Geoff Goodenow, May 11, 2004

NOAA Teacher at Sea
Geoff Goodenow
Onboard NOAA Ship Oscar Elton Sette

May 2 – 25, 2004

Mission: Swordfish Assessment Survey
Geographical Area:
Hawaiian Islands
Date:
May 11, 2004

Time: 1600

Lat: 18 49 N
Long: 158 03 W
Sky: A gray overcast morning with a couple of showers. Brightened through the late morning and stayed mostly(thin)overcast but enough sun to cast shadows and feel pretty intense. 90% cloud cover through most of daylight hours. Tonight the sky is star-filled — beautiful.

Air temp: 26.3 C
Barometer: 1011.9
Wind: 100 degrees at 8 knots
Relative humidity: 66.9%
Sea temp: 26.7 C
Depth: 3333 m

Sea: A bit of chop especially this morning when wind seemed stronger. There were a couple of splashes onto the deck as we brought in the line this morning. Still some whitecaps this afternoon; well settled this evening.

Salinity: 34.4 (I thought some might be wondering; it has been consistent throughout.)

Scientific and Technical Log

This morning we brought in several escolar (none scoring better than 4 as they belly flopped to the surface), a yellowfin tuna which was tagged and released, and three blue sharks (one was kept and two were returned after blood samples and a couple remoras were secured). Shark wrestling is getting to be routine. Since then we have been steaming northeast beyond Cross Seamount. At 2000 we are at Lat 19 10N and Long 157 45 W as we begin the set.

On minor correction: sharks and other big fish brought on board are hoisted by human muscle using a block and tackle (not a mechanical winch as stated previously)

Kerstin Fritsches from the University of Queensland in Brisbane, Australia is working on vision studies of the fish. Her husband, Steven Evill (often affectionately referred to as Dr. Evil) assists as do three graduate students, Rickard and Eva from Sweden, and Kylie, also from Brisbane. It is for these studies that the eyes are taken from the animals. I will attempt to explain some practical applications of their studies and give you a sense of the kinds of work being done on board. I will do this in several editions of the log — not all at once. So to start —

Fishes, depending on species may use a variety of senses to know their environment. Scent, for example, may allow them to home in on prey.   While research goes on by others to analyze other sensory structures and abilities, Kerstin’s work is about vision. The attempt is being made to find out just what these different fishes are able to see. Do they see differently and, if so, how so? The practical application for longline fisheries, a very indiscriminate practice, is to eliminate by-catch. This can help protect endangered species and make longlining more cost and time efficient by finding ways to attract only economically valued species.

The water column is visually quite a varied environment. Longer wavelengths of red light are essentially filtered out and gone within the first 50 meters below the surface while shorter wavelengths in the blue range penetrate the depths. But imagine hanging out, living, and hunting at 600 meters as some of these fish do, in daytime light levels the equivalent of a starry night at the surface. Some such as swordfish and bigeye tuna come toward the surface at night keeping their exposure to light levels constant. Imagine your life spent in light levels no greater than that of a starlit night. What adaptations do these animals have to accommodate such a lifestyle? What are different parts of the visual apparatus doing in these animals? In order to help uncover answers to these and other questions, three kinds of projects are going on here.

When a live fish of desired species comes aboard, it is first killed then its eyes are taken. Kerstin and Rickard must have living tissue from the retina for their studies. They have about 20 minutes in which to get the tissue they need into a special oxygen-rich solution in which the tissues will be good for 6-8 hours. Steven works with lenses which do tend to cloud over time, but he is able to easily accomplish his work before that happens. For Eva and Kylie there is no rush as their samples, retinas and eyes with only lenses removed, are destined to be preserved for later study at home. I’ll pick up from here tomorrow with details about specific aspects of the work on vision. In preparation you might look up what the retina and lens of the eye do.

Personal Log

I observed our hitchhiking birds in a new feeding maneuver this morning. A bunch of flying fish took to the air and were happily gliding along. Our friends took after them and approaching from the rear snatched them out of the air.

Filling in the non-fishing time gaps: Last night I interviewed Eva about her part of the vision studies and this afternoon Rickard took me through his experiments. At home in Sweden he does vision studies on insects, moths and butterflies in particular. I am also reading Adam’s Navel which I can recommend to those with an interest in human biology written in an interesting non-technical and often humorous style. And it is often nice to find some shade, a comfortable deck chair and with a beverage in hand stare across that wide, blue expanse of water.

The days pass quickly.

Goodenow 5-11-04 sunset
Sunset from NOAA Ship OSCAR ELTON SETTE.

Questions:

I am happy to report that we are eating quite well on our voyage, but that was not the case for early voyagers across the seas. At times they might have had plenty to fill their stomachs, but at the same time lack a balanced diet. Because of this, one condition the mariners suffered was scurvy. What are the symptoms/problems associated with that condition? What can be done to prevent it? See if you can find out when and how the solution to the problem was discovered.

Geoff

Leave a Reply

Discover more from NOAA Teacher at Sea Blog

Subscribe now to keep reading and get access to the full archive.

Continue reading