back to land and now we are all heading off in opposite directions towards home.

By now I am safely back to my warm living room and I owe all of the women above and the men of the Oscar Dyson my deepest gratitude. I had an incredible adventure on the Bering Sea and I learned so much. Even though we had some rough seas, I still loved seeing all the different fish that we caught in our nets and I loved being a part of a research project that has so much importance to our fisheries. The NOAA Corps officers, crew, and scientists were all incredible teachers and had a lot of patience as they took time out of their day to answer all of my questions. I can’t wait to share my experiences with my students and other teachers and I couldn’t be more thankful for the experiences that I gained as a NOAA Teacher at Sea.

Kaci Heins: September 19-21, 2011

NOAA Teacher at Sea
Kaci Heins
Aboard NOAA Ship Rainier
September 17 — October 7, 2011

Mission: Hydrographic Survey
Geographical Area: Alaskan Coastline, the Inside Passage
Date: Wednesday, September 21, 2011

Mrs. Heins at the Helm

Weather Data From The Bridge

Clouds: Overcast
Visibility: 4 miles
Wind: 20 kts
Waves: 0-1 feet
Dry Bulb: 11.7 degrees Celsius
Barometer: 1000.1 millibars
Latitude: 55 degrees North
Longitude: 133 degrees West

Science and Technology Log

Launch Lowered Into The Water

Today was the first day that the survey launches left the Rainier to install and recover benchmarks and a tidal gauge.  The weather was not great and the crew had a lot of work to do so I was not able to go with them this time.  A benchmark is a small brass disk with information inscribed on it that relates to the station it represents. The benchmark holds the height of the datum.  The purpose of setting a tide gauge is to measure the water level. The water level information is used to reduce the bathymetric data acquired to the chart datum (mean lower-low water, MLLW).   Finding benchmarks has become quite popular through the hobby of geocaching.  This is where participants use latitude and longitude within Global Positioning Systems (GPS) as a way to hunt down “treasures” hidden by other participants.  This also includes finding benchmarks.

I’ve been trying to head up to the bridge as much as I can to learn as much as I can during this Teacher at Sea experience.  The first time I went up at night I had no idea about the environment that the officers work in on the bridge.  At night the officers on the bridge actually work in complete darkness.  All of the computer screens have dimmers or red filters so that the least amount of light affects their eyes in the darkness.  The reason it is so dark is because the officers need to be able to see the lighted navigation buoys to stay on course and to spot the lights of other ships that are heading in our direction.  There are also one or two deck personnel that are lookouts either on the flying bridge or bow to keep watch for ships, lights, and other objects that could potentially be a hazard to the Rainier.  A flying bridge is usually an open area above an enclosed bridge where the ship’s officers have a good view of everything around the front and sides of the ship.  We are traveling through the Inside Passage off the Southeastern coast of Alaska, which is extremely narrow in some places along the way.  This means that it is very important that the officers know exactly where they are and what is around them.

Personal Log

Anchor's Away!

I have been able to do some other neat tasks on the ship while the majority of the crew were out on their launches.  We finally were able to find a place to anchor at Ulloa Channel because we had a good “bite” with the anchor–it is protected somewhat from the weather we are dealing with, and it is close to our tide station.  They also let me run out some chain for the anchor and I was able to practice using the crane on the ship.  However, the best part so far has been being at the helm, or the steering gear of the ship.  I will admit I was pretty nervous the first time I grabbed the wheel because it was at night so I couldn’t see hardly anything.  Today, the officer of the deck (OOD) let me at the helm again because we were in open water.  When I am at the helm I have to watch my gyro-heading, which shows me true North, and my magnetic compass, which is more of a back up if the electronic gyro-heading fails.  If I have a heading of 150 then I have to make tiny adjustments or corrections to try and stay on or close to that number as possible.  Even when I make the tiniest adjustment I can see how much the ship moves.  I did start getting the hang of it and one officer even said he had never seen a visitor do so well!

One other item that I will mention in this blog is that the weather in Alaska during this time of year is overcast, rainy, and cold.

Beautiful Scenery Along the Inside Passage

However, going into this I had an idea of what to expect and I enjoy the fact that I get to see the non-glamorous side of this type of work.  It does not matter if it is rainy, cold, what you are wearing, or what you look like because there is a job to do.  It has been overcast every day, but the pine trees are amazing shades of green and the pictures do not do them justice.  We have also had 15 foot waves and 115 knot wind (this is the same as a category 3 hurricane!).  The wind didn’t bother me as much as the waves did.  I thought it was fun for the first 30 minutes, but then I had to lie down for a while because I wasn’t feeling too well.  I never threw up, but it did become uncomfortable.  Now that we are anchored and have stopped moving I feel funny because my body has been used to moving around so much for the past three days.  I sure hope I don’t get land sickness when I am done with this cruise!

Student Questions Answered: Here are student questions answered about feeding so many people on a boat over 3 weeks time.

Animals Seen


Questions of the Day

We experienced 115 knot winds Monday night.  What category hurricane would that be the equivalent to?  Use the website if you need help.