Patricia Donahue, August 21, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date
: August 21, 2008

Weather Data from the Bridge at 1000 hours 
Broken clouds (7/8)
Visibility 11 to 27 nautical miles
Winds calm
Seas 0-1 ft (light breeze) at 9.4˚C
Air pressure 1001.5 millibars and rising slightly
Dry Bulb 12.2˚C, Wet Bulb 11.1˚C
Cumulus clouds between 3000 and 5000 feet

The lines circled in red are the track that the boat follows back and forth in order scan the bottom of the sea. It’s a lot like mowing a lawn!

The track that the boat follows back and forth in order scan the bottom of the sea. It’s a lot like mowing a lawn!

Science and Technology Log 

We are anchored in Halibut Cove near a large lagoon too shallow even for the small boats to enter. The nearby mountains have attracted my attention. According to the chart for this area, the two seen off the bow are both 3600 feet high. They have some patches of snow on them. A taller mountain, 4200 feet high, is barely visible in the distance. Nearer the shore some cliffs show evidence of an interesting geological history. Once upon a time, marine sediments collected at the bottom of the sea. The layers built steadily one atop the other, creating organic and clastic sedimentary rocks. The rocks were uplifted to nearly vertical and have eroded. The lighter colored section appears to be limestone but it’s difficult to tell from afar. Due to intense tectonic activity in the area, some of the rock was heated and crushed, causing metamorphism. The section next to what I think is limestone looks to be either a metamorphosed limestone or a batholith. I’m hopeful that someone on board knows more geology than I do!

One of these scans shows a school of fish and the other shows a mound on the sea floor.  Can you guess which is which? (Answer: the scan on the left is a mound on the sea floor and the scan on the right is a school of fish.)

One of these scans shows a school of fish and the other shows a mound on the sea floor. Can you guess which is which?

Today I went out on one of the small vessels conducting single beam sonar scanning to determine the depth and shape of the bay bottom. The boat moves across the surface of the sea in straight, parallel lines much like the ones made when cutting the grass with a lawn mower. The lines in the first picture are the rows that the boat “mows.” The sonar pings go down from the bottom of the boat at a rate of 100 per second! The equipment on board measures how much time passes until the ping returns from the bottom. The longer it takes for the sound signal to bounce back, the deeper the water is in that location. The boat also has another scanner similar to what fishermen use to find schools of fish. Look at these two photographs from the scanner. Which is a school of fish and which is a 27 foot high mound on the ocean floor? The depth of the water is in large numbers in the lower left. The numbers farthest to the right are the ocean temperatures. Why is the water colder where the bottom is deeper?

This is a sea otter feasting on a clam! The tiny white spec on its belly is the clam

This is a sea otter feasting on a clam! The tiny white spec on its belly is the clam

Personal Log 

The screen above with the “mowing the lawn” lines on it clearly shows an airplane making its way back and forth. Of course I had to ask, “Why an airplane icon”? I thought they’d tell me that it was for laughs but no, there is a good reason. The airplane icon’s nose keeps in sync with the GPS and the lines better than the ship icon! The surveyors find it easier to know their position.

Animals Seen Today 

  • Many sea otters – Look closely at the picture to the left. The otter in the picture is eating clam. A shell is balanced on its belly!
  • Schools of fish under the boat “seen” by the radar
  • Several types of birds too far away to identify

Vocabulary of the Day 

While inputting the weather this morning, I noticed several screens that we did not add data to and rather than skip them, I decided to see what they were about. They were about ice conditions that a ship might encounter and include in a weather report. Here are two new words I didn’t have for ice. A bergy bit is a large piece of floating glacier ice between 100 and 300 square meters in area and showing less than 5 meters but more than 1 meter above sea level. A growler is smaller than a bergy bit. It is larger than 20 square meters in area but less than 1 meter is above the sea surface. Growlers can be transparent, green, or even black in appearance. Since its summer in Alaska, I won’t be seeing any bergy bits or growlers! I also learned that the term iceberg has a precise definition. An iceberg is a piece of ice afloat or aground that shows more than 5 meters above the sea surface. They are described more specifically by their shape.

Challenge Yourself 

Kachemak Bay receives a lot of glacial melt water. Surveyors have a difficult time with the radar equipment when they encounter freshwater because the sound waves travel at a different speed through fresh water than they do through salt water. In which type of water, salt or fresh, does sound travel faster? Why?

Alex Eilers, August 21, 2008

NOAA Teacher at Sea
Alex Eilers
Onboard NOAA Ship David Starr Jordan
August 21 – September 5, 2008

Mission: Leatherback Sea Turtle Research
Geographical area of cruise: California
Date: August 21, 2008

Well I’ve arrived in San Diego safe and sound.  The weather here is fantastic – warm, mostly sunny and a bit breezy.  Let’s hope it stays like his throughout my time at sea.  Here is a brief outline of how I’ve been preparing for the research cruise.  I started the day at a LUTH survey orientation meeting.  LUTH stands for Leatherback Use of Temperate Habitat. Lisa Ballance, the director of Protected Resources Division and Scott Benson, Chief Scientist welcomed the entire team.  We spent the morning listening to the research planned for the trip and I was amazed at the amount of science to be conducted.  This is going to be an exciting adventure. I must admit though – I’ve got some homework to do.  I have to become more familiar with the acronyms the scientists are using, like CTD’s, TSG’s and especially XBT’s – because I have to load these this afternoon.

After lunch we piled in the vans and headed toward the ship to begin the loading process.  My assignment was to load and store the XBT’s and help load the oceanographic equipment.  And, I did my homework – I found out that the XBT stands for eXpendable BathyThermograph and they are used for the collection of oceanographic temperature data.

I took a quick break after unloading the van to pose for a picture.  I’m standing beside NOAA Ship David Starr Jordan and the real work is now beginning.  Better get busy – more to come later.  Keep checking the website.

I took a quick break after unloading the van to pose for a picture. I’m standing beside NOAA Ship David Starr Jordan and the real work is now beginning. Better get busy – more to come later.

Patricia Donahue, August 20, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date
: August 20, 2008

Weather Data – Glorious!

Science and Technology Log 

black bear comes to inspect what the land party is up to!

A black bear comes to inspect what the land party is up to!

WOW! That says it all. Today’s big excitement was supposed to be the leveling of the tidal gauge and the survey work in the cove. The bigger thrill – and scare – was the bear that approached to within 30 feet of me as I was standing over a benchmark with a leveling rod. Remembering the safety rules about bears, I stayed calm and alerted the others. Then I put down the pole and walked away slowly. Fortunately it was a young and smallish black bear who was easily scared off by the Commander throwing rocks. We were all on our guard the rest of the day. There were several benchmarks to check. Some of the climbing was perilous. All of the work had to be done at low tide. The survey data was collected and I look forward to seeing what’s done with it.

During the afternoon, another emergency drill took place and I was invited to watch. In the scenario, the bridge lost the ability to steer the ship. Control of the vessel had to be made from aft steering, below decks where the rudders protrude from the vessel. By using only a compass and steering orders given in degrees, the helmsman maneuvered the ship. There were no windows or other indicators of the ship’s position. To make matters worse, the scenario called for a loss of communications so a sound powered phone that uses only the energy from the speaker’s voice to operate had to be used instead.

A benchmark on the Alaskan coastline

A benchmark on the Alaskan coastline

By late afternoon the ship moved to its new anchorage a few miles from Homer. I was invited to watch the lowering of the anchor. The anchor weighs 3500 pounds and there are two of them. Each length of chain weighs 1200 pounds and there are a total of 12 lengths for each anchor. Today we used only 5 sections of chain and 1 anchor. Each section of chain is 90 feet (15 fathoms) long. The anchor is lowered while the ship is in reverse.

Personal Log 

My family and my students enjoy a game called geocaching. We’ve started by using hand held GPS devices to find benchmarks and eventually we’ll move on to finding caches and creating our own. I’ve only ever seen old benchmarks but today I saw brand new ones. One of the officers even showed me how they’re made. Benchmarks indicate the exact location and height above sea level of that particular place. The Chief Steward took me to see the food storage facilities. The freezer is enormous! The ship carries enough food to last for 6 months, although the fresh fruits and vegetables only last for one month. They have more food than CostCo!

Animals Seen Today 

Stellar’s Jay, Black Bear, and two species of Jelly Fish

Question of the Day 

How long is the anchor chain on the Rainier? Provide your answer in feet and fathoms. How much do the anchors and the chain weigh altogether? Why is the boat in reverse when the anchor is dropped?

Challenge Yourself 

Go to http://www.geocaching.com and type in your zip code. Identify a benchmark near your home. Find it and take a photograph!

Patricia Donahue, August 19, 2008

NOAA Teacher at Sea
Patricia Donahue
Onboard NOAA Ship Rainier 
August 19-23, 2008

Mission: Hydrographic Survey of Bear Cove, AK
Geographical Area: Kachemak Bay, Alaska, 59.43.7 N, 151.02.9 W
Date
: August 19, 2008

Weather Data from the Bridge at 1600 hours 
Broken clouds (5/8)
Visibility 11 to 27 nautical miles
Winds 230˚ at 6 knots
Seas 0-1 ft (light breeze) at 8.3˚C
Air pressure 1003.5 millibars and falling slightly
Dry Bulb 13.1˚C, Wet Bulb 12˚C
Cumulus and cirrus clouds between 2000 and 3300 feet

Science and Technology Log 

Today I recorded the temperature twice, once in the morning and once in the afternoon. The data is written on a sheet and then entered into a specialized computer program. Once saved, the floppy containing the data is placed in a transmitter for delivery via satellite to the National Weather Service. There are few weather stations in the area so the ship is acting as one! The information will then show up on maps as a station model such as the one shown above. My students learn how to code and decode these models and it was awesome to see where the data comes from and how it is delivered.

This is a weather map symbol that shows wind direction (the arm extending from the circle) from the southwest; wind speed (the smaller arm) at 6 knots; temperature at 13.1˚C; dew point and 12˚C; pressure at 1003.5 mb; and cloud cover which is indicated by the shaded circle and shows broken clouds, meaning partly cloudy.

This is a weather map symbol that shows wind direction (the arm extending from the circle) from the southwest; wind speed (the smaller arm) at 6 knots; temperature at 13.1˚C; dew point and 12˚C; pressure at 1003.5 mb; and cloud cover which is indicated by the shaded circle and shows broken clouds, meaning partly cloudy.

Yesterday and today I also made note of true north and magnetic north. The difference between them was 17 degrees yesterday and 16 degrees today. In Texas a few weeks ago this difference was about 12 degrees. The officer on the bridge told me that there is a lot of interference that accounts for the larger difference here. I was reminded of what I’ve recently learned about the polarity reversals the Earth has undergone throughout its history. According to scientists, the planet is entering a period in which true north and magnetic north will deviate more and more from one another. I read a book I found in the wardroom about the geology of Alaska and discovered that the area we’re in now is mainly sedimentary rock. Through the “big eyes” on the flying bridge I can see a lot of stratification in the rocks. 

NOAA Ship Rainier

NOAA Ship Rainier

One of the engineers showed me the engine room. I was able to see the freshwater generator system that makes potable water for the ship. Salt water is “flashed” to its boiling point but not 100 degrees Celsius! This evaporation is done at a very low pressure by creating a vacuum of more than 90% so the boiling point of the water is much lower. This saves energy. The water evaporates, leaving behind the salts and other minerals dissolved in it. The water vapor is condensed and stored in a tank for use by the crew. One of the evaporators can make about 130 gallons of water in an hour and the ship has two of them. (If the water intake is not as salty, such as where we are now due to the glacial melt water, then more water can be generated.) There are also two storage tanks, each holding 8,400 gallons for a total of nearly 17,000 gallons.

The ship uses between 2000 and 3000 gallons per day so the amount stored could last for 5 days if necessary. There are only 53 people aboard. I did the math and realized that the crew is using a lot less water than I thought. Generally, an estimate of water use is 150 gallons per person per day. Not only is the crew careful about water use, some salt water replaces freshwater. For example, the toilets use salt water. Another interesting thing about the evaporators is that they use titanium plates. Titanium is very, very expensive! Back home people are stealing catalytic converters out of cars to recover the titanium in them! Since I teach the gas laws, distillation, and the periodic table, I plan to include a lesson about the evaporators.

Personal Log 

Today’s big events were a fire drill and an abandon ship drill. Fortunately I’ve gotten to know the ship fairly well and I was able to get to my assigned muster station in a timely fashion. The newly arrived personnel, myself included, also watched survival videos. Extra survival equipment had to be put away and I volunteered to help. I was able to climb down through hatches into the area where dry goods are stored. I wonder if they’ll let me climb the mast? My fears about seasickness have not been realized due to the fact that we are in very calm water. The bay seems more like a lake! From the ship I can see the Dixon Glacier and the Portlock Glacier. I’m sure they are a lot farther away than they appear! The survey team that went out today reported difficulties in the areas where the glacial runoff enters the bay. I hope I get to go out tomorrow.

Animals Seen Today 

Bald Eagle, Otter

Question of the Day 

How much fresh water is each person aboard the Rainier using in one day?

Challenge Yourself 

Use the internet to find out how many people are aboard a large cruise ship or a large naval vessel. Calculate how many gallons of water they would use. How many freshwater generators would the ship need? How much water would the cruise ship have to store to last for 5 days? Using the station model above, can you determine the relative humidity?

Rebecca Bell, August 19, 2008

NOAA Teacher at Sea
Rebecca Bell
Onboard NOAA Ship Delaware II 
August 14-28, 2008

Mission: Ecosystems Monitoring Survey
Geographical Area: North Atlantic
Date: August 19, 2008

Weather Data from the Bridge 
Latitude: 4000.7 N Longitude: 6931.5
Sea Surface Temperature: 21.2 C
Depth: 114m

The Delaware’slatest cruise track has taken it from Woods Hole, MA, south past the Outerbanks of North Carolina, and then north again toward Georges Bank

The Delaware’s latest cruise track has taken it from Woods Hole, MA, south past the Outerbanks of North Carolina, and then north again toward Georges Bank

Science and Technology Log 

We are heading east out to sea, right now at 4005 N latitude, 6942 W longitude. (Pull out those atlases). We will begin a turn north towards Georges Bank. Georges Bank is a large elevated area of the sea floor which separates the Gulf of Maine from the Atlantic Ocean and is situated between Cape Cod, Massachusetts and Cape Sable Island, Nova Scotia. Georges Bank is (was) one of the most productive North Atlantic fisheries (Grand Banks being the most productive). “Legend has it that the first European sailors found cod so abundant that they could be scooped out of the water in baskets. Until the last decades of this century these banks were one of the world’s richest fishing grounds… (Source: AMNH web site below).

This map shows the location of Georges Bank and the underwater topography.

This map shows the location of Georges Bank and the underwater topography.

Northeastern fishery landings are valued at approximately $800 million dockside, of which a large proportion is produced on Georges Bank. Recently, scientists of the U.S. Geological Survey (USGS) and NOAA’s National Marine Fisheries Service (NMFS) have undertaken an effort to document direct interactions between physical environmental factors and the abundance and distribution of fishery species. (Source: USGS below). This means that the water chemistry, temperature and other factors affect how many fish there are, how many kinds of fish there are, and where they are. The article from USGS explains that the sea floor sediments that form Georges Bank came from the time when glaciers scoured the area. Since that time, sea level has risen, covering the glacial sediments, and tides and currents are eroding the bottom. When this erosion happens, small sediment particles are winnowed out by tides and currents leaving larger gravel-sized sediments on the floor. This kind of surface is good for scallop larvae and other small animals so they can settle on the bottom and not get buried by sand. Thus, the type of sediment on the ocean floor helps determine what kinds of animals can live there.

This map shows the continental U.S. Exclusive Economic Zones (EEZs).

This map shows the continental U.S. Exclusive Economic Zones (EEZs).

Interestingly enough, politics and international relations have affected our trip to Georges Bank. We have been waiting for clearance through the U.S. State Department working with the Canadian government, to get permission to go into Canadian waters. As Wikipedia explains below, part of Georges Bank is “owned” by the U.S. and part is “owned” by Canada. Our route is to take us through the eastern part of Georges Bank, the part owned by Canada. Unfortunately, due to the speed of processing the request, we just this morning found out we got clearance to go there. If the request had been denied, we would have had to sail around the Exclusive Economic Zone (EEZ) to avoid Canadian waters. Fortunately, we are now good to go.

From Wikipedia: 

“During the 1960s and 1970s, oil exploration companies determined that the seafloor beneath Georges Bank possesses untold petroleum reserves. However, both Canada and the United States agreed to a moratorium on exploration and production activities in lieu of conservation of its waters for the fisheries.

The decision by Canada and the United States to declare an Exclusive Economic Zone (EEZ) of 200 nautical miles (370 km) in the late 1970s led to overlapping EEZ claims on Georges Bank and resulted in quickly deteriorating relations between fishermen from both countries who claimed the fishery resources for each respective nation. In recognition of the controversy, both nations agreed in 1979 to refer the question of maritime boundary delimitation to the International Court of Justice at The Hague in The Netherlands. Following five years of hearings and consultation, the IJC delivered its decision in 1984, which split the maritime boundary in the Gulf of Maine between both nations out to the 200 NM limit, giving the bulk of Georges Bank to the United States. Canada’s portion of the Gulf of Maine now includes the easternmost portion of Georges Bank.”

American Museum of Natural History http://www.amnh.org/sciencebulletins/biobulletin/biobulletin/story1208.html (easy to medium to read)

USGS http://pubs.usgs.gov/fs/georges-bank/ (more difficult to read) The map above is also from the USGS website.

Personal Log 

It’s been a very quiet day today. We had several station samples this morning. At the first one, around 6:30 a.m. one of the crew members spotted two whales. They were too far away to see what kind they were. I, unfortunately, was inside the ship at that time and missed it. However, we are heading north so maybe we will have a chance to see some.

Rebecca Bell, August 16, 2008

NOAA Teacher at Sea
Rebecca Bell
Onboard NOAA Ship Delaware II 
August 14-28, 2008

Mission: Ecosystems Monitoring Survey
Geographical Area: North Atlantic
Date: August 16, 2008

Weather Data from the Bridge 
Time:   1807 (GMT)
Latitude:  36.05.40 N Longitude: 75.24.30 W
Air Temp 0C: 25.3 0C
Sea Water Temp:  26.7 0C

On left: small barrel-shaped copepods; Center: white, arrow worms; Top right: amphipods

On left: small barrel-shaped copepods; Center: white, arrow worms; Top right: amphipods

Science and Technology Log 

The most common zooplankton we have seen so far are salps, amphipods, arrow worms and copepods. Pteropods (sea butterfly) have been in a number of samples but are not numerous. Salps look like clear, jelly-like marbles. We’ve encountered these animals in warm, shallow water. They are holoplanktonic relatives of sea squirts (Urochordata). Salps are filter feeders, using cilia to move suspended particles from the water. They feed by pumping water through a sieve to remove bacteria and nanoplankton, and are thus, a very important link in the food chain. Some species of salps form huge chains by budding. They show both sexual and asexual life stages. For more about salps and photos see this website.

Amphipods are also extremely common crustaceans. There is no carapace (shell-like covering), but their bodies are flattened side-to-side, much like a shrimp.  Their bodies are segmented with 6 segments in the head, 8 in the thorax and 6 in the abdomen.1 They have a brood pouch on their thoracic limbs. They have a variety of limbs used for feeding, crawling or jumping. One group lives off a host, feeding on salp tissues. Some types live in tubes; others use their back legs to anchor themselves while they sway to and fro in the water column. Some species swim rapidly while others stay near the bottom of the ocean. Many will move vertically in the water column, moving near the surface during the day, and sinking again at night. The species we are catching has large compound eyes that can be seen by the naked eye. For more about amphipods, visit this website. 

Becky examines the catch using a hand lens.

Becky examines the catch using a hand lens.

Copepods are very common crustaceans, with more than 200 species and 10,000 families. 2 We have found more of these than any other organism. Copepods are omnivorous. Some groups graze on microplankton; other groups of copepods prey on larger plankton, including other copepods. They are an important link in the food chain as well, moving carbon from a microscopic level to a larger trophic (feeding) level. They are eaten by jellyfish, fish, comb jellies and arrow worms. Copepods have “antennae” that have special sensors that detect water movement around them. They are able to move toward prey by contracting a muscle that runs in a circle around their bodies. For more about copepods, visit this website.

Arrow worms (Chaetognatha) are common along coasts, but we did not catch any out away from shore. Arrow worms are classified in their own group, distinct from Annelids (earthworms), round worms and flatworms, which are all separate groups of worms. They are predators, often waiting to ambush their prey. When their cilia detect prey, usually copepods, the arrow worm contracts 2 muscles that run dorsally and ventrally (top to bottom) to strike. Their mouths have spines that grab the prey and smaller “teeth” produce a venom that subdues the prey. The prey is swallowed whole. Arrow worms, in turn, are eaten by jellyfish, copepods and fish.

Sea Butterflies were not common, but they are very interesting. Sea butterflies (pteropods) are holoplanktonic mollusks, related to snails. Basically, they are shell-less snails. Their foot is modified into winglike structures (ptero= winged) that they flap as they swim through the water. Their bodies are tube-shaped and clear. The bodies and wings of the species we have seen are an orange-pink color. They are predators and are preyed upon by fish, sea birds and whales.

References: 

Information for these paragraphs were modified and combined from the following sources: 1 Newell, G.E. and Newell, R.C.; Marine Plankton: A Practical Guide; 5th edition; 1977; Hutchinson & Co; London.2 Johnson, William S. and Allen, Dennis M.; Zooplankton of the Atlantic and Gulf Coasts: A Guide to Their Identification and Ecology; 2005; Johns Hopkins University Press.

Personal Log 

This morning we saw dark clouds in the distance. You could see rain falling from the clouds. Nearby we could see the tail of a water spout disappearing into the clouds.  We sampled our southern-most station and are now heading north along the coast just south of Chesapeake Bay. The samples we are pulling now have a lot of diatoms.

Rebecca Bell, August 15, 2008

NOAA Teacher at Sea
Rebecca Bell
Onboard NOAA Ship Delaware II 
August 14-28, 2008

Mission: Ecosystems Monitoring Survey
Geographical Area: North Atlantic
Date: August 15, 2008

Weather Data from the Bridge 
Latitude:  3846.7 Longitude: 7302.1
Temp 25.4 C

Bongo net

Bongo net

Science and Technology Log 

In the last post, I explained WHY we are collecting zooplankton. This post will illustrate HOW the samples are taken.

The samples are collected using a device called a bongo net (Yes, like the musical instrument).  You can see the metal rings and the nets hang from the metal rings. One net is marked with red and the other green. This allows you to tell the two nets apart. The samples from the red side will be used for the ichthyoplankton study. The samples from the green side will be used for the zooplankton study.

The white device is the CTD (Conductivity, Temperature, Depth). You attach it to the bongo net frame and turn it on. The CTD takes measurements on the way into the water and on the way out of the water. When the bridge clears you, the computer operator (inside) tells the hydraulics operator to start letting out the line and at what speed to let it out and bring it in. You calculate the amount of time in and out using a chart that is based on changing depth. You have to calculate it so you get at least a 5-minute tow.

The CTD

The CTD

Now the bongo nets are raised on the A-frame. You can see the CTD above the bongos (right picture) and there is a lead weight beneath and between the nets. Next, the A-frame moves the nets over the side of the ship and they are lowered into the water. You cruise for at least 5 minutes. The idea is to get within 5 meters of the bottom, then start bringing the nets back in. The computer operator keeps track of where the bottom is. The idea is to stop the line going out in time so the nets don’t hit the bottom and pull up a bunch of sand. Then you just have to wait for the tow, and eventually for the nets to come back up.

The bongos are removed from the A-frame and brought into the wet lab. You use the hose to wash the plankton down to the bottom of the net. The bottom of the net is put into the sieve. When the net is hosed down to the sieve end, you untie the bottom of the net and let the plankton wash into the sieves. The mesh captures zooplankton, but lets smaller phytoplankton through. Finally you rinse the plankton from the sieves into a jar with 5% formalin for preservation. A label is put into the jar as well as on top of the jar, stating station number, date and time.

NOAA Teacher at Sea, Becky Bell, assists in deploying the bongo nets.

NOAA Teacher at Sea, Becky Bell, assists in deploying the bongo nets.

Personal Log 

We had a fire drill and an “abandon ship” safety drill. In the picture to the right, I am wearing a survival suit, lovingly known as a “Gumby suit”. If you abandon ship, you have to run to the deck and put on this suit. It is one piece, with inflatable neck rest, whistle and flashing pocket light so you can be spotted. You have to lay the suit out on deck, and sit down in it. Feet go in first, then you stand up and pull the rest over your head, find the arms etc. Look at the look on my face. Not too sure about this! The front flap closes to show only your eyes–on me a little higher. You should try zipping the front zipper with thick rubber gloves that are too big for you. It reminds me of the astronauts trying to fix the space station. I have a new appreciation for how difficult it is too, like, HOLD anything. The best news yet–we get to practice next week again.

Deploying the Bongo net

Deploying the Bongo net

The A-frame

The A-frame

The nets begin to emerge from the water.

The nets begin to emerge from the water.

Becky waits for the nets to come back up after the tow

Waiting for the nets to come back up after the tow

Becky rinsing down the net

Becky rinsing down the net

Then she puts the plankton into a jar for preservation

Then she puts the plankton into a jar for
preservation

Becky dons her survival suit during a safety drill.

Becky dons her survival suit during a safety drill.