Theresa Paulsen: Mission Accomplished, April 2, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: April 2, 2015

Weather Data from the Bridge: Partly Cloudy, 26 C, Wind speed 12 knots, Wave height 1-2ft, Swells 2-4ft.

Science and Technology Log:

What are the mappers up to?

After we completed our two priority areas of the cruise, the mappers have been using Knudson subbottom sonar to profile the bottom of the trench. Meme Lobecker, the expedition coordinator sends that data directly to the United States Geological Survey (USGS) for processing. They returned some interesting findings.

The subbottom sonar sends a loud “chirp” to the bottom. It penetrates the ocean floor. Different sediment layers reflect the sound differently so the variation and thickness of the layers can be observed. The chirp penetration depth varies with the sediments. Soft sediments can be penetrated more easily. In the picture below, provided by USGS, you can see hard intrusions with layers of sediments filling in spaces between.

image
The intrusions are basement relief, likely uplifting deformation ridges created by the subduction of the North American Plate. The subduction is now oblique, with the North American and Caribbean plates mostly sliding past each other now – sort of like the San Andreas Fault – but there is still some subduction happening. Subbottom Image and caption courtesy of USGS.

How does the bathymetry look?

In the last two days, I have been really enjoying the incredible details in the bathymetry data the multibeam sonar has gathered. We mapped over 15,000 square miles on our voyage! Using computer software we can now look at the ocean floor beneath us. I tried my hand at using Fledermaus software to make fly-over movies of the area we surveyed (or should I say swim-over movies). Check them out:

I also examined some of the backscatter data. In backscatter images soft surfaces are darker, meaning the signal return is weaker, and the hard surfaces are whiter due to stronger returns. One of the interns, Chelsea Wegner, studied the bathymetry and backscatter data for possible habitats for corals. She looked for steep slopes in the bathymetry and hard surfaces with the backscatter, since corals prefer those conditions.

Intern poster project
Intern Poster Project by Chelsea Wegner

Chelsea Wegner Poster (pdf)

On the next leg, the robotic vehicle on the ship will be used to examine some of the areas we were with high-definition cameras. You can watch the live stream here. You can also see some of the images and footage from past explorations here.
This is a short video from the 2012 expedition to the Gulf of Mexico to tempt you into tuning in for more.

Personal Log:

The people on this vessel have been blessed with adventurous spirits and exciting careers. Throughout the cruise, I heard about and then came to fully understand the difficulty of being away from family when they need us.

I would like to dedicate this last blog to my father, Tom Wichman. He passed away this morning at 80 years of age after battling more than his share of medical issues.  As I rode the ship in today I felt him beside me. Together we watched the pelicans and the boobies fly by. I am very glad I was able to take him on a “virtual” adventure to the Caribbean. He loved the pictures and the blog. I thank the NOAA Teacher at Sea program for helping me make him proud one last time.

My parents
My Parents, Tom and Kate Wichman

“To know how to wonder is the first step of the mind toward discovery” – L. Pasteur. These words decorate my classroom wall but are epitomized by the work that the NOAA Okeanos Explorer and the Office of Exploration and Research (OER) do each day.

Thank you to the Meme, the CO, XO, the science team, and the entire crew aboard the Okeanos for teaching me as much as you did and for helping me get home when I needed to be with family. I wish you all the best as you continue to explore our vast oceans! My students and I will be watching and learning from you!

I would also like to thank all of the people who followed this blog. Your support and interest proves that you too are curious by nature. Life is much more interesting if you hold on to that sense of wonder, isn’t it?

Answers to My Previous Questions of the Day Polls:

1.  Bathymetry is the study of ocean depths and submarine topography.

2. The deepest zone in the ocean is called the hadal zone, after Hades the Greek God of the underworld.

3.  It takes the vessel 19 hours and 10 minutes to make enough water for 46 people each using 50 gallons per day if each of the two distillers makes 1 gallon per minute.

4.  NOAA line offices include:

  • National Environmental Satellite, Data, and Information Service
  • National Marine Fisheries Service
  • National Ocean Service
  • National Weather Service
  • Office of Marine & Aviation Operations
  • Office of Oceanic and Atmospheric Research

5. The pressure on the a diver at 332.35m is 485 pounds per square inch!

6.  The deepest part of the Puerto Rico Trench is known as the Milwaukee Deep.

Thank you for participating!  I hope you learned something new!

Theresa Paulsen: Where There is a Will, There is a Way! April 1, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: April 1, 2015

Weather Data from the Bridge:  Partly Cloudy, 26˚C, waves 1-3ft, swells 3-6ft.

Science and Technology Log:

Dr. Wilford (Bill) Schmidt has demonstrated the saying, “Where there is a will, there is a way,” throughout this  entire cruise.  He knew this voyage would put his new free vehicle design to the test and he came prepared to modify this, tweak that, collaborate with the crew, confer with his university team, test, and repeat.  He is an engineer and that is the name of the game.

1.  The first deployment looked great. The vehicle reached 1000m.  The magnetometer and 3-axis accelerometer worked great.  All systems were a go.  A water sampling device was used as a dummy payload.

FV Dummy Test
The free vehicle with a water sampling device as a dummy payload.

 

Test Data
Data from the Test Deployment

 

Crossing fingers for more success.

2.  The next step was to attach a CTD (a probe that measures Conductivity, Temperature, Depth).  The deployment and retrieval process again went smoothly, this time to 2126m, but there was a problem retrieving the log file from the bottom sphere and one of the anchor burn wires did not burn.

 

FV with CTD
The free vehicle with CTD attached.

Collaboration required with folks on shore and the electronics technicians on this ship.  Tweak this, fix that.

Troubleshooting
Dave Blessing, Electronics Tech, and Bill Schmidt troubleshooting.

Bill opened the spheres to change the batteries for the satellite transponder.

Open Sphere
One of the opened spheres
Keeping a log
Zamara Fuentes keeping a log of all of the adjustments and parameters
Repressurizing the sphere
Rolf Vieten pressurizing the sphere

All systems were a go again.

3.  The crew deployed the free vehicle with the CTD to 4679 m.  It took a little longer to find and retrieve the vehicle.

FV Retrieval
Retrieval of the free vehicle

The data files indicated that the galvanic releases released the anchor prematurely, at about 100 meters from the bottom.  Both spheres worked during the mission.  Data files were retrieved from each.  During inspection water was found in the bottom sphere.  Spalling of the glass (flaking) was seen on the inside.  The leak is assumed to have taken place as the surface under low pressure conditions, otherwise the damage would have been worse.  The electronics were in good shape but the bottom sphere had to be retired.

Oh no!  Is that the end?  Not when you have great minds on board!

This is where engineering in the ocean environment gets tricky.  Bill can’t just head back to the university and make the necessary repairs.  Instead he needs to make use of the very valuable ship time by pinch-hitting.  Bill recalculated the buoyant force on the vehicle with only one sphere.  It might just work!

Tweak this, lighten that, new attachments there. Ready for a float test!

Single sphere float test
The single sphere float test was a success!

Will the single sphere allow it to ascend from the bottom fast enough for us to deploy and retrieve it during our mission?  That question required further testing.  So the crew planned to lower it into the water a short distance with the winch and allow it to float back up.  The weather would not allow it.  The seas were too rough to allow the ship to stay in one place during the vehicle test without dragging the free vehicle thereby negating the results of the test.

Operations team meeting
Operations team meeting

Plan B?  The operations team hatched a plan to tie the free vehicle to buoys on a long rope.  That allowed the vehicle to sink and be recovered easily if it rose too slowly. First a buoyancy test had to be done to make sure the buoys wouldn’t sink with the vehicle.

Buoy Float Test
Buoy float test

The vehicle rose in less than 10 minutes so the team was back on track!  With a few extras like flags for better visibility, the vehicle was ready to dive!

Preparing for the big dive to 8000+ meters!
Preparing for the big dive to 8000+ meters!

4.  The deployment into the trench went smoothly.  The crew had that routine down pat.  After 10 hours it was time for the retrieval.  Everyone gathered at the bridge to try to spot it.

FV lookout
On the lookout for the free vehicle.
Port side lookouts
Port side lookouts
Free Vehicle Returns
The free vehicle returns from the deep!

It successfully collected data down to the bottom at 8379m, a possible record for a free vehicle!

Successful Dive
Bill content with a successful dive

The CTD data was processed and looked great during the descent.

FV CTD data
Free vehicle CTD data from the Puerto Rico Trench

Inspection of the data log showed that while the vehicle was ascending from the bottom, something was triggering a mission cancel order – 28 times!  This bug required more testing and mission simulating before another deployment in the trench.  Just after 8pm, Bill announced his equipment was ready to go for a 6 am deployment the next day.

5.  The next day, the retrieval took a bit longer due to choppier sea conditions.

The crew bringing the free vehicle aboard.
The crew bringing the free vehicle aboard.

Again the vehicle logs showed “cancel mission” messages during the ascent.  It is confounding Bill and his team back home, because during mission simulations the mission goes to completion without a problem.

In all the voyage has been very constructive for Bill’s engineering team.   They successfully deployed the vehicle to the bottom of the Puerto Rico Trench known to be the deepest part of the Atlantic Ocean.  That is something to celebrate!  They have learned a great deal about what types of modifications they should make to improve the retrieval process.

This was a great first test of the free vehicle design.  The next time out at sea will come soon enough and Bill’s team will be ready!

Personal Log

As the voyage comes to an end and we travel nearer to shore, I am filled with mixed emotions.  I will miss the ocean, the feeling of being a part of an exploration expedition, and these people.  I am also very happy to be going home to my family and my students.  I am looking forward to sharing what I have learned.  I will be looking for partnerships to help get students involved in reseach on our inland sea, Lake Superior.  If you have any suggestions, please leave a comment below!

Exciting moments?  Seeing these creatures!

Whale
Small whale swimming next to the vessel.
Dolphin
A dolphin playing in our wake. Photo credit: Jossue Millan

Other great moments include driving the ship and making video fly-bys of the ocean floor with the bathymetry and backscatter data.  Very awesome!  The videos will be coming soon so stay tuned!

Did you know?

Do you remember the flying fish I wondered about a few blogs ago?  I have never seen them before.  At first I thought I was seeing things.  I thought I saw a very large dragonfly dive into the water.  Then I saw more.  – schools of them jumping away from the boat all at once.  In a blink of an eye they were gone.

A flying fish.  Image courtesy of “Bermuda: Search for Deep Water Caves 2009 Exploration,”  NOAA Ocean Explorer

According to Wikipedia, there are 64 species of flying fish!  They fly out of the water to evade predators.  That’s a pretty cool adaptation!  You can learn more here.

Question of the Day:

Theresa Paulsen: How Low Can You Go? March 29, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 29, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

We launched and recovered a CTD earlier this week.

A CTD (Conductivity, Temperature and Depth probe) is used to study the characteristics of ocean water masses, as well as to insure data quality and accuracy from XBTs (Expendible Bathythermograph). In a previous blog, I discussed how the XBT is used to measure the temperature of the water to a depth of about 760 meters. That coupled with the conductivity sensors on the vessel are used to calculate salinity and pressure to derive a measure of the velocity of sound through water, an important factor when collecting sonar data.

An XBT can be launched while the vessel is underway without pausing the sonar, but it doesn’t collect data all the way to the bottom of the water column.

Launching an XBT
Trying my hand at launching an XBT

A CTD can go all the way to the bottom, depending on the depth of the ocean, the length of the tether cable, and the pressure rating of the frame and equipment making up the CTD.  The titanium frame and equipment making up the CTD currently aboard the Okeanos can be lowered to 6500 meters.   It is very large and requires the vessel to stay put during the entire process since it is tethered to the ship.

Since a CTD collects all three factors involved in the computation of speed of sound in water (salinity, temperature, and depth) and is therefore more accurate than an XBT which only collects temperature, it is used at least annually to provide comparison data for the XBT measurements. This is the reason our scientists used it on this cruise.  Additionally, scientists on board a vessel may want to deploy a CTD more often if water masses are expected to change, or if they are interested in studying other features of the water column such as particulates, gaseous seeps, dissolved oxygen or oxygen reduction potential, or if they want to collect water samples at different depths.

The CTD
Survey Tech, Scott Allen and the CTD.

In the above photo the small red arrow is pointing to the water sample tubes, the large blue arrow to the CTD, and the large red arrow to the altimeter which senses when the probe is within 200 meters from the bottom allowing winch operators to slow the descent to avoid damaging equipment.  Scott Allen is the Survey Tech on board.  His job is to maintain and calibrate the CTD.  He helps launch and recover the CTD and then operates the software to collect and process the data.

CTD Data
Our first CTD launch data.

The CTD software plots the temperature (green), sound velocity (pink), conductivity (yellow), and the salinity (blue) on the x-axes against depth on the y-axis.  You can see locations on the graph where the values for temperature and salinity shift in a significant way with changes in depth.  These shifts can indicate a boundary between different water masses.  The upward spikes in the data are likely caused by some error in the equipment connections.

Let’s conduct an experiment!

Have you ever wondered what would happen to a styrofoam cup if you lowered into the water 2100 meters? The folks here tell me you get some pretty interesting results, so we had to give it a try.

Problem:  Determine the effect of extreme pressure on a styrofoam cups.

Background:  Styrofoam, properly called expanded polystyrene foam, is made by infusing air into polystyrene (a synthetic polymer) using blowing agents. Learn more here.

Hypothesis:  What is your hypothesis?  What do you think will happen to the air pockets if we send the cups to the depths of the ocean?

Procedure:

1.  Decorate your cups, leaving one as a control for comparison after submersion.

Styrofoam Cups
Decorating 12 oz styrofoam cups
Cup Decorations
More cup designs

The Before Picture

2.  Place the cups in a mesh dive bag and attach to a CTD.

Cups ready
Our cups are ready to dive!

3. Lower the CTD to 2100 meters

Launching the CTD
Launching the CTD

4.  Raise the CTD and examine the cups.

Raising the CTD
Raising the cups and CTD

Analysis:

So how much pressure was exerted on the cups at 2100 meters?  We can use this formula to calculate it:

P = pgh

Pressure in a fluid = (density of water) x (acceleration due to gravity) x (height of the fluid above the object).

If the density of seawater is 1027 kg/cubic meter, the acceleration due to gravity is 9.8 m/s/s and the depth is 2100 meters, what is the pressure?

You should get 21 million Pascals (Newtons/square meters) or 21,000 kPa.  If 1 kPa = 0.145 psi, how many pounds of pressure per square inch are exerted on each cup?   About 3000 pounds per square inch.  That’s about the weight of a compact car over each square inch!  For comparison, at sea level the atmospheric pressure is 14.7 psi.

So what happened to our cups under all that pressure?  Check it out!

Cups after dive
Our cups after a dive to 2100m. They are tiny!
Shrunken cups
More shrunken cups.
Shrunken cups
Showing off my shrunken cups.

Conclusion:

Was your hypothesis supported or refuted?  What happened to the air trapped in the styrofoam?

Air extraction is the reason that Dr. Wilford Schmidt uses iron rebar rather than cement to provide the anchor for his free vehicles.  The cement crumbles as the air pockets give way and air is squeezed out.  Cement is not as flexible as the polystyrene.

Free Vehicle
The free vehicle with rebar anchor

What other materials might change under pressure?  If you don’t have access to the deep ocean or a CTD, you could always try a pressure cooker – but be safe!

Personal Log:

I am inspired by all the people working on this vessel.  They are so adventurous and have seen so much.  I wondered what inspired them to do what they do.  Here are some of their answers:

Mapping Intern, Kristin Mello:  Took a class in scuba diving and realized she loved it and wanted to learn more.  Her dive instructor encouraged her to do an internship as a research diver and she has been studying the ocean ever since.

Free Vehicle Tech, Zamara Fuentes:  Built a model of a volcano in school became very interested in geology.  Now she studies tsunami impacts on the Caribbean islands.

NOAA Corps Officer, Nick Pawlenko:  Had never really spent much time on boats as a kid, but was inspired by Clive Cussler novels to explore the ocean.

Expedition Coordinator, Meme Lobecker: Her love of the oceans made her want to put her geography skills and interest in data collection to work in the ocean environment.

Engineer, Chris Taylor:  Wanted to put his love of engineering to work for good pay.  “There is never a dull moment,” he says.

Mapping Watch Lead, Melody Ovard:  Just likes being near the ocean.  “It’s a proximity thing.  I am curious about what goes on in it,” she says.

Free Vehicle Scientist, Bill Schmidt:  Loved surfing and was interested to learn what caused the changes in the surfing conditions day-to-day.  Then he read Willard Bascom’s book, Waves and Beaches, and was hooked.

NOAA Corps Officer, Bryan Pestone:  Swimming competitively and lifeguarding on the beach led him to a degree in marine biology.

Mapping Intern, Jossue Millan:  An astrobiology poster caught his eye in his physics class, which peaked his interest in life in extreme environments.  He enjoys the interdisciplinary sciences.

Teacher at Sea, Theresa Paulsen:  I am inspired by the wonder in a kid’s eye or on a proud parent’s face and by the beauty that surrounds us from the depths of the oceans to the expanses of space.  Life is amazing – and far too short to waste, so we have to make the most of it while we can.

Sunset Image
Thanks for the inspiring conversation everyone!

What inspires you?  Post a comment and let me know!

Did You Know?

For every 10 meters you go below the surface, pressure increases by one atmosphere (14.7 psi).  Scuba instructors typically don’t recommend diving deeper than 40m to decrease the risk of decompression sickness, known as “the bends,” or equipment failures that could lead to drowning.

Question of the Day:

The deepest successful dive in the Guiness Book of World Records is currently 332.35 meters (1090ft)!  Yikes!  Read about it here.

Theresa Paulsen: Ship Navigation, March 28, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16 – April 3, 2015

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 28, 2015

Weather Data from the Bridge: Scattered Clouds, 26˚C, Wind speed 13-18 knots, Wave height 5-7ft

Science and Technology Log

Mapping of our first priority area is now compete and we have moved to the priority two area on the north side of the Puerto Rico Trench.  We are more than 100 miles from shore at this point.  Land is nowhere in sight.  Able-Bodied Seaman Ryan Loftus tells me that even from the bridge the horizon is only 6.4 nautical miles away due to the curvature of the earth.  At this point with no frame of reference other than celestial bodies, navigation equipment becomes essential.

The ship uses Global Positioning Systems, GPS units:

GPS Units
GPS Units aboard the vessel

Radar:

Radar display
The radar display.

 

On the radar display, we are in the center of the circle. Our heading is the blue line. Since this photo was taken near shore, the yellow patches on the bottom indicate the land mass, Puerto Rico. The two triangles with what look like vector lines to the left of us are approaching vessels. On the right, the Automated Identification System displays information about those vessels, including their name, type, heading and speed.  The radar uses two radio beams, an S-Band at 3050 MHz and an X-band at 9410 MHz, to determine the location of the vessel relative to other vessels and landmarks within a 1% margin of error.

Gyrocompasses:

A gyrocompass
A gyrocompass

A standard compass points to the magnetic north pole rather than true north, therefore mariners prefer to use gyrocompasses for navigation.  Before departing, a gyrocompass is pointed to true north.  Using an electric current, the gyroscope in the device is spun very fast so that it will continually maintain that direction during the voyage.  Slight errors build up over time and must be corrected.  The watch standers post the necessary correction on the bridge.  Since the device is electronic, it can feed data into the system allowing for automated navigation and dynamic positioning systems to work well.

ECDIS Screen
The Electronic Chart Display Information System (ECDIIS) Screen

On the Electronic Chart Display Information System (ECDIS) screen, watchstanders can view the course planned by the Expedition Coordinator in charge of the science conducted on the voyage (in red), see the bearing they have set (thin black line), and see the actual course we are on (the black, dashed, arrowhead line).

The Dynamic Postioning System
The Dynamic Positioning System

The dynamic positioning system allows the vessel to remain in one spot in very delicate situations, such as when they lower a tethered device like the robotic vehicle they will be using on the next cruise or a CTD (Conductivity, Temperature and Depth probe).  It is also helpful for docking.

The electronics are able to control the ship due to the ingenious way the engine system is designed.  The diesel engine powers generators that convert the mechanical energy into electrical energy.  This way electrical energy can be used to control main hydraulic propellers at the stern as well as electric bow and side thrusting propellers.

This slideshow requires JavaScript.

What happens if the power goes out and the electronic navigation devices fail?  There are back ups – no worries, students and family!!

The vessel can sail onward.  It is equipped with a magnetic compass and the watchstanders are well versed in reading charts, using a sextant, and plotting courses by hand – they often do that just to check the radar and GPS for accuracy.

The magnetic compass
The superimposed red arrow is directing your attention to the magnetic compass above the bridge.
Using Nautical Charts
Operations Officer, Lt. Emily Rose cross checking the radar and GPS with nautical charts.
Using a Sextant
Seaman Ryan Loftus teaching me how to use a sextant.

They also have a well-used copy of the “bible of navigation,” The American Practical Navigator written in 1802 by Nathaniel Bowditch.

The American Practical Navigator
The American Practical Navigator, The “Bible” of navigation for over 200 years.

They even let me take it for a spin – okay it was about a 90˚ turn – but hey, it feels pretty cool to be at the helm of a 224ft vessel!

At the helm
Steady as she goes! Mrs. Paulsen’s at the helm!

So where are we right now?

As I said we have begun mapping in our second priority zone, more than 100 miles north of Puerto Rico.  We are near the boundary of the Sargasso Sea.  It is not bordered by land, like other seas.  Instead it is bordered by ocean currents that keep the surface water in one area.

The Sargasso Sea
The Sargasso Sea. Image Credit: US Fish and Wildlife Service

Remember the seaweed I wondered about in an earlier post?  It is called Sargassum.  It grows in rafts in the Sargasso Sea.  This is actually where the Sargasso sea got its name.  According to NOAA’s National Ocean Service, these rafts provide habitat for certain fish and marine life.  Turtles use them as nurseries for their hatchlings.  In recent years large blooms of Sargassum have been washing up on nearby coastlines causing problem along the shore.  (Oct 1, 2014, USA Today)  More research needed!  There are always more questions.  Is this caused by warming oceans, by oil spills, or by a combination?  Nothing lives in isolation.  All life forms are connected to each other and to our environment.  Changes in the ocean impact us all, everywhere on the globe.

A Sargassum Mat. Photo courtesy of NOAA.

 

Want to explore yourself?  Check out NOAA Corps to become ship officer!

Career Profile of a NOAA Corps Officer:

Acting Executive Officer (XO) Lieutenant Fionna Matheson is augmenting on this leg of the trip, meaning she is filling in for the XO currently on leave.  Otherwise, in her current “land job” she works at NOAA headquarters for the NOAA Administrator, Dr. Kathryn Sullivan.  Dr. Sullivan, a former astronaut and the first American woman to walk in space, reports to the Secretary of Commerce, Penny Pritzker. Working on the headquarters team, LT Matheson learns a great deal about the breadth and importance of NOAA’s mission.

Lt. Fionna Matheson
Lt. Fionna Matheson

To become a member of the NOAA Corps you must have a Bachelor’s degree in Science or Math. It is a competitive process, so some sort of experience with boating is advantageous, but not required.  NOAA Corps officers are trained not only to drive and manage ships, but also to handle emergencies including fire-fighting, and follow maritime law.  They act as the glue between the scientists and the crew (wage mariners), making sure the scientific mission is accomplished and the safety of the crew and the vessel are secure.  Fionna has been part of the corps for 11 years.  She explains that NOAA Corps officers are stationed for about 2 years at sea (with some shore leave) followed by 3 years on land throughout their careers. During her NOAA career, Fionna has sailed in the tropical Pacific maintaining deep-ocean buoys, fished in the North Atlantic, collected oceanographic samples in the Gulf of Mexico, and now mapped part of the Caribbean. She has also worked as part of an aerial survey team in San Diego, studying whales and dolphins.

Fionna’s advice to high school students is this, “The difference between who you are and who you want to be is action.  Take the initial risk.”

Personal Log

What do we do for fun in our free time?

We read.

Jason Meyer, Mapping Watch Lead, reading on the Okeanos.
Jason Meyer, Mapping Watch Lead, reading on the Okeanos during his off hours.

We play games like chess, although I am not very good.  I try, and that is what is important, right?

Chess Tournament
Chief Steward Dave Fare and CO Mark Wetzler playing a warm up game before the chess tournament.

We watch movies – even watched Star Trek on the fantail one evening.   Very fitting since we are boldly going where no one has gone before with our high-resolution sonar.

Movie Night
Movie night on the fantail.

And we watch the sun go down on the ocean.

Sunset
A view from the fantail of the ship.

Mostly, I like watching the water when I have time.   I would have made a great lookout – I should look into it after I retire from teaching.  I have been trying to use my Aquaman powers to summon the whales and dolphins, but so far – no luck.   Maybe on the way back in to shore we’ll catch another glimpse.

What do I miss?

My family and friends.  Hi Bryan, Ben, Laura, Dad, Mom, and the rest of the gang.

My family
My family

And my students and coworkers.  Go Ashland Oredockers!

Ashland Public Schools, Ashland, Wi

I am fortunate to have such supportive people behind me!  Thanks, guys!

I do not miss snow and cold weather, so if you all could warm it up outside in northern Wisconsin over the next week, I’d appreciate it.  I’ll see what kind of strings I can pull with these NOAA folks!   ¡No me gusta la nieve o el frío en la primavera!

Did you know?

Sky conditions on the bridge are determined by oktas.  An okta is 1/8th of the sky.  If all oktas are free of clouds the sky is clear.  If 1-2 oktas contain clouds, the bridge reports few clouds, 3-4 filled oktas equal scattered clouds, 5-7 equal broken clouds, and 8 filled oktas means the sky is overcast.

Question of the Day

Theresa Paulsen: Getting my Hands Dirty with Data, March 24, 2015

NOAA Teacher at Sea
Theresa Paulsen
NOAA Ship Okeanos Explorer
March 16 – April 3, 2015

Mission:  Caribbean Exploration (Mapping)
Geographical Area:  Puerto Rico Trench
Date:  March 24, 2015

Weather from the Bridge:  Scattered Clouds, 26.6˚C, Wind 10kts from 100˚, Waves 1-2ft, swells 2-3ft

Science and Technology Log

Now that the interns have been trained in data collection and processing, it was my turn to learn.

Mapping Intern Chelsea Wegner taught me how to launch an XBT and how to process the data gathered by the multibeam sonar. It is a fairly simple procedure that requires diligent record keeping in logs.  I processed four “lines.” A line is about one hour of data collection, or shorter. Two of my lines were shorter because the sonar had to be turned off due to a whale sighting! This is bad for data collecting, but AWESOME for me! Again, I missed it with the camera, though.

Mapping Instructors
My Mapping Instructors: Intern, Chelsea Wegner; Expedition Coordinator, Meme Lobecker; and Mapping Watch Lead, Jason Meyer.

I have also been given the task of using a sun photometer to measure direct sunlight over the ocean as part of the Maritime Aerosol Network, a component of AERONET, a NASA project through the Goddard Space Flight Center.  Every two hours when the sun is shining and there are no clouds in the way of the sun, I use this tool to measure the amount of sunlight able to penetrate our atmosphere.

Using the Sun Photometer
Using the Sun Photometer

I use a GPS to determine our location and transfer that information to the sun photometer.  Then I scan the sunlight with the photometer for about 7 seconds and repeat 5 times within two minutes.  Keeping the image of the sun in the target location on the photometer while standing on a rocking boat is harder than it may look!

Sun Photometer
The little bright light in the dark circle above my right hand is the image of the sun.  It must remain in the center of the traget circle during a solar scan.

According to the Maritime Network, the photometer readings taken from ground level helps determine the Aerosol Optical Depth, meaning the fraction of the sun’s energy that is scattered or absorbed while it passes through the earth’s atmosphere. The reduction in energy is assumed to be caused by aerosols when the sunlight’s path to earth is free of clouds.  Aerosols are solid or liquid particles suspended in the atmosphere.  Sea-salt is a major contributor over the ocean as well as smoke and dust particles from land that are lifted and transported over the oceans.  There are many stations over land that collect this data, but using ships is also important because the data is used to provide “ground truth” to satellite measurements over the entire earth, including the oceans.  The data is also used in climate change research and aerosol distribution and transport modeling.

Aerosols in our Atmosphere
“This portrait of global aerosols was produced by a GEOS-5 simulation at a 10-kilometer resolution. Dust (red) is lifted from the surface, sea salt (blue) swirls inside cyclones, smoke (green) rises from fires, and sulfate particles (white) stream from volcanoes and fossil fuel emissions.” (NASA,Goddard website)
Image credit: William Putman, NASA/Goddard

It is pretty cool to be part of such an interesting project!  The people here are interesting too.  I thought I’d highlight some of their stories in my next few blogs.

Career Profile of Intern Chelsea Wegner

Chelsea’s story is a great example for high school students.  She graduated from a high school in Virginia that is similar in size to Ashland High School, where I teach.  Her family enjoyed spending time near the ocean and had a library of books about ocean adventures.  Her grandfather served in the Navy on Nuclear Submarines and liked to build models of ships.

Chelsea Wegner reading "My Father, the Captain:  My Life with Jacque Cousteau"  by Jean Michel Cousteau  in her free time.
Chelsea Wegner reading “My Father, the Captain: My Life with Jacque Cousteau” by Jean Michel Cousteau in her free time.

In high school, her career interests began to take shape in her Environmental Science in Oceanography class.   She went to college at the University of Mary Washington in Virginia majoring in environmental science with particular interest in geology and river systems.  She took advantage of a research opportunity studying sediment transport from rivers to the coast during her undergraduate career.  She took sediment core samples and analyzed them to determine human impacts, contamination, and dated the sediment layers.  She took more research courses that took her to the US Virgin Islands to conduct a reef survey, identifying and counting fish.  She described that as a pivotal experience that led her toward her Masters Degree in Marine Science.  Her Masters thesis project was a coastal processes study the potential effects of sea level rise on coral reefs and the corresponding coastline.  She used the connections she had in the US Virgin Islands and in her university to fund and/or support her research.

After competing her Masters Chelsea applied for a marine science and policy fellowship, the Knauss Fellowship, which allowed her to work as an assistant to the Assistant Administrator of Oceanic and Atmospheric Research (OAR) within NOAA, Craig McLean, for one year.  Through this fellowship, Chelsea traveled the world to places like Vietnam, the Philippines, New Zealand, and France getting a first-hand look at how science informs marine policy and vice versa.

Chelsea learned early on that experience matters most when trying to make yourself marketable.  That is why she is here now serving as a mapping intern.  She takes the opportunity to learn every piece of equipment and software available to her.  She is a rising star in the world of science.  After this voyage, she will begin her new job as a program analyst at OAR headquarters working in the international office handling engagements with other countries such as Indonesia and Japan.  And she is only 28!

Did You Know? 

At 10 AM this morning there was tsunami drill, LANTEX (Large Atlantic Tsunami Exercise) on the east coast from Canada all the way down to the Caribbean.   So students in schools inside Tsunami-threatened areas likely participated in evacuation drills.  The test is part of NOAA National Weather service Tsunami Warning Program.  It helps governments test and evaluate their emergency protocols to improve preparedness in the event of an actual tsunami.

Question of the Day

Theresa Paulsen: A Vessel Built on Science, March 23, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16 – April 3, 2015

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 24, 2015

Weather Data from the Bridge: Scattered Clouds, 27.0˚C, waves 1-2ft, swells 3-4ft, wind 11kts from 100˚

Science and Technology Log

A ship like the Okeanos Explorer demonstrates the connection between science and engineering to the nth degree.  Every room that I visit and every person I talk to can illustrate scientific applications.

Okeanos Explorer
NOAA Ship Okeanos Explorer. Image courtesy of NOAA Office of Ocean Exploration and Research.

Consider the galley I introduced you to in my second blog post.  On a three-week cruise with no access to a grocery store, how are the cooks able to serve fresh fruits and vegetables?  I assumed that they would have to serve canned or frozen foods as time went on but that is not the case.  The Chief Steward, Dave Fare, tells me that he or a member of his crew, goes through the produce each morning to pick out anything that is past its prime so that the any ethylene emitted by the offending overripe items won’t affect the other fruits or vegetables. So far the food has been fabulous so it must be working!

Salad bar
Check out the salad bar available every day!

Then of course, you have the clean up where dishes are rinsed, washed, rinsed again, and then sanitized in a high temperature dishwasher to kill off any harmful bacteria.  Biology in action. They occasionally add beneficial bacteria treatments to the drains to help break down any organic matter that makes its way into the drain pipes.  This reduces the unpleasant smell of decaying matter and makes the water cleaner.

Where does that water go?  I took a tour to find out.

Engine Room Tour
Ready for an Engineering Tour!
First Assistant Engineer
My tour guide, First Assistant Engineer, Ricardo Gabona

The water that goes down the drain or gets flushed goes through an onboard wastewater treatment process similar to one used by a city but in miniature form. It is macerated (ground up), filtered, and then treated with just enough chlorine to kill harmful bacteria before leaving the ship.  The ship’s First Assistant Engineer, Ricardo Gabona, told me that the effluent (water leaving the ship) looks as clean as the seawater we are sailing on with less than 15 ppm total dissolved solids.

Wastewater Treatment Unit
The Ship’s Wastewater Treatment Unit.

How do we survive without additional freshwater for drinking?  We don’t have to!  We are actually drinking seawater – after it has been distilled.  It is a pretty cool process.  The water used to cool the engines, absorbs enough heat to raise the temperature to about 180˚F.  Using a vacuum, the pressure of the water from the engines is reduced so that it boils at temperatures as low as 150˚F.  Next the vapor is condensed.  There you have it – distilled water!  That is great energy conservation in action!  The water then has to be cooled, before heading to the faucets with a heat exchanger.  No need for a water heater – the engines do the work!  The distilled water is also filtered and run through an ultraviolet light tube twice just to be sure to kill off any remaining microbes.  The distillers can make water at a rate of about a gallon per minute.  There are two of them on the ship.  So can you calculate how long it would take them to make enough water for the maximum 46 people on board, each using 50 or more gallons per day?

Vacuum Distinller
Vacuum distiller for the desalination of sea water

In order to draw in relatively clean sea water, the ship must be at least 20 miles from shore, according system’s manufacturer, to avoid contamination from erosion and runoff. For us this means we need to transit north periodically to make water, disrupting our planned mapping route. Water conservation is a priority on this cruise to avoid that as much as possible.

Check out our mapping progress!  You see, the vertical paths were taken when we needed more water.

Our mapping path so far
Our mapping path is represented by the red line in this window. The black outline is Puerto Rico.
Bathymetry data collected so far
Our path looks much cooler with the bathymetry data added, doesn’t it?

What about fuel?

According to Ricardo, the ship was originally built as a submarine hunter during the cold war.  It’s mission was to listen for and locate Russian submarines.  It carried a crew of 24 sailors for 6-9 months at a time. NOAA took charge of the ship in 2004 and by 2008 had modified it to become the exploration vessel it is today.  Some of the fuel tanks now serve other purposes.  Currently the ship can hold 149,000 gallons of diesel fuel! The ship now has 26 crew members, but also now hosts teams of up to 20 scientists, which requires more power and energy.   Still the fuel can last more than 2 months.  The ship will need to be refueled before heading to the Panama canal en route to the Hawaiian Islands.

Why diesel?  It is a very safe fuel for ships, since it won’t ignite at standard temperatures and pressures.  But diesel can be dirty and can contain water, both can interfere with engine performance.  You don’t want to have engine trouble when you are out at sea.  So the fuel is cleaned with a fuel purifier and water separator that use a centrifuge to  separate the fuel from the contaminants based on density.  The fuel entering the engines goes through this process multiple times to ensure the engines are getting very clean diesel fuel.  As a result, you don’t see or smell the exhaust from the combustion.

Of course all of this fuel is heavy, as it is used, the ship would get lighter and lighter making it float higher and higher.  This would be a problem for stability.  As any object’s center of gravity rises higher, the object becomes less stable and more likely to topple.  You do not want your ship to topple!  So you need to replace the fuel as you use it with ballast water.  The fuel and ballast tanks are located all around the ship.  As the fuel tanks are emptied and water tanks are filled, the engineers must consider the balance of the vessel, ensuring the mass is distributed properly for optimum performance and stability in the water.

Personal Log:  

I am loving this adventure.  I am mesmerized by the massiveness of the ocean.  I love looking out at water as far as I can see with only a ship or two in the distance every now and then.   I could watch the water for hours on end.  You see interesting things when you are really looking, each one giving you cause to wonder.  Consider the interesting birds that fly by.  What are they?  Where do they call home?  Why do they like to fly by the ship?  Why do flying fish fly?  Are they finding insects that I can’t see, or are they evading predators?   Where do all the seaweed patches floating on the water come from?  What kind of seaweed is it?  Is it edible?  Do they grow there at the surface, or are they floating debris carried out to sea, or is it a combination of the two?

Let’s start with the birds.  Lieutenant Emily Rose, Operations Officer, told me they are brown boobies.  Take a look at these photos taken of the bow of the ship.

A Brown Booby
A Brown Booby
Brown Boobies
Brown boobies often maintain mating pairs for several seasons
Brown Booby in Flight
Brown Booby in flight

Did You Know?

According to Wikipedia, brown boobies nest in large colonies in tropical areas like the Caribbean and the Gulf of Mexico.  They very good fliers that can plunge for fish at very high speeds, but they are clumsy at take off and landings as we observed on the bow this morning.  One of the birds tried to land on the railing and slipped. Junior Officer Bryan Pestone had to help him up and over.  He flew away for a short time and then returned.  My guess is they use the vantage point of the ship to watch for small fish and to preen themselves.

I’ll let you know what I find out about the seaweed and flying fish in future blogs.  ¡Hasta Luego!

Question of the Day

Theresa Paulsen: Intriguing Deployments, March 19, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16-April 3rd

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 19, 2015

Weather Data from the Bridge:  Partly Cloudy, 26.7˚C, waves 1-3ft, swells 2-4ft.

Science and Technology Log:

This morning at breakfast Commanding Officer Mark Wetzler, or CO, explained that we would be deploying instruments today.  The first one was a glider for the Navy. The Slocum electric glider is like a tiny, unmanned submarine built like a non-explosive torpedo with small wings. It has the ability to be remote-controlled for weeks to months at sea operating 24 hours a day even in the worst weather.  They can be programmed to travel back and forth, dive, and rise periodically to communicate data back to the mainland and accept new missions.  These autonomous underwater vehicles (AUVs) can collect many different types of data such as temperature, conductivity, or audio recordings, depending on the sensors attached. Gliders like this one can help detect tsunamis or other changes in the ocean.

Our vessel also records data 24 hours a day but is limited in its duration at sea by the needs of the people and fuel onboard.  Have you wondered how we can stay out at sea for nearly 3 weeks at a time without hitting the grocery store or service station?  I’ll explain more about that in a future blog.

Navy Glider
Close-up of Navy glider
Deploying the Navy Glider
Navy Glider Deployment
Navy Glider at Sea
Navy Glider at Sea

 

The next deployment was a test run of a “free vehicle.”  Dr. Wilford “Bill” Schmidt, and his assistants, Rolf-Martin Vieten and Zamara Fuentes from the University of Puerto Rico, Mayguez (UPRM) are testing the design of vehicles that can be deployed from a vessel like the Okeanos Explorer or a smaller ship.  These vehicles are inexpensive to make, easy to deploy, and do not need to be tethered to the ship.  They can be programmed to dive to the deepest parts of the ocean, or whatever depth desired, in order to take samples or record data.  Once the vehicle has completed data collection or sampling, it releases its anchor and rises the surface where it is retrieved.  Meanwhile the deployment vessel can continue other operations such as mapping.  Time is not wasted on a research vessel!  On this cruise they will use the device to sample the conductivity, temperature and depth of the water column.  This will help them learn more about the interaction between different water masses in the Puerto Rico Trench.

 

Bill's Team
Wilford “Bill” Schmidt, Zamara Fuentes, and Rolf-Martin Vieten with the Free Vehicle

Water masses in the trench are of particular interest to Bill, a professor of physical oceanography, because they could hold a key to understanding the flow of different ocean currents.  He explained that water masses form at the surface at a particular temperature and with a certain salinity corresponding to the surface conditions at the time.  Temperature and salinity are conservative properties, meaning they don’t change as the water mass moves.   So as a water mass formed in Antarctica sinks and moves toward the deepest parts of the ocean due to its density, its cold temperature and salinity don’t vary significantly. So temperature and salinity can serve as fingerprints of water masses.  Therefore as he measures these factors through the entire water column in the trench, we would expect to see the values change as we move from the North Atlantic Deep Water to the Antarctic Bottom Water.  The image below shows a generalized representation of the typical flow pattern of large water masses.

Ocean Circulation
The ocean circulation system. Image courtesy of NASA.

Bill’s work is supported by NOAA and the National Science Foundation. The NOAA Office of Exploration and Research recently provided him with an award to produce 5 free vehicles with his university team.  The fact that Bill’s vehicles are able to travel untethered into the hadal zone at a very low cost makes them uniquely valuable to researchers.  Data from the hadal zone is virtually non-existant because only enormous vessels would be able to support winches that could handle the 10,000+ meters of cable that would be required for the tethered vehicles currently used.  Since the average depth of the ocean is only 4000m, there is not a large enough demand to make manufacturing such large winches economically feasible.

Also, Bill’s free vehicles are small and can be deployed on very short notice, allowing them to capture data as major events occur. The vehicles can carry interchangeable payloads that could be used in all scientific disciplines. A biologist could request water or bottom substrate samples to examine life forms in the hadal zone that may not exist elsewhere.  A geologist might also like to sample the bottom substrate or might wish to record seismic activity at the bottom of the trench to better understand plate interactions.  A chemist interested in oceanography could examine the water for trace elements or compounds that were emitted into the air at one point in time, such as chloroflourocarbons (CFCs) that were once used but are now illegal in the US due to their impact on the ozone layer, or tritium (H-3) remnants from nuclear bombs used in WWII. This could provide us with an estimate of how long ago the water mass was at the surface and help us determine the rate of flow into the trench.  The research possibilities are endless.

FV Test
The first free vehicle test of the voyage

Initial tests looked good. During our 19 day voyage, Bill’s team and the crew will deploy the vehicle up to 11 more times with up to 6 locations strategically placed in the Puerto Rico Trench.

Personal Log:

Are you interested to know what the accommodations are like aboard the Okeanos?  They are comfortable enough for a work boat.  Take a look for yourself!

Porthole
The porthole in my room.

 

My Bed
My Bed

I love the curtain around my bottom bunk.  It reminds me of the forts my brothers and sisters and I built as kids.  I have slept like a baby ever since arriving.  The rocking of the boat is very calming.

There are a couple of nice spots to relax and chat, and write in my blog.  Here are the library and the lounge.

Library
Chris Taylor and Nick Pawlenko in the library
Lounge
The Lounge

I am surprised that I really haven’t been seasick. Motion sickness medication really helps. If you really get sick, there is a medical officer on board and sick bay.

The Sick Bay
The Sick Bay

I showed you the galley in the last post.  We eat in the Mess Hall.  The Chief Steward puts tennis balls on the bottom of the chairs to avoid scratching the finish on the floor.  Good thinking!

The Mess Hall
The Mess Deck

And when I have eaten too much, there is the fitness room!  There is a scale in the fitness room, but when you stand on it, the action of the boat rocking causes the scale to oscillate by 30-40 pounds.  It is a great demonstration of the difference between mass and weight!

Fitness Room
The Fitness Room

The best place to hang out is outside, of course, where you can possibly see a spouting whale or swimming dolphin.  I have seen both on this trip already but I need to be quicker with the camera!  Maybe next time!!

View from the bow
The view from the bow of the ship

Question of the Day:

Theresa Paulsen: And We’re Off! March 17, 2015

NOAA Teacher at Sea
Theresa Paulsen
Aboard NOAA Ship Okeanos Explorer
March 16 – April 3, 2015

Mission: Caribbean Exploration (Mapping)
Geographical Area of Cruise: Puerto Rico Trench
Date: March 17, 2015

Weather Data from the Bridge: Partly Cloudy, 26 C, Wind speed 12 knots, Wave height 1-2ft, Swells 2-4ft.

Science and Technology Log

Elizabeth “Meme” Lobecker, Physical Scientist Hydrographer with the NOAA Office of Ocean Exploration and Research and our Expedition Coordinator, gave the science team aboard the vessel an overview of our expedition on Sunday after an evening of becoming acquainted with the ship and other members of the science team.

Meme Lobecker
Elizabeth “Meme” Lobecker, Expedition Coordinator from the NOAA Office of Oceanic Exploration Research (OER)
Mapping Introduction
Mapping Introduction

She explained how oceanic exploration research is different from the rest of the scientific community and even other projects within NOAA, because it focuses purely on exploration and discovery that can generate hypotheses. In other areas, a scientist has a hypothesis first and sets out to test it through research and experimentation.

The information gained on our mission could generate hypotheses in all kinds of areas of research such as geology, fisheries, oceanography, marine archeology, and hydrography. It could help us identify areas that need protection, such as spawning grounds for commercial fish populations.  Meme and her team will turn the data over to the National Coastal Data Development Center within three weeks. From there, it goes to the National Geophysical Data Center and the National Oceanographic Data Center, where it is freely accessible through public archives within 60-90 days of the end of the cruise.  From there, any entity, public or private, can access the data for use in their work. Have you ever wondered how Google Earth and Arc View GIS get the background data for their ocean floor layer? This data contributes to those layers. Now you know! Public data access is through www.ngdc.noaa.gov and www.nodc.noaa.gov.

While we currently have low resolution data from satellites, less than 5% of the oceans have high-resolution images. We have better data now about the features of Mars than we do about our oceans on earth. Why? Because ocean surveying is difficult and time-consuming. High resolution maps cannot be made of the ocean floor with current technology on satellites.  The technology is getting better and better, though. The image below shows the progression from a leadsman dropping a 10 pound weight attached to a line in the water to the multibeam sonar being used as I type.

Developing Hydrographic Survey Techniques.

Learn more about the history here.

The multibeam sonar aboard the Okeanos Explorer sends out a ping at 30 kHz that bounces off the seafloor and returns to the transducer that is equipped with sensors oriented in 432 different directions receiving up to 864 beams per swath. This method has been tested in depths of up to 8000 meters. It can give us not only bathymetry data, but also water column backscatter and bottom backscatter data. This allows us to know if there are features in the water column like gaseous seeps escaping from the ocean floor. We can also tell something about the surface features, whether they are soft sediments or hard rock, from the bottom back scatter.

Meme has a crew of mappers working with her including Scott Allen, Senior Survey Technician;  Melody Ovard and Jason Meyer, Mapping Watch Leads; and several interns. Another important part of the mission is to train a new generation of ocean explorers. These interns, Chelsea Wegner, Kristin Mello, and Josue Millan, come from colleges all over the country.  Their main job is to make sure the data is good and to create logs to document data collection.  They have to correct the multibeam sonar data by deploying XBTs (Expendable Bathythermographs) that determine the temperature changes within the water column because sound speed increases as water temperature increases.  They also use sensors on the ship to measure the conductivity and therefore determine the salinity of the water.  Since sound waves penetrate saltier water more easily, the salinity affects the sound intensity measurements.  Pressure must also be calculated into the equation because sound speed also increases with increasing pressure.

XBTS launch
Josue Millan launching an XBT

The vessel’s attitude also has to be factored into the sonar (like teachers need to factor in student attitudes when planning a lesson!) Similar to an airplane, a boat can pivot on its center of gravity in all three-dimensional axes: Pitch, Yaw, and Roll.  Think about your own head.  Pitch is like nodding your head in agreement, yaw is like shaking your head to say no, and roll would be like putting your ear to your shoulder.  Gives new meaning to the phrase “Heads are going to roll,”  doesn’t it?  Boats also heave, or move up and down as swells pass beneath them.

Mapping Data Collection Screen
This screen shows the data being collected by the mappers.

The screen shot above shows the data as it is being collected by the mappers.  In the main window in the upper right is the bathymetry data.  Below that is the water column backscatter.  In the bottom left is the attitude of the vessel on all axes.   The center left gray image shows the bottom backscatter while the number 421 above is the current depth beneath the vessel.  Finally, the display on the top left indicates the quality and intensity of each of the 432 beams.

We also have a team of researchers from the University of Puerto Rico that are deploying free vehicles to study water masses within the Puerto Rico Trench. More about them in the next blog!

Safety First!    On Monday, we had our first drills as part of our safety training. We practiced the “Abandon Ship” and “Fire” drills. We tested the fire hoses and donned our gumby suits. Mrs. Paulsen is looking pretty good, eh? It is comforting to know I’ll be well-protected by good equipment and a great crew in the event of an emergency.

Kristin Mello and Theresa Paulsen in their gumby suits during the first "Abandon Ship" drill.
Kristin Mello and I are trying out our gumby suits during the first “Abandon Ship” drill.
Fire hose test
Chelsea Wegner testing a fire hose.

After mapping all morning, we learned we had to return to port due to a medical issue. I discovered that engineers are vital to the operation. Without them, we don’t sail – and they are hard to come by.  All of my students interested in marine engine repair should consider NOAA in the future. The pay is good and the adventure is awesome!

I took the time in port to work in the galley helping to make lunch with the chefs. They are a friendly bunch. We made fajitas of all kinds and swordfish. Delicious! I also learned how to garnish a buffet line and even washed dishes afterward. In my high school and college days I worked in many restaurants, but they never let me work in the back. They said I was too much of a “people person” and so I was always waiting on customers. Today I got to cook on one of those large grills I see on cooking shows. Fun to cook on, but not fun to clean. The Chief Steward, Dave Fare, said he brought 5000 lbs of food on board for our trip! We’ll be eating well! Good thing there is a fitness room on board too!

Ranier Capati, Chief Cook showed my how to garnish a line.
Ranier Capati, Chief Cook showed me how to garnish a line.
Cooking in the Galley.
Cooking in the Galley.

Personal Log

After training on Sunday I had some time to take in a little of the history and culture of San Juan, Puerto Rico. It is a lovely place filled with beautifully colored buildings and fun music. The history is fascinating. According the National Park Service, this is where Chrisotopher Columbus landed on his 2nd voyage and laid claim to the land for Spain. Under Juan Ponce de Leon, Spain took control of the island, displacing the Taíno Indians in 1508. An enormous wall of defense was built to keep hold of the island. Trade winds and ocean currents allowed ships to easily sail here from the east. The fortifications on the island took 10 generations to build.

This slideshow requires JavaScript.

Spain kept control of the island against invaders until the Spanish-American war in 1898 when Puerto Rico became a US Territory. The fortress including the Castillo de Felipe del Morro and the Castillo San Cristobal are now historical sites managed by the National Park Service. You can learn more here.

After touring the city, I found my way to the sea! I watched children running from the waves.  This reminded me of my childhood. My father used to take us to the coast when we lived in California and Oregon. That is where my love of the sea began. Both of my parents have adventurous spirits and strong work ethics. They taught me that anything is possible if you are willing to take the chance and put in the effort. This is a belief I hope I pass on to my students.

Question of the Day

Can you identify this crustacean I found along a beach in San Juan?

Crab on the beach of Sn Juan.  Can you classify it?
Crab on the beach of San Juan. Can you classify it?

 

Theresa Paulsen: Preparing to Explore the Ocean Floor, March 9, 2015

NOAA Teacher at Sea
Theresa Paulsen
Preparing to Board NOAA Ship Okeanos Explorer
March 16 – April 3, 2015

Mission:  Caribbean Exploration (Mapping)
Geographical Area of Cruise:  Caribbean Trenches and Seamounts
Date: March 9, 2015

Personal Log

If you could have any super power imaginable, what would it be?  Growing up, my son asked me this question numerous times as we walked our dog.  While he pondered the advantages of flight, invisibility, or spontaneous combustion, my answer was always the same.  I want Aquaman’s powers (but a better looking outfit).  I want to swim underwater without the need for dive gear, seahorses, or gillyweed, to see what few others have seen.  I want to communicate with whales and dolphins to find out what their large brains can teach us about our planet.  While I may not be able to attain superhero status, I can join some real-world adventurers on an amazing vessel equipped to conduct research that will help realize my dream of seeing the unseen depths of the ocean.

Hello, from Northern Wisconsin!  My name is Theresa Paulsen.  I am a high school science teacher in Ashland, WI.  I have been teaching for 17 years while living along the south shore of Lake Superior with my husband and our two children.

My husband, Bryan
My husband, Bryan
Our children, Ben and Laura, paddling the sea caves in the Apostle Islands, N.L.
Our children, Ben and Laura, paddling the sea caves in the Apostle Islands, N.L.

The pristine lake and the rich forests around the region provide the resources that sustain our local communities.  As we work to promote local stewardship in the classroom, we must recognize that the health and welfare of the resources we treasure are connected to the greater global environment which is heavily influenced by the processes that occur in our oceans. The geological processes occurring near our research zone are fascinating.  The North American plate slides passed the Caribbean plate creating the Puerto Rico trench, the deepest part of the Atlantic Ocean.

Bathymetry of the northeast corner of the Caribbean plate. Image courtesy of USGS.

Maps generated by the vessel’s state-of-the-art multibeam sonar on our mission will help geologists learn more about the tectonic activity and potential seismic hazards in the area. (Let’s hope the only rumblings I feel are those caused by the typical mild sea-sickness!)  The maps will also be used by marine biologists and resource managers to investigate and assess unique habitat zones.  Learn more the mission goals here.

My students and I have been checking in on the vessels live video feed periodically as the ship sails from Rhode Island to Puerto Rico, mapping along the way.  I will join the crew in Puerto Rico on the 14th to begin training before the vessel sets sail for the second leg of the mission on the 16th.  Throughout our journey, scientists will use the maps we generate to determine areas that require further investigation with the vessel’s remotely operated vehicle (ROV) on the third leg of the mission.

NOAA Ship Okeanos Explorer with camera sled, Seirios, deployed and below that, IFE’s Little Hercules—a science-class ROV. Credit: Randy Canfield and NOAA.

My goal is to learn as much as I can on this expedition!  There is no better way to motivate students to become life-long learners and scientific thinkers than to show them how exciting real research can be.   Through the NOAA Teacher at Sea program, my students and I will have the rare opportunity to learn first-hand about the science and technology oceanographers use to study fascinating places in the ocean.   I will return to the classroom in April, equipped with lesson ideas and answers to questions about ocean research and careers! Thank you for following me on my journey.  Please post questions or comments.  I will do my best to address them in future posts (although communication aboard the vessel can be tenuous, I am told).  Here is my first question for you: